On-Wafer Vector Network Analyzer Calibration and Measurements

Total Page:16

File Type:pdf, Size:1020Kb

On-Wafer Vector Network Analyzer Calibration and Measurements On-Wafer Vector Network Analyzer Calibration and Measurements The Vector Network Analyzer or VNA has become the workhorse of most network measurements above 1 GHz. Getting the best on-wafer mea- surement results requires a solid understanding of measurement system components and their interaction. This application note is intended to introduce on-wafer vector measure- Port-l b_ ) Port-2 ments and provide references for fur- +Cable y3 DUT _ ther study. a2 VNA Calibration Fundamentals The representative VNA block diagram (see Figure 1) shows the key elements of the analyzer. The Figure 1. Main hardware blocks in a Vector Network Analyzer (VNA). RF source at the top provides the system ends and the DUT begins. erence plane. If we ignore any non- device-under-test (DUT) stimulus. In on-wafer VNA measurements idealities of the cables, couplers, A forward/reverse switch directs the this boundary is known as the “ref- mixers, and so forth, then the ratios RF energy to either DUT port. The erence plane” of the measurement of wave amplitudes (a’s and b’s) test set uses directional couplers or and will often be located at the inside of the machine correspond bridges to pick off the forward and probe tips. A typical wafer probing directly to the DUT's S-parameters. reverse waves traveling to and from VNA setup is shown in Figures 2 For example: each port, and down-converts these and 3. signals to four IF sections. Each IF b,/a, = S, 1 of the DUT section filters, amplifies, and digi- Ideally the system will measure tizes the signals for further digital the characteristics of whatever is VNA calibration is the process of processing and display. connected to the measurement ref- measuring devices with known or A VNA measures vector ratios of reflected or transmitted energy to energy incident upon the DUT. AS a stimulus-response measurement, a VNA measurement determines the properties of devices rather than the properties of signals. Signals would be measured by instruments such as oscilloscopes or spectrum analyzers. A significant challenge in stimu- lus-response measurements is defin- ing exactly where the measurement Figure 2. A typical RF device characterization setup is shown above. On the left is a vector net- work analyzer, in this case an Agilent 8510 system. Cables from the test set ports route over the ® probe station to a pair of microwave probes which are aligned through the microscope or camera CASCADE system onto calibration substrates and test devices. The right side of this picture shows the PC that controls the prober and runs the calibration and measurement software. 1 Figure 3. Close-up of microwave probes and cables on positioners providing probe planarity adjust- ment and cable Figure 5. The Smith Chart is a polar graph of reflection coefficient with grid lines showing normalized impedance values. partly known characteristics and tors or at the ends of cables. 1 +l- = r+ix using these measurements to estab- Calibration functions allow the zL =zo - 1 -I- lish the measurement reference user to store measurements of stan- [ 1 planes. Calibration also corrects for dards, compute the error models, the imperfections of the measure- and automatically apply corrections V reflected zL - zll ment system. These imperfections to DUT measurements. = r= Z not only include the non-ideal V incident L + z. nature of cables and probes, but Where the ohmmeter’s calibration also the internal characteristics of simply used a short circuit (con- where Z,= the reference imped- the VNA itself necting the test leads together) to ance of the measurement system determine the extra resistance term The VNA is calibrated in much in the error model, a VNA uses The Smith chart (see Figure 5) is the same manner that the “zero” multiple calibration standards - a polar graph of the reflection coef- function on your ohmmeter sub- typically open circuits, short cir- ficient with grid lines showing the tracts out the resistance of the test cuits, loads, and through (thru) normalized impedance values. All leads. On an ohmmeter, when you connections. passive impedances are represented activate the “zero” function, it in a compact unit circle reflection stores a resistance measurement Measuring Impedance format. Typically the vna auto- which is then subtracted from all mates the display of a wide variety future measurements. The obvious The measured ratios of the ai and of formats: Smith Chart, polar, and error model is simply a resistance in bi wave amplitudes are called linear and log magnitude formats. series with the test port. Corrected S-parameters. S-parameters are just VNA measurements are referred to one type of network representation Calibrated VNA Accuracy as “deembedded.” used for linear, small-signal, a.c. analysis. As with any corrected measure- A VNA does the same thing as ment, the