“Stayers”? Examining China's Resettlement Induced By

Total Page:16

File Type:pdf, Size:1020Kb

“Stayers”? Examining China's Resettlement Induced By land Article What about the “Stayers”? Examining China’s Resettlement Induced by Large Reservoir Projects Tianhe Jiang 1,2,3, Mark Wang 2,4 , Yingnan Zhang 2,5, Guoqing Shi 1,3,* and Dengcai Yan 1,3 1 School of Public Administration, Hohai University, Nanjing 211100, China; [email protected] (T.J.); [email protected] (D.Y.) 2 School of Geography, The University of Melbourne, Carlton, VIC 3053, Australia; [email protected] (M.W.); [email protected] (Y.Z.) 3 National Research Centre for Resettlement, Hohai University, Nanjing 210098, China 4 Centre for Contemporary Chinese Studies, Asia Institute, The University of Melbourne, Parkville, VIC 3010, Australia 5 Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China * Correspondence: [email protected] Abstract: Large reservoir projects typically occupy vast lots of rural land and trigger resettlement on a massive scale. In China’s reservoir context, increasing concerns have arisen regarding distant- resettlees (those who are resettled outside the reservoir area), while fewer studies have examined the nearby-resettlees (those who are resettled near the original area) and the non-movers (those who do not resettle). The significance of these two groups has been downplayed and their populations are in the millions (or more) in China. How and why they are impacted is under-researched and their relative position and intergroup nexus with the distant-resettlees remains unclear in the existing literature. To address this research gap, this paper incorporates the differences between nearby- resettlees and non-movers and collectively refers to them as the “stayers” as they are left behind in Citation: Jiang, T.; Wang, M.; Zhang, reservoir areas. Based on the background of reservoir-induced resettlement in present-day China, and Y.; Shi, G.; Yan, D. What about the a review of the project-induced impacts, we use Danjiangkou Reservoir as a case study. The findings “Stayers”? Examining China’s indicate that the stayers are largely disadvantaged in terms of land assets, housing conditions, finance, Resettlement Induced by Large infrastructure, industrialisation, livelihood strategies, and emotional impact, while many distant- Reservoir Projects. Land 2021, 10, 166. resettlees are less affected or positively impacted in these aspects. Through the lens of the political https://doi.org/10.3390/ land10020166 nature of reservoir-induced resettlements, we interpret the gaps between the distant-resettlees and stayers. Finally, domestic and global policy implications and further comments are presented. Academic Editor: Frank Vanclay Received: 22 December 2020 Keywords: development-induced displacement; distant-resettlees; nearby-resettlees; non-movers; Accepted: 2 February 2021 social impacts; rural area; post-resettlement stage; comparative study; Danjiangkou Dam; China Published: 6 February 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- China’s reservoir-building spree has been fuelled by the reform and opening-up that iations. has occurred since 1978. By 2018, there were more than 98,795 reservoirs, including 732 large reservoirs with a capacity of more than 100 million m3 [1]. Because of the considerable increased capacity in terms of water storage, many people have been subjected to enormous risks due to physical displacement, relocation, and resettlement [2]. In the late 20th century, Copyright: © 2021 by the authors. due to the pervasive lack of prior surveys, sufficient planning and use of meticulous Licensee MDPI, Basel, Switzerland. designs [3], millions of reservoir resettlees were not sufficiently compensated, nor were This article is an open access article their livelihoods and property properly reinstated. This has shaped the initial image of distributed under the terms and resettlement in China. The extensive resettlement activity in China has been gradually conditions of the Creative Commons rectified since the 21st century due to remarkable growth in international investment Attribution (CC BY) license (https:// and guidelines injected into China’s dam industries. The pursuit of “best practice” for creativecommons.org/licenses/by/ resettlement, relieving the “trauma” [4], and ensuring that resettlement is “naturalised, 4.0/). Land 2021, 10, 166. https://doi.org/10.3390/land10020166 