2013 Postconsumer Plastics Recycling in Canada

Total Page:16

File Type:pdf, Size:1020Kb

2013 Postconsumer Plastics Recycling in Canada 2013 Postconsumer Plastics Recycling in Canada February 2015 Prepared by Moore Recycling Associates for the Canadian Plastics Industry Association Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 707-935-3390 707-935-1998! www.MooreRecycling.com 2013 Postconsumer Plastics Recycling in Canada 1 Introduction This is the fifth year that Moore Recycling Associates has conducted a survey to determine the amount of postconsumer plastic recovered in Canada for recycling. This report documents how much Canadian postconsumer plastic was collected and reclaimed by U.S or Canadian reclaimers and how much was sold to overseas markets. This study is sponsored by the Canadian Plastic Industry Association (CPIA) and is made possible by the businesses that cooperated by providing data. Executive Summary In 2013, at least 311.5 million kilograms of postconsumer (including commercial)1 plastic material in Canada was collected for recycling. This represents a 9% increase in recycling over 2012, mostly due to a significant increase in purchases by domestic reclaimers. Postconsumer Plastic Collected (kgs) 400,000,000 300,000,000 200,000,000 100,000,000 0 2009 2010 2011 2012 2013 PET Bottles HDPE Bottles PP Bottles Non-bottle Rigid Film Foam 1 Throughout this report the term “postconsumer” refers to plastics that have been used for their intended purpose by consumers and by businesses. Commercial materials are often recovered outside of curbside or drop-off collection programs and include items such as totes, pallets, crates, and other commercial packaging (this report does not cover the recycling of industrial plastic, which the U.S. EPA defines as materials, such as scrap and trimmings, that are generated in manufacturing and converting processes). Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 707-935-3390 707-935-1998! www.MooreRecycling.com 2013 Postconsumer Plastics Recycling in Canada 2 Overall, 84% of the material reported was reclaimed in Canada or the U.S. and 15% was exported overseas. The destination is unknown for the remaining 1%. This study, which documents 5 years of recycling data, consistently indicates that material collected in Canada for recycling routinely remains in North America rather than moving to overseas markets. Summary of Canadian Postconsumer Plastic Recycling2 3 2013 Change in 2013 2013 North American End Markets Collection Collection Capacity2 Utilization3 (millions of 2012-2013 (millions of of kgs) (millions of kgs) Capacity kgs) PET Bottles fiber, food & beverage bottles, film & sheet, 112.8 9.4 NA NA strapping, and non-food bottles HDPE Bottles bottles, pipe, film & sheet, automotive 66.7 0.3 110 72% applications, lawn & garden products, lumber & decking PP/Other For PP: automotive applications, crates & Bottles 9.1 4.1 NA NA buckets, caps & closures, lawn & garden products Non-Bottle automotive applications, crates & buckets, Rigid Plastics lawn & garden products, pipe, film & 66.3 0.8 110 72% sheet, fence posts, consumer and household products Film film & sheet, pipe, automotive applications, 54.0 10.2 53 44% lawn & garden products, pallets, lumber & decking, crates & buckets Foam protective packaging, building products, 2.7 1.7 NA NA picture frames Increased collection, as well as continued progress in companies responding, contributed to the growth in postconsumer plastic reported. This report’s findings are based on data from two surveys: a postconsumer plastic recycling survey of export markets for all postconsumer plastic categories and all domestic markets—except PET bottle reclaimers—conducted by Moore Recycling, and a separate survey of PET bottle reclaimers conducted by the Association of Postconsumer Plastic Recyclers (APR) and the National Association for PET Container Resources 2 Capacity for processing bottles often overlaps with capacity to process non-bottle rigid plastic and/or film. Thus, adding the capacities reported here for bottle, non-bottle rigid and film could result in some double counting. 3 Utilization is determined using estimated capacity and reported purchases by Canadian reclaimers. Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 707-935-3390 707-935-1998! www.MooreRecycling.com 2013 Postconsumer Plastics Recycling in Canada 3 (NAPCOR). Data for this report was provided by 52 companies 4—23 Canadian and 16 U.S. plastic reclaimers5, as well as, 13 exporters. Data gathered in the survey is cross-checked with data available from Canadian provinces and other recycling industry information. This is a voluntary survey, so the amounts reported here represent the minimum known to be recovered for recycling. Postconsumer Plastic Recycled by Major Category (kgs) All categories of reclaimed plastic showed increased collection over 2012, although the bottle and film categories represented most of Foam 2,680,000 the growth: a 13-million-kilogram increase in bottles and a 10-million-kilogram increase in film. Film Plastic bottles continue to make up the majority of 53,963,000 the recycled plastic. PET bottles are the highest volume plastic product segregated by resin collected for Bottles 188,539,000 recycling, followed by HDPE bottles. Given the consistency in year-over-year participation by bottle reclaimers, the reported increase in the total Non-Bottle Rigid amount of bottles acquired for recycling is clearly 66,337,000 an actual increase, rather than a function of improvements in survey participation. Non-bottle rigid plastic recycling increased only slightly over 2012, in contrast to significant increases from 2011 to 2012. The increase from 2011 to 2012 was primarily due to an increase in mixed rigid bales reported by domestic reclaimers. Some of the non-bottle rigid plastic increase from 2012 to 2013 was also due to increased purchases of mixed rigid bales by domestic reclaimers, but there was a more significant increase in resin-segregated non-bottle rigid plastic reported. The increased purchases by domestic reclaimers offset the drop in mixed rigid bales reported by exporters sending material overseas. This decrease in handling by overseas exporters was undoubtedly due to China’s Green Fence effort, a program during much of 2013 that more strictly enforced regulations pertaining to the quality of imported scrap and resulted in significantly reduced plastic exports from North America and Europe. 