absolute accuracy of a the ohmmeter but uses a more A reflection ratio at a device port, calibrated VNA measurement is complex error model with several with all other ports terminated, is determined by the techniques and terms for each frequency point. The also known as a reflection coeffi- completeness of the error model measurement system is described as cient. The load impedance, Z,, is used, the accuracy of the descrip- an ideal VNA with an error adapter related to the reflection coefficient, tion of the reference devices (cali- network that models all of the sys- I?, by the bilinear transform pair as bration standards), and the repeata- tem’s non-idealities: directivity of follows: bility of the measurement system. the couplers, imperfect match look- ing back into the reflectometer (test set ports), imperfect frequency P 1 response of the reflectometers and Forward the transmission between ports, and Error DUT the crosstalk between ports. This Adapter Pl error model is shown in Figure 4. VNA's rely on calibration for Port 2 accuracy even in measurements 3 with the reference plane defined at the instrument front panel connec- Figure 4. Error model for a typical network analyzer. All errors are modeled by an error adapter in front of an otherwise perfect system. 2 If performed improperly, calibra- VNA error models are based VNA Calibration Options and tion can introduce errors. The upon the use of S-parameter repre- Standards impedances used in the calibration sentations of network properties. S- The VNA will measure the must be accurately known and parameters are signal flow and uncorrected S-parameters if not cal- entered. Assumption of ideal transmission line based. Only a sin- ibrated, though not very accurately. behavior of standards is a recipe for gle mode of propagation at device Uncorrected measurements are errors, but worse things can hap- terminals is assumed. Situations rarely used (see Figure 7). pen. For example, improperly that violate this assumption such as entering a description of a short using waveguides that can propa- circuit or open circuit standard will gate multiple modes, radiation, or lead to useless results that may not parasitic coupling between net- always be obviously wrong. The works other than at the device ter- VNA will believe everything that minals are not properly handled. you tell it. Accurate descriptions of l Convenient the electrical behavior of the vari- If a second mode, radiation, or l Generally not accurate ous calibration standards must be extra parasitic doesn’t change for l No errors removed supplied to the VNA. any and all devices being measured then it will drop out with the cali- Figure 7. Uncorrected VNA. Corrected measurements rely on bration. Usually, however, these A “response” calibration is simply the repeatability of the measure- extra modes have behavior that is a vector magnitude and phase nor- ment system. Just as an ohmmeter DUT dependent and VNA calibra- malization of a transmission or cannot correct for a changing resis- tion will not account for the reflection measurement, used only tance of its test leads or drift in the effects. A clean, well-designed ohmmeter circuitry, a VNA cannot probing system (including die pad at low frequencies (See Figure 8). correct for random errors such as pattern) with good quality trans- 0 0 noise or dynamic range, cable mission-like interconnections will thru repeatability, or instrument drift. minimize these errors as much as Any change in the measurement possible (see Figure 6). due to, for instance, drift of the VNA test set, thermally induced An extensive discussion of VNA cable length changes, or even the calibration and accuracy is included l Use when highest effects of noise due to VNA in Calibration and Accuracy accuracy is not require’ dynamic range can invalidate the Factors Summit High-Frequency l Removes frequency response error correction. Sensitivity of cable elec- Probe Station Reference Manual. l trical performance (such as phase Figure 8. Response calibration. delay) to environmental changes is a significant element of quality and Typically a full calibration of all the suitability for VNA use. error parameters is used as a refer- ence or to assure the highest accuracy (see Figure 9). 2 ground contact pitch 100 - 150 pm signal DUT I-0 4I I Highest accuracy for P-port 100 - 150 pm devices Removes these errors - directivity - source match - load match ground - reflection tracking - transmission tracking - crosstalk Figure 6. Recommended microwave pad pattern for each measurement port. Figure 9. Full 2-port calibration. On-wafer standards, fabricated on the same wafer as the DUT, are sometimes desirable since the probe-to-standard transition can be designed to be very similar to the transition to the DUT. This is helpful at frequencies above 20 GHz since a primitive transi- tion may introduce extra parasitics or modes which, since they are occurring at the probe-tip refer- ence plane, may not be corrected by calibration.