https://www.mdpi.com/journal/land Land 2021, 10, 166 2 of 20 legitimate and durable” [5] have become prevalent. Therefore, the traditional budget structure, time metrics, and technical specifications of resettlement are being updated and improved [6], and academia is concerned with more aspects, such as livelihood building, land reallocation, psychological recovery, voluntarism, and self-fulfilment [7–11]. In China, a reservoir project and its induced resettlement action would generate multiple impacted identities, including distant-resettlees, nearby-resettlees, non-movers, and host households in both reservoir and resettlement areas. This paper focuses on the former three groups. There was little distinction among them before resettlement occurred. The overwhelming majority are rural people [12] as most of China’s reservoir projects are located in rural areas. In the (post-) resettlement stage, they are classified into three sectors according to their movement characteristics. Distant-resettlees are generally people who are required to relocate far from their original counties to resettlement villages in other counties outside of the reservoir area, i.e., submergence-affected counties. Their movements and final destinations are mostly managed by authorities to ensure sufficient exploitable land resources and better living conditions [13–15]. In addition to obtaining reallocated land, distant-resettlees would receive land acquisition compensation and resettlement subsidies based on times of their average annual output value (AAOV). Moreover, to help distant-resettlees overcome the incompatibility caused by long-distance resettlement, usually some targeted measures and mutually beneficial mechanisms are employed to address the lifestyles, religious beliefs, customs, and habits of the distant-resettlees and receiving communities [15]. Distant- resettlement is costly, but is growing in popularity in China. This is because it can largely alleviate land shortage caused by dam impoundment and is conducive to the restructuring of supporting water conservancy facilities and the protection of the ecological environment. Nearby-resettlees are individuals whose housing or land (or both) are resettled to another place within the counties of the reservoir area [14–16]. This group has mostly moved a short distance within their original county, thus they are also called near-relocated people or intra-county resettlees [17]. All nearby-resettlees are similarly paid once-off land requisition fees and resettlement subsidies similar to distant-resettlees. Nearby- resettlement is widely practised in China as it is generally cost effective, easily implemented, and has less influence on the resettlees’ social networks. Compared to distant-resettlement, most people are inclined to relocate nearby if their original fixed assets are submerged and movement is inevitable. However, the principle of proximity has been no longer encouraged in resettlement activities since the regulations on land requisition compensation and resettlement for large and medium water conservation and hydropower construction projects (2006 Amendment). Because the nearby-resettlement approach intensifies the incisive contradiction between human and land, which essentially causes the remaining unsubmerged land to be overloaded with a larger population. Given the land-based nature of China’s dam-induced resettlement [12,18], the shortage of land in reservoir areas results in risks of livelihood deterioration and stalled development [19] for nearby-resettlees. Non-movers constitute an under-defined group. In China, this group is not included in a resettlement plan, so they almost have no choice, but to stay put in the reservoir area after resettlement occurs. This is because authorities believe that this population, who live in high-elevation reservoir areas, are not directly impacted by submergence. It is worthy to note that, in the reservoir context, non-movers differ from the general non- moved people [20–22], because the bottom half of the villages from a vertical perspective in which the former live is partially flooded in the post-resettlement stage [23,24]. Given this, non-movers are affected by many other aspects rather than reservoir flooding per se. It has been verified that there is a severe lack of infrastructure, public services, and development opportunities in the waterside or mountainside where non-movers live [25]. Although the situation of this population has been partly recognised by developers and governments, the “economic displacement” experiences [26] of non-movers are scarcely compensated. To exonerate themselves from compensation claims, non-movers are specifically named Liuzhi (literally means left and stagnant) population in some of China’s praxis [24,25,27]. Land 2021, 10, 166 3 of 20 This identification largely confuses the concepts between those who are not moved and those who are not influenced. Thus, non-movers are kept away from the umbrella of post- resettlement support policies, which are applicable to officially identified
