An Electropalatographic and Acoustic Study of Affricates and Fricatives in Two Catalan Dialects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phonological Processes
Phonological Processes Phonological processes are patterns of articulation that are developmentally appropriate in children learning to speak up until the ages listed below. PHONOLOGICAL PROCESS DESCRIPTION AGE ACQUIRED Initial Consonant Deletion Omitting first consonant (hat → at) Consonant Cluster Deletion Omitting both consonants of a consonant cluster (stop → op) 2 yrs. Reduplication Repeating syllables (water → wawa) Final Consonant Deletion Omitting a singleton consonant at the end of a word (nose → no) Unstressed Syllable Deletion Omitting a weak syllable (banana → nana) 3 yrs. Affrication Substituting an affricate for a nonaffricate (sheep → cheep) Stopping /f/ Substituting a stop for /f/ (fish → tish) Assimilation Changing a phoneme so it takes on a characteristic of another sound (bed → beb, yellow → lellow) 3 - 4 yrs. Velar Fronting Substituting a front sound for a back sound (cat → tat, gum → dum) Backing Substituting a back sound for a front sound (tap → cap) 4 - 5 yrs. Deaffrication Substituting an affricate with a continuant or stop (chip → sip) 4 yrs. Consonant Cluster Reduction (without /s/) Omitting one or more consonants in a sequence of consonants (grape → gape) Depalatalization of Final Singles Substituting a nonpalatal for a palatal sound at the end of a word (dish → dit) 4 - 6 yrs. Stopping of /s/ Substituting a stop sound for /s/ (sap → tap) 3 ½ - 5 yrs. Depalatalization of Initial Singles Substituting a nonpalatal for a palatal sound at the beginning of a word (shy → ty) Consonant Cluster Reduction (with /s/) Omitting one or more consonants in a sequence of consonants (step → tep) Alveolarization Substituting an alveolar for a nonalveolar sound (chew → too) 5 yrs. -
Description of Acoustic and Articulatory Parameters of Vowels in Mapudungun Speakers
Int. J. Odontostomat., 14(2):205-212, 2020. Description of Acoustic and Articulatory Parameters of Vowels in Mapudungun Speakers. Pilot Study Descripción de Parámetros Acusticos y Articulatorios de las Vocales en Hablantes de Mapudungun. Estudio Piloto Giannina Álvarez1; Magaly Ruiz2; Alain Arias1,3,4; María Florencia Lezcano1,3 & Ramón Fuentes1,3 ÁlvareZ, G.; RUIZ, M.; ARIAS, A.; LEZCANO, M. F. & FUENTES, R. Description of acoustic and articulatory parame- ters of vowels in Mapudungun speakers. Pilot study. Int. J. Odontostomat., 14(2):205-212, 2020. ABSTRACT: Mapudungun is a language used by Mapuche people in some regions of Chile and Argentina. The aim of this study was to describe the vowel phonemes with regard to the articulatory parameters (position of the tongue with respect to the palate and jaw opening) and acoustic parameters (f0, F1, F2 and F3) in Mapudungun speakers in the Region of La Araucanía. The vocalic phonemes of Mapudungun are six, where the first five are similar to those used in Spanish (/a e i o u/), to which is added a sixth vowel (/ɨ/) with its vocalic allophones (/ɨ/) and [Ә]. Three Mapudungun speakers were evaluated. The tongue movements were collected by Electromagnetic Articulography 3D and the data were processed with MATLAB and PRAAT software. It was possible to describe the trajectory of each third of the tongue during the production of the vowels. It was observed that the sixth vowel /Ә/ had minimal jaw opening during its pronunciation. In addition, the characteristic of /Ә/ as an unrounded mid-central vowel was corroborated. In this study, the tongue of mapudungun speakers was in a more posterior position than the found in other studies. -
Vowel Sounds Can Symbolise the Felt Heaviness of Obje