Recommended publications
  • Equivalent Resistance
    Equivalent Resistance Consider a circuit connected to a current source and a voltmeter as shown in Figure 1. The input to this circuit is the current of the current source and the output is the voltage measured by the voltmeter. Figure 1 Measuring the equivalent resistance of Circuit R. When “Circuit R” consists entirely of resistors, the output of this circuit is proportional to the input. Let’s denote the constant of proportionality as Req. Then VRIoeq= i (1) This is the same equation that we would get by applying Ohm’s law in Figure 2. Figure 2 Interpreting the equivalent circuit. Apparently Circuit R in Figure 1 acts like the single resistor Req in Figure 2. (This observation explains our choice of Req as the name of the constant of proportionality in Equation 1.) The constant Req is called “the equivalent resistance of circuit R as seen looking into the terminals a- b”. This is frequently shortened to “the equivalent resistance of Circuit R” or “the resistance seen looking into a-b”. In some contexts, Req is called the input resistance, the output resistance or the Thevenin resistance (more on this later). Figure 3a illustrates a notation that is sometimes used to indicate Req. This notion indicates that Circuit R is equivalent to a single resistor as shown in Figure 3b. Figure 3 (a) A notion indicating the equivalent resistance and (b) the interpretation of that notation. Figure 1 shows how to calculate or measure the equivalent resistance. We apply a current input, Ii, measure the resulting voltage Vo, and calculate Vo Req = (1) Ii The equivalent resistance can also be measured using and ohmmeter as shown in Figure 4.
    [Show full text]
  • Part 2 - Condenser Testers and Testing Correctly Part1 Condenser Testers and Testing Correctly.Doc Rev
    Part 2 - Condenser Testers and Testing Correctly Part1_Condenser_Testers_And_Testing_Correctly.doc Rev. 2.0 W. Mohat 16/04/2020 By: Bill Mohat / AOMCI Western Reserve Chapter If you have read Part 1 of this Technical Series on Condensers, you will know that the overwhelming majority of your condenser failures are due to breakdown of the insulating plastic film insulating layers inside the condenser. This allows the high voltages created by the “arcing” across your breaker points to jump through holes in the insulating film, causing your ignition system to short out. These failures, unfortunately, only happen at high voltages (often 200 to 500Volts AC)….which means that the majority of “capacitor testers" and "capacitor test techniques" will NOT find this failure mode, which is the MAJORITY of the condenser failure you are likely to encounter. Bottom line is, to test a condenser COMPLETELY, you must test it in three stages: 1) Check with a ohmmeter, or a capacitance meter, to see if the condenser is shorted or not. 2) Assuming your condenser is not shorted, use a capacitance meter to make sure it has the expected VALUE of capacitance that your motor needs. 3) Assuming you pass these first two step2, you then need to test your condenser on piece of test equipment that SPECIFICALLY tests for insulation breakdown under high voltages. (As mentioned earlier, you ohmmeter and capacitance meter only put about one volt across a capacitor when testing it. You need to put perhaps 300 or 400 times that amount of voltage across the condenser, to see if it’s insulation has failed, allowing electricity to “arc across" between the metal plates when under high voltage stress.