Recommended publications
  • Stable Hydrogen and Oxygen Isotope Characteristics of Bottled Water in China: a Consideration of Water Source
    Stable Hydrogen and Oxygen Isotope Characteristics of Bottled Water in China: A Consideration of Water Source Supplementary Materials: Table 1. Inventory of sampling stations. Ave.(‰) σ(‰) Brand Source site Origin Lon./° Lat./° Alt/m Date δ2H δ18O δ2H δ18O Daqishanquan Tonglu spring 119.72 29.77 158.41 −31.3 −5.53 − − 2015.5.22 Bamaboquan Bama spring 107.25 24.14 244.08 −46.3 −6.99 − − 2015.6.6 1626.9 Baishite Lanzhou spring 103.81 36.02 −63.06 −9.61 − − 2015.4.22 5 Wudangshanqu Danjiangkou spring 111.48 32.55 147.41 −18.75 −3.86 − − 2015.3.11 an Xiaoyushanquan Guantao spring 115.30 36.53 43.33 −65.01 −9.24 − − 2015.7.05 2015.4.24 2015.5.31 Lao Shan (4) Qingdao spring 120.68 36.20 4.06 −50.87 −7.65 0.36 0.09 2015.7.16 2015.5.20 Shenshuiyu Sishui spring 117.30 35.55 340.20 −63.66 −8.88 - - 2015.6.27 2015.5.20 HOSANMI (2) Haikou spring 110.01 19.7 63.46 −45.80 −6.99 0.05 0.00 2015.6.09 2015.1.07 1062.5 −107.0 AER (3) Arxan spring 119.94 47.19 −14.58 1.96 0.71 2015.3.29 8 8 2015.5.07 2695.2 2015.6.04 Angsiduo (2) Haidong spring 102.13 36.20 −57.37 −8.73 0.08 0.08 3 2015.6.01 Nongfu Spring Changbai 2015.8.09 spring 127.84 42.52 738.31 −94.15 −13.6 0.33 0.04 (2) Shan 2015.8.10 2014.11.04 Evergrande ice Changbai 2720.5 2015.3.06 spring 127.88 41.99 −86.00 −12.22 0.34 0.11 spring (4) Shan 2 2015.4.11 2015.8.17 2015.4.02 2015.7.09 ALKAQUA (4) Antu spring 128.17 42.48 655.72 −98.68 −13.88 0.02 0.02 2015.7.10 2015.9.06 Master Kong Yanbian spring 129.52 42.90 183.16 −85.54 −12.06 - - 2015.6.04 Yaquan Hotan spring 79.92 37.12 1379 −43.23 −7.12 -
    [Show full text]
  • Landscape Analysis of Geographical Names in Hubei Province, China
    Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors.
    [Show full text]
  • Journal of Hydrology 569 (2019) 218–229
    Journal of Hydrology 569 (2019) 218–229 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Water quality variability in the middle and down streams of Han River under the influence of the Middle Route of South-North Water diversion T project, China ⁎ Yi-Ming Kuoa,1, , Wen-wen Liua,1, Enmin Zhaoa, Ran Lia, Rafael Muñoz-Carpenab a School of Environmental Studies, China University of Geosciences, Wuhan 430074, China b Department of Agricultural and Biological Engineering-IFAS, University of Florida, Gainesville, FL, USA ARTICLE INFO ABSTRACT This manuscript was handled by Huaming Guo, The middle and down streams of Han River are complex river systems influenced by hydrologic variations, Editor-in-Chief, with the assistance of Chong- population distributions, and the engineering projects. The Middle Route of China’s South-to-North Water Yu Xu, Associate Editor Transfer (MSNW) project planned to transfer 95 billion m3 annually from Han River to north China. The op- Keywords: eration of the MSNW project may alter the flow rate and further influence the water quality of Han River. This Min/max autocorrelation factor analysis study used min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) to analyze Dynamic factor analysis spatio-temporal variations of the water quality variables in three typical tributary-mainstream intersection zones Han River in Han River from June 2014 to April 2017. MAFA results showed that chlorophyll-a (Chl-a), chemical oxygen Flow rate − demand (COD), suspend solid (SS) and phosphate (PO 3 ) (represented as trophic dynamics) are main con- Water transfer 4 cerned water quality variables in densely populated zones (Zones 1 and 3), and total nitrogen (TN), nitrate Water quality variation − 3− nitrogen (NO3 ), COD, and PO4 (regarded as nutrient formations dynamics) represent the underlying water quality variations in agricultural cultivation zone (Zone 2).