CORRESPONDENCES AND SYMBOLISM Cross-Sensory Correspondences in Language: Vowel Sounds can Symbolise the Felt Heaviness of Objects Peter Walker1,2 & Caroline Regina Parameswaran2 1 Department of Psychology, Lancaster University, UK 2 Department of Psychology, Sunway University, Malaysia Correspondence concerning this article should be addressed to: Peter Walker, Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK e-mail: [email protected] tel: +44 (0) 1524 593163 fax: +44 (0) 1524 593744 1 CORRESPONDENCES AND SYMBOLISM Abstract In sound symbolism, a word's sound induces expectations about the nature of a salient aspect of the word's referent. Walker (2016a) proposed that cross-sensory correspondences can be the source of these expectations and the present study assessed three implications flowing from this proposal. First, sound symbolism will embrace a wide range of referent features, including heaviness. Second, any feature of a word's sound able to symbolise one aspect of the word's referent will also be able to symbolise corresponding aspects of the referent (e.g., a sound feature symbolising visual pointiness will also symbolise lightness in weight). Third, sound symbolism will be independent of the sensory modality through which a word's referent is encoded (e.g., whether heaviness is felt or seen). Adults judged which of two contrasting novel words was most appropriate as a name for the heavier or lighter of two otherwise identical hidden novel objects they were holding in their hands. The alternative words contrasted in their vowels and/or consonants, one or both of which were known to symbolise visual pointiness. Though the plosive or continuant nature of the consonants did not influence the judged appropriateness of a word to symbolise the heaviness of its referent, back/open vowels, compared to front/close vowels, were judged to symbolise felt heaviness. -
SSC: the Science of Talking
SSC: The Science of Talking (for year 1 students of medicine) Week 3: Sounds of the World’s Languages (vowels and consonants) Michael Ashby, Senior Lecturer in Phonetics, UCL PLIN1101 Introduction to Phonetics and Phonology A Lecture 4 page 1 Vowel Description Essential reading: Ashby & Maidment, Chapter 5 4.1 Aim: To introduce the basics of vowel description and the main characteristics of the vowels of RP English. 4.2 Definition of vowel: Vowels are produced without any major obstruction of the airflow; the intra-oral pressure stays low, and vowels are therefore sonorant sounds. Vowels are normally voiced. Vowels are articulated by raising some part of the tongue body (that is the front or the back of the tongue notnot the tip or blade) towards the roof of the oral cavity (see Figure 1). 4.3 Front vowels are produced by raising the front of the tongue towards the hard palate. Back vowels are produced by raising the back of the tongue towards the soft palate. Central vowels are produced by raising the centre part of the tongue towards the junction of the hard and soft palates. 4.4 The height of a vowel refers to the degree of raising of the relevant part of the tongue. If the tongue is raised so as to be close to the roof of the oral cavity then a close or high vowel is produced. If the tongue is only slightly raised, so that there is a wide gap between its highest point and the roof of the oral cavity, then an open or lowlowlow vowel results. -
Glossary of Key Terms
Glossary of Key Terms accent: a pronunciation variety used by a specific group of people. allophone: different phonetic realizations of a phoneme. allophonic variation: variations in how a phoneme is pronounced which do not create a meaning difference in words. alveolar: a sound produced near or on the alveolar ridge. alveolar ridge: the small bony ridge behind the upper front teeth. approximants: obstruct the air flow so little that they could almost be classed as vowels if they were in a different context (e.g. /w/ or /j/). articulatory organs – (or articulators): are the different parts of the vocal tract that can change the shape of the air flow. articulatory settings or ‘voice quality’: refers to the characteristic or long-term positioning of articulators by individual or groups of speakers of a particular language. aspirated: phonemes involve an auditory plosion (‘puff of air’) where the air can be heard passing through the glottis after the release phase. assimilation: a process where one sound is influenced by the characteristics of an adjacent sound. back vowels: vowels where the back part of the tongue is raised (like ‘two’ and ‘tar’) bilabial: a sound that involves contact between the two lips. breathy voice: voice quality where whisper is combined with voicing. cardinal vowels: a set of phonetic vowels used as reference points which do not relate to any specific language. central vowels: vowels where the central part of the tongue is raised (like ‘fur’ and ‘sun’) centring diphthongs: glide towards /ə/. citation form: the way we say a word on its own. close vowel: where the tongue is raised as close as possible to the roof of the mouth. -