    [Show full text]
  • (Ohmmeter). Aims: • Calibrating of a Sensitive Galvanometer for Measuring a Resistance
    Exp ( ) Calibrating of a sensitive galvanometer for measuring a resistance (Ohmmeter). Aims: • Calibrating of a sensitive galvanometer for measuring a resistance. The theory When a galvanometer is used as an ohmmeter for measuring an ohmic resistance R, the deviation angle θ of the galvanometer’s coil is directly proportional to the flowing current through the coil and inversely proportional to the value of the resistance. The deviation will reach to the maximum end when the resistance equals to zero or the current has the maximum value. For this reason, the scale will be divide by inversely way in comparison with the ammeter and the voltmeter. The original circuit as shown in Fig(1) consists of a dry cell(E) , rheostat and ammeter (A) are connected in series with small resistor s has the range of 1 omega. The two terminals of “s” are connected in parallel to another combination includes a sensitive galvanometer “G” which has internal resistance “r” and a resistors box “R”, this combination is called the measuring circuit. When the value of R equals zero, and by moving the rheostat in the original circuit, it is possible to set the flowing electric current in measuring the circuit as a maximum value od deviation in the galvanometer. By assigning different values of R, the deviation θ is decreasing with increasing the value of R or by another meaning when the flowing current through the galvanometer decreases. Therefore, the current through the galvanometer is inversely proportional to the value of R according the following Figure 1: Ohmmeter Circuit diagram equation; V=I(R+r) R=V/I-r or R=V/θ-r 1 | P a g e This is a straight-line equation between R and (1/θ) as shown in Fig(2).
    [Show full text]
  • Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science
    Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 - Circuits and Electronics Fall 2004 Lab Equipment Handout (Handout F04-009) Prepared by Iahn Cajigas González (EECS '02) Updated by Ben Walker (EECS ’03) in September, 2003 This handout is intended to provide a brief technical overview of the lab instruments which we will be using in 6.002: the oscilloscope, multimeter, function generator, and the protoboard. It incorporates much of the material found in the individual instrument manuals, while including some background information as to how each of the instruments work. The goal of this handout is to serve as a reference of common lab procedures and terminology, while trying to build technical intuition about each instrument's functionality and familiarizing students with their use. Students with previous lab experience might find it helpful to simply skim over the handout and focus only on unfamiliar sections and terminology. THE OSCILLOSCOPE The oscilloscope is an electronic instrument based on the cathode ray tube (CRT) – not unlike the picture tube of a television set – which is capable of generating a graph of an input signal versus a second variable. In most applications the vertical (Y) axis represents voltage and the horizontal (X) axis represents time (although other configurations are possible). Essentially, the oscilloscope consists of four main parts: an electron gun, a time-base generator (that serves as a clock), two sets of deflection plates used to steer the electron beam, and a phosphorescent screen which lights up when struck by electrons. The electron gun, deflection plates, and the phosphorescent screen are all enclosed by a glass envelope which has been sealed and evacuated.
    [Show full text]
  • Using Multimeters