    [Show full text]
  • Numerical Simulations of Spread Characteristics of Toxic Cyanide in the Danjiangkou Reservoir in China Under the Effects of Dam Cooperation
    Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 373510, 10 pages http://dx.doi.org/10.1155/2014/373510 Research Article Numerical Simulations of Spread Characteristics of Toxic Cyanide in the Danjiangkou Reservoir in China under the Effects of Dam Cooperation Libin Chen, Zhifeng Yang, and Haifei Liu State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China Correspondence should be addressed to Zhifeng Yang; [email protected] Received 16 June 2014; Revised 1 September 2014; Accepted 1 September 2014; Published 29 September 2014 Academic Editor: Ricardo Aguilar-Lopez´ Copyright © 2014 Libin Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Many accidents of releasing toxic pollutants into surface water happen each year in the world. It is believed that dam cooperation can affect flow field in reservoir and then can be applied to avoiding and reducing spread speed of toxic pollutants to drinking water intake mouth. However, few studies investigated the effects of dam cooperation on the spread characteristics of toxic pollutants in reservoir, especially the source reservoir for water diversion with more than one dam. The Danjiangkou Reservoir is the source reservoir of the China’ South-to-North Water Diversion Middle Route Project. The human activities are active within this reservoir basin and cyanide-releasing accident once happened in upstream inflow. In order to simulate the spread characteristics of cyanide in the reservoir in the condition of dam cooperation, a three-dimensional water quality model based on the Environmental Fluid Dynamics Code (EFDC) has been built and put into practice.
    [Show full text]
  • Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China Tingke Wu, Man Yuan
    World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:13, No:5, 2019 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China Tingke Wu, Man Yuan market failure [4]. In fact, spatial planning system of China is Abstract—“National Territorial Planning (2016-2030)” was not perfect. It is a crucial problem that land resources have been issued by the State Council of China in 2017. As an important unordered and decentralized developed and overexploited so initiative of putting it into effect, territorial planning at provincial level that ecological space and agricultural space are seriously makes overall arrangement of territorial development, resources and squeezed. In this regard, territorial planning makes crucial environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of attempt to realize the "Multi-Plan Integration" mode and Central China” national strategy, is now confronted with great contributes to spatial planning system reform. It is also opportunities and challenges in territorial development, protection, conducive to improving land use regulation and enhancing and renovation. Territorial spatial pattern experiences long time territorial spatial governance ability. evolution, influenced by multiple internal and external driving forces. Territorial spatial pattern is the result of land use conversion It is not clear what are the main causes of its formation and what are for a long period. Land use change, as the significant effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with manifestation of human activities’ impact on natural economic and social data and construction information, driving forces ecosystems, has always been a specific field of global climate of territorial spatial pattern are then analyzed.
    [Show full text]
  • Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir
    Portland State University PDXScholar Environmental Science and Management Faculty Publications and Presentations Environmental Science and Management 2018 Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir Yangdong Pan Portland State University, [email protected] Shijun Guo Nanyang Normal University, Nanyang, Henan, China Yuying Li Nanyang Normal University, Nanyang,Henan, China Wei Yin Nanyang Normal University, Henan, China Pengcheng Qi Nanyang Normal University, Henan, China See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_fac Part of the Hydrology Commons, and the Natural Resources Management and Policy Commons Let us know how access to this document benefits ou.y Citation Details Pan, Y., Guo, S., Li, Y., Yin, W., Qi, P., Shi, J., ... & Zhu, J. (2018). Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir. Water, 10(3), 256. This Article is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Yangdong Pan, Shijun Guo, Yuying Li, Wei Yin, Pengcheng Qi, Jainwei Shi, Lanqun Hu, Bing Li, Shengge Bi, and Jingya Zhu This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/esm_fac/240 water Article Effects of Water Level Increase on Phytoplankton Assemblages
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. The
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Energy for Sustainable Development 14 (2010) 238–244 Contents lists available at ScienceDirect Energy for Sustainable Development Household level fuel switching in rural Hubei Wuyuan Peng a,⁎, Zerriffi Hisham b, Jiahua Pan c a School of Economic Management, China University of Geosciences (Wuhan Campus), 388 Lumo Road, Hongshan District, Wuhan, Zip code 430074, China b Liu Institute for Global Issues, University of British Columbia, Vancouver, Canada c Research Centre for Sustainable Development, Chinese Academy of Social Sciences, Beijing, China article info abstract Article history: The majority of rural residents in China are dependent on traditional fuels, but the quality and quantity of Received 3 July 2010 existing data on the process of fuel switching in rural China are insufficient to have a clear picture of current Accepted 3 July 2010 conditions and a well-grounded outlook for the future. Based on an analysis of a rural household survey data in Hubei province in 2004, we explore patterns of residential fuel use within the conceptual framework of Keywords: fuel switching using statistical approaches.