Learning [Voice]
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Learning [Voice] Joshua Ian Tauberer University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the First and Second Language Acquisition Commons Recommended Citation Tauberer, Joshua Ian, "Learning [Voice]" (2010). Publicly Accessible Penn Dissertations. 288. https://repository.upenn.edu/edissertations/288 Please see my home page, http://razor.occams.info, for the data files and scripts that make this reproducible research. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/288 For more information, please contact [email protected]. Learning [Voice] Abstract The [voice] distinction between homorganic stops and fricatives is made by a number of acoustic correlates including voicing, segment duration, and preceding vowel duration. The present work looks at [voice] from a number of multidimensional perspectives. This dissertation's focus is a corpus study of the phonetic realization of [voice] in two English-learning infants aged 1;1--3;5. While preceding vowel duration has been studied before in infants, the other correlates of post-vocalic voicing investigated here --- preceding F1, consonant duration, and closure voicing intensity --- had not been measured before in infant speech. The study makes empirical contributions regarding the development of the production of [voice] in infants, not just from a surface- level perspective but also with implications for the phonetics-phonology interface in the adult and developing linguistic systems. Additionally, several methodological contributions will be made in the use of large sized corpora and data modeling techniques. The study revealed that even in infants, F1 at the midpoint of a vowel preceding a voiced consonant was lower by roughly 50 Hz compared to a vowel before a voiceless consonant, which is in line with the effect found in adults. -
Northern Tosk Albanian
1 Northern Tosk Albanian 1 1 2 Stefano Coretta , Josiane Riverin-Coutlée , Enkeleida 1,2 3 3 Kapia , and Stephen Nichols 1 4 Institute of Phonetics and Speech Processing, 5 Ludwig-Maximilians-Universität München 2 6 Academy of Albanological Sciences 3 7 Linguistics and English Language, University of Manchester 8 29 July 2021 9 1 Introduction 10 Albanian (endonym: Shqip; Glotto: alba1268) is an Indo-European lan- 11 guage which has been suggested to form an independent branch of the 12 Indo-European family since the middle of the nineteenth century (Bopp 13 1855; Pedersen 1897; Çabej 1976). Though the origin of the language has 14 been debated, the prevailing opinion in the literature is that it is a descend- 15 ant of Illyrian (Hetzer 1995). Albanian is currently spoken by around 6–7 16 million people (Rusakov 2017; Klein et al. 2018), the majority of whom 17 live in Albania and Kosovo, with others in Italy, Greece, North Macedonia 18 and Montenegro. Figure 1 shows a map of the main Albanian-speaking 19 areas of Europe, with major linguistic subdivisions according to Gjinari 20 (1988) and Elsie & Gross (2009) marked by different colours and shades. 21 At the macro-level, Albanian includes two main varieties: Gheg, 22 spoken in Northern Albania, Kosovo and parts of Montenegro and North 1 Figure 1: Map of the Albanian-speaking areas of Europe. Subdivisions are based on Gjinari (1988) and Elsie & Gross (2009). CC-BY-SA 4.0 Stefano Coretta, Júlio Reis. 2 23 Macedonia; and Tosk, spoken in Southern Albania and in parts of Greece 24 and Southern Italy (von Hahn 1853; Desnickaja 1976; Demiraj 1986; Gjin- 25 ari 1985; Beci 2002; Shkurtaj 2012; Gjinari et al. -
Spanish and Catalan in Majorca: Are There Contact- Induced Changes in the Catalan Vowel System?