    ORESU-G1-77-005 C. 3 Usingmultimeters lVlarine electrorocs boats gPIII I,,",.", I,'59< ~4'pg,g!gg By EdwardKolbe DC voltmeter CommercialFisheries Engineer, OSU Marine ScienceCenter, Newport Most multirnetersare designedfor measuringboth DC and AC voltages. AssistantProfessor of Agricultural Engineering This bulletin concentrates on how to Oregon State University measureDC voltages;procedures for making AC measurementsare similar. First, plug one of the leadsinto the Multimeters measure electrical voltage, negativeterminal, properly called a resistance,and current, For wiring and jack, marked ! or "COM" for troubleshootingon boats,they can be common! . Standard electrical practice extremelyuseful. Applications include: usesthe black wire for the ground, checkingthe continuity of wiring which is usuallythe negativeterminal. locating breaksin opencircuits; testing The other lead usually red, to signify fusesand diodes;measuring battery the "hot" sideof the circuit! goesinto voltageand voltagedrop over wires and the positivejack, marked + !. After eIectricalloads; identifying "hot" and selectingthe proper DC voltagerange groundedwires; locatingshort circuitsor with the selector switch, measure DC smallcurrent leaks;and checking voltageby touchingthe -! lead to the alternator and generator output, negativeterminal or wire and the + ! A multimeter, also called a volt-ohm- lead to the positiveterminaI or wire. milliammeter VOM!, is actually three Selectingthe proper voltagerange is toob in one.It is a voltmetercapable of important. It is achieved
    [Show full text]
  • TI S4 Audio Frequency Test Apparatus.Pdf
    TECHNICAL INSTRUCTION S.4 Audio-frequency Test Apparatus BRITISH BROADCASTING , CORPORATION ENGINEERING DlVlSlON - ', : . iv- TECHNICAL INSTRUCTION S.4 Third Issue 1966 instruction S.4 Page reissued May. 1966 CONTENTS Page Section I . Amplifier Detector AD14 . 1.1 Section 2 . Variable Attenuator AT119 . Section 3 . Wheatstone Bridge BG/I . Section 4 . Calibration IJnit CALI1 . Section 5. Harmonic Routine Tester FHP/3 . Section 6 . 0.B. Testing Unit 0BT/2 . Section . 7 . Fixed-frequency Oscillators OS/9. OS/ 10. OS/ IOA . Section 8 . Variable-frequency Oscillators TS/5 .. TS/7 . 1' . TS/8 . TS/9 . TS/ 10. TS/ 1OP . Section 9 . Portable Oscillators PTS/9 . PTS/IO . ... PTS/12 . PTS/13 . PTS/l5 .... PTS/l6 .... Appendix . The Zero Phase-shift Oscillator with Wien-bridge Control Section 10. Transmission Measuring Set TM/I . Section 1 I . Peak Programme Meter Amplifiers PPM/2 ..... PPM/6 . TPM/3 . Section 12 Valve Test Panels VT/4. VT/5 "d . Section 13. Microphone Cable Tester MCT/I . Section 14 . Aural Sensitivity Networks ASN/3. ASN/4 Section 15 . Portable Amplifier Detector PAD19 . Section 16. Portable Intermodulation Tester PIT11 Section 17. A.C. Test Meters ATM/I. ATM/IP . Section 18 . Routine Line Testers RLT/I. RLT/IP . Section 19. Standard Level Panel SLP/3 . Section 20 . A.C. Test Bay AC/55 . Section 21 . Fixed-frequency Oscillators: OS2 Series Standard Level Meter ME1611 . INSTRUCTION S.4 Page reissued May 1966 ... CIRCUIT DIAGRAMS AT END Fig. 1. Amplifier Detector AD14 Fig. 2. Wheatstone Bridge BG/1 Fig. 3. Harmonic Routine Tester FHP/3 Fig. 4. Oscillator OS/9 Fig.
    [Show full text]
  • A History of Impedance Measurements
    A History of Impedance Measurements by Henry P. Hall Preface 2 Scope 2 Acknowledgements 2 Part I. The Early Experimenters 1775-1915 3 1.1 Earliest Measurements, Dc Resistance 3 1.2 Dc to Ac, Capacitance and Inductance Measurements 6 1.3 An Abundance of Bridges 10 References, Part I 14 Part II. The First Commercial Instruments 1900-1945 16 2.1 Comment: Putting it All Together 16 2.2 Early Dc Bridges 16 2.3 Other Early Dc Instruments 20 2.4 Early Ac Bridges 21 2.5 Other Early Ac Instruments 25 References Part II 26 Part III. Electronics Comes of Age 1946-1965 28 3.1 Comment: The Post-War Boom 28 3.2 General Purpose, “RLC” or “Universal” Bridges 28 3.3 Dc Bridges 30 3.4 Precision Ac Bridges: The Transformer Ratio-Arm Bridge 32 3.5 RF Bridges 37 3.6 Special Purpose Bridges 38 3,7 Impedance Meters 39 3.8 Impedance Comparators 40 3.9 Electronics in Instruments 42 References Part III 44 Part IV. The Digital Era 1966-Present 47 4.1 Comment: Measurements in the Digital Age 47 4.2 Digital Dc Meters 47 4.3 Ac Digital Meters 48 4.4 Automatic Ac Bridges 50 4.5 Computer-Bridge Systems 52 4.6 Computers in Meters and Bridges 52 4.7 Computing Impedance Meters 53 4.8 Instruments in Use Today 55 4.9 A Long Way from Ohm 57 References Part IV 59 Appendices: A. A Transformer Equivalent Circuit 60 B. LRC or Universal Bridges 61 C. Microprocessor-Base Impedance Meters 62 A HISTORY OF IMPEDANCE MEASUREMENTS PART I.