    [Show full text]
  • Preferred Hierarchical Control Strategy of Non-Point Source Pollution at Regional Scale
    Preferred Hierarchical Control Strategy of Non-Point Source Pollution at Regional Scale Weijia Wen Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology Yanhua Zhuang ( [email protected] ) Institute of Geodesy and Geophysics Chinese Academy of Sciences https://orcid.org/0000-0002-7041- 1118 Liang Zhang Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology Sisi Li Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology Shuhe Ruan Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology Qinjing Zhang Wuhan University Research Article Keywords: Non-point source (NPS) pollution, Critical periods (CPs), Critical source areas (CSAs), Dual- structure export empirical model, Point density analysis (PDA), Management Posted Date: February 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-193825/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Preferred hierarchical control strategy of non-point source pollution at regional scale 2 3 Author names and affiliations 4 Weijia Wen1,2, Yanhua Zhuang1*, Liang Zhang1, Sisi Li1, Shuhe Ruan1,2, Qinjing Zhang3 5 1 Hubei Provincial Engineering Research Center of Non-Point Source Pollution Control, Innovation 6 Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 7 430077, Peoples R China 8 2 University of Chinese Academy of Sciences, Beijing
    [Show full text]
  • Adaptive Optimal Allocation of Water Resources Response to Future Water
    www.nature.com/scientificreports OPEN Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China Jing Tian1, Shenglian Guo1*, Lele Deng1, Jiabo Yin1, Zhengke Pan2, Shaokun He1 & Qianxun Li1 Global warming and anthropogenic changes can result in the heterogeneity of water availability in the spatiotemporal scale, which will further afect the allocation of water resources. A lot of researches have been devoted to examining the responses of water availability to global warming while neglected future anthropogenic changes. What’s more, only a few studies have investigated the response of optimal allocation of water resources to the projected climate and anthropogenic changes. In this study, a cascade model chain is developed to evaluate the impacts of projected climate change and human activities on optimal allocation of water resources. Firstly, a large set of global climate models (GCMs) associated with the Daily Bias Correction (DBC) method are employed to project future climate scenarios, while the Cellular Automaton–Markov (CA–Markov) model is used to project future Land Use/Cover Change (LUCC) scenarios. Then the runof simulation is based on the Soil and Water Assessment Tool (SWAT) hydrological model with necessary inputs under the future conditions. Finally, the optimal water resources allocation model is established based on the evaluation of water supply and water demand. The Han River basin in China was selected as a case study. The results show that: (1) the annual runof indicates an increasing trend in the future in contrast with the base period, while the ascending rate of the basin under RCP 4.5 is 4.47%; (2) a nonlinear relationship has been identifed between the optimal allocation of water resources and water availability, while a linear association exists between the former and water demand; (3) increased water supply are needed in the water donor area, the middle and lower reaches should be supplemented with 4.495 billion m3 water in 2030.