Spanish and Catalan in Majorca: Are There Contact- Induced Changes in the Catalan Vowel System? Mark Amengual University of Texas at Austin 1. Introduction* The vowel systems of Catalan and Spanish are considerably different. Spanish has a simple five- vowel symmetrical system, which is the most common number of vowel phonemes cross-linguistically (Hualde, 2005). As shown in Table 1, the vowels contrast along two dimensions: along the height dimension, there are two high vowels (/i/ and /u/), two mid vowels (/e/ and /o/), and one low vowel (/a/); and along the frontness/backness dimension, there are two front vowels (/i/ and /e/), one central vowel (/a/), and two back vowels (/u/ and /o/). In contrast, Catalan has a seven-vowel symmetrical system with an additional contrast in height, distinguishing higher-mid vowels /e/ and /o/ from lower- mid vowels /ܭ/ and /ܧ/ in stressed syllables, as shown in Table 2. Moreover, the variety of Catalan spoken in Majorca has the additional vowel phoneme /ԥ/, which may appear both in stressed and unstressed position (Recasens, 1991). Table 1. The vowel inventory of Spanish Front Central Back High i u Mid e o Low a Nonround Round Table 2. The vowel inventory of Catalan (NB: /ԥ/ is phonemic in Majorcan Catalan) Front Central Back High i u Higher-mid e (ԥ) o Lower-mid ܭܧ Low a Nonround Round In terms of the acoustic properties of vowels, the first two formants (F1 and F2) provide information that can be used to uniquely identify the vowels in Spanish versus Catalan (Hualde, 2005). -
Human Beatboxing : a Preliminary Study on Temporal Reduction
Human Beatboxing : A preliminary study on temporal reduction. Alexis Dehais Underdown1, Paul Vignes1, Lise Crevier Buchman1,2 & Didier Demolin1 1 Laboratoire de Phonétique et Phonologie (Sorbonne Nouvelle / CNRS), 2 Hopital Foch, Univ. VSQ. [email protected] 1. Introduction Speech rate is known to be a factor of reduction affecting supralaryngeal gestures [4] [6] [1] and laryngeal gestures [5] depending on the prosodic structure [3]. An acoustic study [2] showed that beatboxing rate has articulatory effects on hi-hats in medial and final positions but that the overall production was not found to be affected. In the present study we are presenting an experiment based on a beatboxing speeding up paradigm. We used a single metric and rhythmical pattern to create various beatboxed patterns (BP). Human Beatboxing (HBB) seems to rely on different articulatory skills than speech because it does not obey to linguistic constraints. How do beatboxing rate affect sound duration ? We expect that (1) the faster the production, the shorter sound duration (2) affricates, trills and fricatives will shorten more than stops (3) position in the pattern influences sound reduction. 2. Methods A 32 y.o. professional beatboxer took part in the experiment. The recorded material was controlled in terms of sound pattern and rhythm. Indeed, to facilitate the comparison of beatboxing recordings we used only one metric pattern that we transposed into 12 Beatbox patterns (BP). Table 1 shows an example of two of the 12 BP created for the study. There is only one voiced sound (i.e. [ɓ]) in the corpus. Table 1 : Example of the structure of a Beatboxed Pattern Metric Rhythm Low High Long High Low Low High Long High Positions 1 2 3 4 5 6 7 8 9 BP1 [p’] [͡ts’] [↓k͡ L̥ ] [͡ts’] [p’] [p’] [͡ts’] [↓k͡ L̥ ] [͡ts’] BP2 [↓ʙ̥ ˡ] [͡ts’] [ʡhə̥ ] [͡ts’] [↓p] [↓ʙ̥ ˡ] [͡ts’] [ʡhə̥ ] [͡ts’] Concerning the rhythm, it was controlled using a vibrating metronome placed on his wrist. -
Phonetics? Phonetic Transcription Articulation of Sounds
What Is Phonetics? Phonetic Transcription Articulation of Sounds Phonetics Darrell Larsen Linguistics 101 Darrell Larsen Phonetics What Is Phonetics? Phonetic Transcription Articulation of Sounds Outline 1 What Is Phonetics? 2 Phonetic Transcription Phonetic Alphabet Transcription 3 Articulation of Sounds Articulation of Consonants Articulation of Vowels Other Languages Darrell Larsen Phonetics What Is Phonetics? Phonetic Transcription Articulation of Sounds What Is Phonetics? Definition the study of speech sounds The Branches of Phonetics 1 acoustic (the physics of sound) 2 auditory (how the ear processes sound) 3 articulatory (how we produce speech sounds) Darrell Larsen Phonetics What Is Phonetics? Phonetic Transcription Articulation of Sounds Notes Darrell Larsen Phonetics What Is Phonetics? Phonetic Transcription Articulation of Sounds Articulatory Phonetics We will examine the following questions: How can we accurately transcribe speech sounds? What speech organs are involved in speech production? How do we manipulate the flow of air to produce sounds? Darrell Larsen Phonetics What Is Phonetics? Phonetic Transcription Articulation of Sounds Notes Darrell Larsen Phonetics What Is Phonetics? Phonetic Alphabet Phonetic Transcription Transcription Articulation of Sounds Why Do We Need a Phonetic Alphabet? Linguists use a phonetic transcription system to record speech sounds. In this class, we will use the International Phonetic Alphabet (IPA) Question Why not just use the Roman alphabet? Darrell Larsen Phonetics What Is Phonetics? Phonetic -