    [Show full text]
  • Model 372 Series 3 Ohmmeter INSTRUCTION MANUAL
    Model 372 Series 3 Ohmmeter INSTRUCTION MANUAL About this Manual To the best of our knowledge and at the time written, the information contained in this document is technically correct and the procedures accurate and adequate to operate this instrument in compliance with its original advertised specifications. Notes and Safety Information This Operator’s Manual contains warning headings which alert the user to check for hazardous conditions. These appear throughout this manual where applicable and are defined below. To ensure the safety of operating performance of this instrument, these instructions must be adhered to. Warning, refer to accompanying documents. Caution, risk of electric shock. Technical Assistance SIMPSON ELECTRIC COMPANY offers assistance Monday through Friday, 8:00 am to 4:30 pm Central Time. Contact Technical Support or Customer Service at (715) 588-3311 or visit our website at http://www.simpsonelectric.com Warranty and Returns SIMPSON ELECTRIC COMPANY warrants each instrument and other articles manu- factured by it to be free from defects in material and workmanship under normal use and service, its obligation under this warranty being limited to making good at its factory or other article of equipment which shall within one (1) year after delivery of such instrument or other article of equipment to the original purchaser be returned intact to it, or to one of its authorized service centers, with transportation charges prepaid, and which its examination shall disclose to its satisfaction to have been thus defective; this warranty being expressly in lieu of all other warranties expressed or implied and of all other obligations or liabilities on its part, and SIMPSON ELECTRIC COMPANY neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sales of its products.
    [Show full text]
  • The OHM Meter an Ohmmeter Is an Electrical Instrument That Measures
    The OHM meter An ohmmeter is an electrical instrument that measures electrical resistance, the opposition to an electric current. Micro-ohmmeters (microhmmeter or microohmmeter) make low resistance measurements. Megohmmeters (aka megaohmmeter or in the case of a trademarked device Megger) measure large values of resistance. The unit of measurement for resistance is ohms (). The original design of an ohmmeter provided a small battery to apply a voltage to a resistance. It uses a galvanometer to measure the electric current through the resistance. The scale of the galvanometer was marked in ohms, because the fixed voltage from the battery assured that as resistance is decreased, the current through the meter would increase. Ohmmeters form circuits by themselves, therefore they cannot be used within an assembled circuit. A more accurate type of ohmmeter has an electronic circuit that passes a constant current (I) through the resistance, and another circuit that measures the voltage (V) across the resistance. According to the following equation, derived from Ohm's Law, the value of the resistance (R) is given by: On the ohms ranges of a normal multimeter the unknown resistance is connected in series with a battery and the meter and the scale reads backwards. A variable resistor is included in the circuit so that the meter can be adjusted to read full scale with the test terminals shorted (Fig 1). In the shunt ohmmeter a battery and variable resistor are connected across a milli ammeter and the resistor is adjusted so that the meter reads full scale with the test terminals are unconnected (Fig.2).