4 In contrast to previous year reports, the total for companies responding includes those responding with Canadian sour- ced postconsumer plastic scrap to the Moore Recycling survey, as well as the APR/NAPCOR PET bottle reclamation survey. 5 Moore Recycling surveys and counts material from reclaimers, defined as companies that wash postconsumer material or otherwise process unwashed material into a clean feedstock or end product. Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 707-935-3390 707-935-1998! www.MooreRecycling.com 2013 Postconsumer Plastics Recycling in Canada 4 North American reclaimers continue to report expansions that enable them to begin processing non-bottle rigid plastic or to process more of it. The volume of non-bottle rigid recycling reported here is likely still conservative, particularly the volume reported as non-bottle rigid plastic segregated by resin (mostly from the commercial sector). An increase in film recycling of 23% over 2012 is attributable to both increased collection and strengthened participation in the survey. Growth in capacity for clean, clear single-resin film led the slight growth in capacity in 2013 over 2012. The majority of the foam reported was expanded polystyrene (EPS), which was predominantly from protective packaging for durable products and some food packaging, e.g., meat trays, clamshells and coffee cups. The volume reported for foam almost tripled; this is likely due to better responses, but industry efforts to increase collection also had an impact. Postconsumer Plastic Recycled By Resin (kgs) PET and HDPE make up the majority of postconsumer plastic recycled in Canada. The majority of the HDPE LDPE PVC PET is from bottles (90%), although the 98,671,000 42,253,000 2,628,000 non-bottle rigid PET portion is growing: 10% compared to 5% in 2012. PP 32,279,000 Recycled HDPE is comprised of 68% bottles, 22% non-bottle rigid and 10% PET 125,687,000 film; this is consistent with 2012. The Other 6,574,000 PS third largest resin collected for recycling 3,426,000 is LDPE, consisting primarily of film (99%). PP consists of 77% non-bottle rigid and 23% bottle material. Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 707-935-3390 707-935-1998! www.MooreRecycling.com 2013 Postconsumer Plastics Recycling in Canada 5 Methodology Moore Recycling Associates conducts the Canadian survey simultaneously with the annual U.S. Postconsumer Plastic Recycling Survey. This is a voluntary survey. The survey gathers data on all Canadian- and U.S.-sourced postconsumer plastic except that purchased by PET bottle reclaimers in Canada or the U.S.; as previously mentioned, that data is provided by a study conducted through APR and NAPCOR. To ensure the most accurate information: ! Moore Recycling continually updates its markets database to include current exporters, reclaimers, and other handlers of plastic scrap in the U.S. and Canada; ! Moore conducts an electronic survey of market participants in plastic recycling to collect data; and ! Moore provides a verification step for survey-collected data, checking the accuracy of the data through follow-up calls, conversations with industry contacts, and reviews of other public sources
Recommended publications
  • Athabasca University Mba Program Applied Project
    ATHABASCA UNIVERSITY MBA PROGRAM APPLIED PROJECT REPORT PLASTIC RECYCLING: IS IT WORTH IT? STRATEGIC ANALYSIS OF A PLASTIC RECYCLING START-UP COMPANY IN BRITISH COLUMBIA APPLIED PROJECT SUPERVISOR: ANN GREGORY STUDENT: JENNIFER R. BIKAW 1 TABLE OF CONTENTS ABSTRACT ................................................................................................................................ 4 1.0 INTRODUCTION .................................................................................................................. 5 2.0 RESEARCH ......................................................................................................................... 5 2.1 RESEARCH QUESTIONS ................................................................................................... 5 2.2 BACKGROUND ................................................................................................................... 6 2.3 LITERATURE REVIEW ........................................................................................................ 7 2.4 ENVIRONMENTAL ISSUES .............................................................................................. 11 2.4.1 Environmental Concerns of Plastic and Biodegradable Products .................... 11 2.4.2 Recycled Plastic in the Construction Industry ..................................................... 12 2.4.3 The Human Relation to the Environment ............................................................. 12 3.0 PLASTICS RECYCLING INDUSTRY ................................................................................