    [Show full text]
  • Multitemporal Landsat Image Based Water Quality Analyses of Danjiangkou Reservoir
    Multitemporal Landsat Image Based Water Quality Analyses of Danjiangkou Reservoir Yinuo Zhang, Xin Huang, Wei Yin, and Dun Zhu Abstract Danjiangkou Reservoir (DJKR) is one of the largest artificial In addition, DJKR is one of the water sources of “NongFu freshwater lakes in Asia and a water source of the South: Spring”, which has been one of the most popular drinking wa- the North Water Transfer Project. However, few studies have ter brands of China since 1996 and produces over 0.6 million analyzed the spatio-temporal water quality distribution or tons of natural drinking water annually. The water quality of investigated the causative factors of the long-term water qual- DJKR directly affects the drinking water security of hundreds ity variation of DJKR. In this study, we used multi-temporal of millions of Chinese people and the implementation of the Landsat images combined with the multiple linear stepwise largest-ever water transfer project. Therefore, periodic and ef- regression (MLSR) method to retrieve long-term distributions of ficient water quality monitoring in DJKR is urgently needed. the main water quality parameters in DJKR, i.e., total nitrogen Traditional in-situ measurements are able to provide (TN), total phosphorus (TP), permanganate index (CODMn), details of the optical properties of water, and they provide and five-day biochemical oxygen demand (BOD5). Results accurate data at fixed sample sites inDJKR . Nevertheless, this indicated the heavily polluted regions and an alarming water approach is not only costly and time-consuming, but also quality deterioration trend between May 2006 and May 2014. restricted by natural conditions, e.g.
    [Show full text]
  • Fearnside, PM 1988. China's Three Gorges
    The text that follows is a PREPRINT. Please cite as: Fearnside, P.M. 1988. China's Three Gorges Dam: "Fatal" project or step toward modernization? World Development 16(5): 615-630. ISSN: 0305-750X Copyright: Pergamon The original publication is available at: CHINA'S THREE GORGES DAM: "FATAL" PROJECT OR STEP TOWARD MODERNIZATION? Philip M. Fearnside Department of Ecology National Institute for Research in the Amazon (INPA) C.P. 478 69011 Manaus-Amazonas BRAZIL August 9, 1987 Revised: November 8, 1987 March 9, 1988 In Press: World Development 16(5) (May 1988) 1 CHINA'S THREE GORGES DAM: "FATAL" PROJECT OR STEP TOWARD MODERNIZATION? Philip M. Fearnside(1) National Institute for Research in the Amazon (INPA), Manaus, Brazil Summary. -- China's plans for the Three Gorges Dam on the Yangzi River are a focus of controversy both inside and outside of China. The dam is one of the "Fatal Five" World Bank projects criticized by environmental groups in the United States. The dam entails strategic, social and cultural costs that go far beyond its substantial monetary price. Strategic vulnerability is a major concern. The consequences would be catastrophic should the dam fail as a result of warfare, earthquakes, or other causes. Resettlement of population displaced by the reservoir, especially farmers, presents a formidable obstacle in the mountainous and already-crowded land around the reservoir site. Resettlement could affect minority groups if population is moved to border areas. The reservoir would sacrifice cultural landmarks holding great significance for many Chinese. Erosion and reservoir siltation may impede navigation within a few years, and in the longer term will reduce storage volume, thereby reducing power generation and flood control effectiveness.
    [Show full text]
  • China's Past, China's Future Energy, Food, Environment
    China’s Past, China’s Future China has a population of 1.3 billion people, which puts strain on her natural resources. This volume, by one of the leading scholars on the earth’s biosphere, is the result of a lifetime of study on China, and provides the fullest account yet of the environmental challenges that China faces. The author examines China’s energy resources, their uses, impacts and prospects, from the 1970s oil crisis to the present day, before analyzing the key question of how China can best produce enough food to feed its enormous population. In answering this question the entire food chain – the environmental setting, post-harvest losses, food processing, access to food and actual nutritional requirements – is examined, as well as the most effective methods of agricultural management. The final chapters focus upon the dramatic cost to the country’s environment caused by China’s rapid industrialization. The widespread environ- mental problems discussed include: • water and air pollution • water shortage • soil erosion • deforestation • desertification • loss of biodiversity In conclusion, Smil argues that the decline of the Chinese ecosystem and environ- mental pollution has cost China about 10 per cent of her annual GDP. This book provides the best available synthesis on the environmental conse- quences of China’s economic reform program, and will prove essential reading to scholars with an interest in China and the environment. Vaclav Smil is Distinguished Professor in the Faculty of Environment, University of Manitoba, Canada. He is widely recognized as one of the world’s leading authorities on the biosphere and China’s environment.
    [Show full text]