    [Show full text]
  • Keithley Offers a Variety of Educational Lab Instruments Designed to Speed and Simplify This Lab Experience
    Overview The basic circuits and electronics devices lab is one of the first electrical engineering lab courses students will take. In this lab, students become familiar with making basic electrical measurements using laboratory instruments such as digital multimeters (DMMs), power supplies, function generators, and oscilloscopes. Once they’ve developed some competence in the use of these tools, students begin learning how basic components such as resistors, diodes, transistors, and operational amplifiers function. By the end of their lab coursework, students should be able to design, assemble, and use basic electronic circuits and have the skills necessary to measure and characterize their designs. Keithley offers a variety of educational lab instruments designed to speed and simplify this lab experience. As a leading manufacturer of electronics laboratory instrumentation, Keithley understands the importance of a solid understanding of measurement science, particularly for engineering students. To make the lab experience as instructive as possible, Keithley offers a variety of lab instruments, such as our Series 2000 DMMs and Series 2400 and 2600A SourceMeter® instruments, that are well suited for student use in circuits and basic electronics labs. Measurement Example Example 1: 2-wire resistance measurements vs. 4-wire resistance measurements using a DMM Ohms law relates voltage V across a circuit component to current I through a circuit component and resistance R of that component: R = V/I. Two-terminal DMMs source test current through the measuring test leads, terminating at the HI-LO inputs of the DMM. This two-wire ohms system works fine for most resistance measurements applications. However, the I-R drop in the test leads (RL) can cause inaccuracies that become apparent in lower resistance measurements.See the figure to the left.
    [Show full text]
  • Model 2450 Interactive Sourcemeter® Instrument User's Manual
    www.keithley.com Model 2450 Interactive SourceMeter Instrument User’s Manual 2450-900-01 Rev. D / May 2015 *P245090001D* 2450-900-01D A Greater Measure of Confidence Model 2450 Interactive SourceMeter® Instrument User's Manual © 2015, Keithley Instruments Cleveland, Ohio, U.S.A. All rights reserved. Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part, without the prior written approval of Keithley Instruments is strictly prohibited. ® ® ® TSP , TSP-Link , and TSP-Net are trademarks of Keithley Instruments. All Keithley Instruments product names are trademarks or registered trademarks of Keithley Instruments, Inc. Other brand names are trademarks or registered trademarks of their respective holders. Document number: 2450-900-01 Rev. D / May 2015 Safety precautions The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous conditions may be present. This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the user documentation for complete product specifications. If the product is used in a manner not specified, the protection provided by the product warranty may be impaired. The types of product users are: Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.
    [Show full text]
  • Electrical Theory Lesson 2: Basic Instruments and Measurements Are Placed in the Hollow Core of a Solenoid. When the Current
    Electrical Theory Lesson 2: Basic Instruments and Measurements This document contains the transcript for the entire lesson. Page 1: Welcome to Lesson 2 of Electrical Theory. This lesson covers the following objectives: • Explain the correct procedure for using an ammeter, a voltmeter, and an ohmmeter. • Interpret a linear scale. • Compute shunt resistor values. • Compute multiplier resistor values. • Interpret a nonlinear scale. • Discuss the concept of meter sensitivity. • Understand basic electrical diagrams. • State and explain Ohm’s Law Page 2: Meters come in two formats; analog and digital. Analog meters use a continuous scale readout that must be interpreted by means of a needle, while the digital multimeter uses a liquid crystal display (LCD) readout that needs no interpretation. Page 3: A common type of meter movement is the D'Arsonval movement. The movement consists of a permanent‐type magnet and a rotating coil in the magnetic field. An indicating needle is attached to the rotating coil. When a current passes through the moving coil, a magnetic field is produced. The field reacts with the stationary field and causes rotation (deflection) of the needle. This deflection force is proportional to the strength of the current flowing through the coil. When the current ceases to flow, the moving coil is returned to its "at rest" position by hair springs. The coil that rotates in the magnetic field is mounted on precision‐type jewel bearings, much like a fine watch. The jewel‐type bearings and mount is known as a D'Arsonval movement. Page 4: When connecting a meter to an electrical circuit, proper polarity must be maintained.
    [Show full text]