    [Show full text]
  • Economic Study of the Canadian Plastic Industry, Market and Waste
    © Deloitte LLP and affiliated entities. This study was conducted by a consortium composed of Deloitte and Cheminfo Services Inc. Deloitte Partner Joe Solly Project Manager Gildas Poissonnier Researchers Jérôme Petigny, Christophe Ménigault, Tamara Luisce, Erwan Harscoët, Anthonin David, Andreas Mitsios, Matt Laberge, Dmitry Lysenko Cheminfo Services Inc. Project Manager Pat Moore Policy specialist Adrian Dimoff This project was overseen, funded and coordinated by Environment and Climate Change Canada (ECCC). © Deloitte LLP and affiliated entities. Disclaimer The assumptions and parameters used in the plastics waste management value chain modelling are based on a review of literature, industry reports and national statistics, as well as consultations completed with industry stakeholders. The Canadian Plastics Industry Association (CPIA) and the Chemistry Industry Association of Canada (CIAC) were consulted to ensure representation of the plastic resin industry. Stewardship organizations such as the Canadian Stewardship Services Alliances (CSSA) and Éco Entreprises Québec were consulted to gather information on residential packaging plastic waste collection and associated costs. Several provincial ministries, government agencies such as RECYC-QUÉBEC, and industry associations were consulted to inform the current state of recycling within their sector or region. To the extent possible, information gathered was cross-checked with additional sources of information such as data from Statistics Canada Waste Management Information Survey (WMIS) and reports such as the 2016 Post-consumer Plastics Recycling in Canada report from More Recycling (More Recycling, 2018). For greenhouse gas emissions life cycle data from previous studies conducted in Europe and from recognized lifecycle databases has been leveraged to provide greenhouse gas emissions factors for key steps of the value chain.
    [Show full text]
  • Managing End-Of-Life Tires
    Managing End-of-Life Tires Full report World Business Council for Sustainable Development Contents WBCSD Tire Industry Project: An introduction 1 The life of a tire: Facts and trends 2 What are tires made of? What is the environmental impact of a tire during its life cycle? What is an end-of-life tire? End-of-life tire generation and recovery worldwide How does the end-of-life tire recovery rate compare with other goods? End-of-life tire uses: Numerous possibilities, existing and under development 6 Why use end-of-life tires and for what purposes? Energy recovery Material recovery Other innovative and emerging uses for end-of-life tires Management systems for collecting and recovering end-of-life tires 11 Tire industry responsibility Government/community responsibility Free market approach Landfill and waste piles End-of-life tire management in developing regions What is the future outlook? 13 Useful resources 14 Photo credits: © Lebanmax – Fotolia.com © www.guardian.co.uk/business/gallery/2007 Copyright: © WBCSD, November 2008 ISBN: 978-3-940388-31-5 Printer: Atar Roto Presse SA, Switzerland Printed on paper containing 50% recycled content and 50% from mainly certified forests (FSC and PEFC). 100% chlorine free. ISO 14001 certified mill. WBCSD Tire Industry Project: An introduction Today, when people think of the environmental impacts of tires, they mostly focus on the management of tires at the end of their useful lives (end-of-life tires, or ELTs), as this topic usually draws the most public attention. Globally, an estimated one billion tires reach the end of their useful lives every year.