Articulatory Phonetics
Articulatory Phonetics Lecturer: Dr Anna Sfakianaki HY578 Digital Speech Signal Processing Spring Term 2016-17 CSD University of Crete What is Phonetics? n Phonetics is a branch of Linguistics that systematically studies the sounds of human speech. 1. How speech sounds are produced Production (Articulation) 2. How speech sounds are transmitted Acoustics 3. How speech sounds are received Perception It is an interdisciplinary subject, theoretical as much as experimental. Why do speech engineers need phonetics? n An engineer working on speech signal processing usually ignores the linguistic background of the speech he/she analyzes. (Olaszy, 2005) ¡ How was the utterance planned in the speaker’s brain? ¡ How was it produced by the speaker’s articulation organs? ¡ What sort of contextual influences did it receive? ¡ How will the listener decode the message? Phonetics in Speech Engineering Combined knowledge of articulatory gestures and acoustic properties of speech sounds Categorization of speech sounds Segmentation Speech Database Annotation Algorithms Speech Recognition Speech Synthesis Phonetics in Speech Engineering Speech • diagnosis Disorders • treatment Pronunciation • L2 Teaching Tools • Foreign languages Speech • Hearing aids Intelligibility Enhancement • Other tools A week with a phonetician… n Tuesday n Thursday Articulatory Phonetics Acoustic Phonetics ¡ Speech production ¡ Formants ¡ Sound waves ¡ Fundamental Frequency ¡ Places and manners of articulation ¡ Acoustics of Vowels n Consonants & Vowels n Articulatory vs Acoustic charts ¡ Waveforms of consonants - VOT ¡ Acoustics of Consonants n Formant Transitions ¡ Suprasegmentals n Friday More Acoustic Phonetics… ¡ Interpreting spectrograms ¡ The guessing game… ¡ Individual Differences Peter Ladefoged Home Page: n Professor UCLA (1962-1991) http://www.linguistics.ucla.edu/people/ladefoge/ n Travelled in Europe, Africa, India, China, Australia, etc. -
Phonetics and Phonology Seminar Introduction to Linguistics, Andrew
Phonetics and Phonology Phonetics and Phonology Voicing: In voiced sounds, the vocal cords (=vocal folds, Stimmbände) are pulled together Seminar Introduction to Linguistics, Andrew McIntyre and vibrate, unlike in voiceless sounds. Compare zoo/sue, ban/pan. Tests for voicing: 1 Phonetics vs. phonology Put hand on larynx. You feel more vibrations with voiced consonants. Phonetics deals with three main areas: Say [fvfvfv] continuously with ears blocked. [v] echoes inside your head, unlike [f]. Articulatory phonetics: speech organs & how they move to produce particular sounds. Acoustic phonetics: what happens in the air between speaker & hearer; measurable 4.2 Description of English consonants (organised by manners of articulation) using devices such as a sonograph, which analyses frequencies. The accompanying handout gives indications of the positions of the speech organs Auditory phonetics: how sounds are perceived by the ear, how the brain interprets the referred to below, and the IPA description of all sounds in English and other languages. information coming from the ear. Phonology: study of how particular sounds are used (in particular languages, in languages 4.2.1 Plosives generally) to distinguish between words. Study of how sounds form systems in (particular) Plosive (Verschlusslaut): complete closure somewhere in vocal tract, then air released. languages. Examples of phonological observations: (2) Bilabial (both lips are the active articulators): [p,b] in pie, bye The underlined sound sequence in German Strumpf can occur in the middle of words (3) Alveolar (passive articulator is the alveolar ridge (=gum ridge)): [t,d] in to, do in English (ashtray) but not at the beginning or end. (4) Velar (back of tongue approaches soft palate (velum)): [k,g] in cat, go In pan and span the p-sound is pronounced slightly differently.