    [Show full text]
  • Hazardous Trade? an Examination of US-Generated Spent Lead-Acid
    Hazardous An Examination of US- generated Spent Lead-acid Battery Exports and Secondary Lead Recycling in Trade? Canada, Mexico, and the United States Secretariat of the Commission for Environmental Cooperation disclaimer This independent report was prepared by the CEC Secretariat of the Commission for Environmental Cooperation (CEC) pursuant to Article 13 of the North American Agreement on Environmental Cooperation (NAAEC). The content and recommendations of this report do not necessarily reflect the opinions of the CEC or the governments of Canada, Mexico, or the United States of America. Reproduction of this document in whole or in part and in any form for educational or non-profit purposes may be made without special permission from the CEC Secretariat, provided acknowledgment of the source is made. Except where otherwise noted, this work is protected under a Creative Commons Attribution-Noncommercial-No Derivative Works License. Commission for Environmental Cooperation, 2013 Publication details Publication type: Independent Secretariat Report (Article 13) Publication date: April 2013 Original language: English ISBN 978-2-89700-024-0 (print), 978-2-89700-025-7 (electronic) Disponible en español: 978-2-89700-026-4 (versión impresa), 978-2-89700-027-1 (versión electrónica) Disponible en français: 978-2-89700-028-8 (version imprimée), 978-2-89700-029-5 (version électronique) Legal deposit—Biblioghèque et Archives nationales du Québec, 2013 Legal deposit—Library and Archives Canada, 2013 Printed in Canada on Rolland Enviro 100 paper For more information: containing 100% post-consumer fiber and produced Commission for environmental Cooperation using biogas energy. This paper is certified EcoLogo, 393, rue St-Jacques ouest Processed Chlorine-free and FSC recycled.
    [Show full text]
  • Scrap Tire Recycling in Canada
    CANMET Materials Technology Laboratory Scrap Tire Recycling in Canada A reference for all parties involved in the tire recycling industry on the options available for end-of-life OTR and passenger tires from an economic and environmental perspective Alexandra Pehlken and Elhachmi Essadiqi MTL 2005-08(CF) August 2005 Work on this project was funded by the Enhanced Recycling Program of Action Plan 2000 on Climate Change. CANMET-MTL DISCLAIMER Natural Resources Canada makes no representations or warranties respecting the contents of this report, either expressed or implied, arising by law or otherwise, including but not limited to implied warranties or conditions of merchantability or fitness for a particular purpose. ________________________________________________ CANMET-MTL i Scrap Tire Recycling in Canada Climate Change CANMET MATERIALS TECHNOLOGY LABORATORY REPORT MTL 2005-8(CF) SCRAP TIRE RECYCLING IN CANADA by A. Pehlken and E. Essadiqi ABSTRACT This report was supported by the Enhanced Recycling Program of Action Plan 2000 on Climate Change (managed by the Mineral and Metals Sector of Natural Resources Canada). Data from the provinces and the Canadian Association of Tire Recycling Agencies (CATRA) were collected from August 2004 to February 2005 with the objective of developing a clear picture of tire recovery and recycling in Canada, and the environmental impacts – including greenhouse- gas emissions (GHG) – of current and future practices. This study of “Scrap Tire Recycling in Canada” shows there is a great market potential for the processing of scrap tires into new applications and value-added products. Thanks to well- operated tire programs in nearly every Canadian province (only Ontario is currently developing its program), scrap tires are now being processed using several techniques.
    [Show full text]
  • Multi-Page.Pdf
    ... ........ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.- ..........~ ....~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~ . :~ Public Disclosure Authorized ............... :. s~: ... - a ........ ....~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.~. .................~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ........ ........... _ - Public Disclosure Authorized ....~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- .... .... -,// . ... ..... ...... I 1 ..... 9~~~~~~~.... I .... .... .. .... ... .. Public Disclosure Authorized A ~~~~~~...... ..... Public Disclosure Authorized The World Bankis committedto knowledgesharing which involves not only the Bank's communitiesof practiceand their partners,but the entire developmentcommunity. A processof knowledgemanagement is essentialto makesense out of and act upon the vast quantitiesof informationavailable today. Still in the early stagesof implementation,knowledge management is expectedto changethe internaloperation of the World Bankand transformthe organization's relationshipswith externalclients, partners and stakeholders,becoming a key way of doing businessin the 21st Century. Giventhe speed of globalchange and the value of learningfrom ongoingactivities, the Urban DevelopmentDivision and Global UrbanPartnership of the World Bankare committedto communicatingthe resultsof the Bank'surban work to the developmentcommunity as quickly and clearlyas possible.Toward that end, this informalor 'gray paper'series is publishedin print, with abstractsfurnished on-line at www.worldbank.org. The Urban and LocalGovernment Working Papers
    [Show full text]
  • Transparent 2020: Mapping Corporate Action on Plastic Waste
    Transparent 2020 Mapping corporate action on plastic waste June 2020 Acknowledgements “In the past few years it has become evident that we “We recognize that plastic pollution is a challenge must radically speed up the transition to a circular that none of us can tackle alone. Collaboration is economy for plastic, in which it never becomes critical, and we look forward to continuing to work waste or pollution. We must eliminate the plastics alongside WWF and our fellow ReSource: Plastic we don’t need, innovate to ensure that the plastics Principal Members to identify ways to collectively we do need are reusable, recyclable, or compostable, advance more sustainable solutions at scale. and circulate all the plastic items we use to keep McDonald’s is already working on a wide-ranging them in the economy and out of the environment. program to keep plastic out of nature, which The New Plastics Economy Global Commitment has includes removing and minimizing plastic and brought unprecedented transparency on industry improving recyclability in packaging. We are pleased action, highlighting progress on elimination of and to see the findings in this report are aligned with the innovation for plastic packaging. We welcome direction of our packaging and recycling strategy, WWF’s inaugural ReSource: Plastic report as a step with a strong focus on circularity.” towards building further transparency on the – KEITH KENNY, CORPORATE VICE PRESIDENT, SUSTAINABILITY, circulation and after-use fate of plastic packaging MCDONALD’S across different geographies.” – SANDER DEFRUYT, LEAD OF THE NEW PLASTICS ECONOMY INITIATIVE AT THE ELLEN MACARTHUR FOUNDATION “Plastics stemming from the food and beverage industry make up a majority of the items collected from beaches and waterways around the world “As a Principal Member of ReSource: Plastic, Keurig during Ocean Conservancy’s annual International Dr Pepper is proud to be a part of this inaugural Coastal Cleanup, so there is a critical need to better report.
    [Show full text]
  • Scrap Metal Recovery and Recycling in Northern Alberta and the Northwest Territories
    Scrap Metal Recovery and Recycling in Northern Alberta and the Northwest Territories Final Report August 2007 Prepared by Submitted to Government of Canada Climate Change Mitigation Program Enhanced Recycling Recycling Council of Alberta August 2007 Table of Contents Acknowledgements ................................ ................................ ................................ .........4 1 Executive Summary................................ ................................ ................................ ...5 2 Scrap Metal Recycling in Canada................................ ................................ ..............7 3 Benefits of Recycling Scrap Metal ................................ ................................ .............8 4 Related Regulations and Requirements ................................ ................................ ....8 4.1 Alberta................................ ................................ ................................ ..............8 4.2 Northwest Territories ................................ ................................ ........................ 9 5 Existing Scrap Metal Recycling Programs and Associations................................ ....10 5.1 Northern Alberta ................................ ................................ ............................. 10 5.2 City of Yellowknife ................................ ................................ .......................... 10 5.3 Related Associations and Programs................................ ............................... 11 6 Northern
    [Show full text]
  • Scan of Metals and Minerals Recycling Programs and Associated Climate Change Impacts Final Report March, 2004
    Scan of Metals and Minerals Recycling Programs and Associated Climate Change Impacts Final Report March, 2004 Project undertaken by the Recycling Council of Alberta in partnership with the Recycling Council of British Columbia, Saskatchewan Waste Reduction Council, Recycling Council of Ontario, Réseau des ressourceries du Québec, and Clean Nova Scotia With financial support from Acknowledgements Government of Canada Action Plan 2000 on Climate Change Enhanced Recycling, Action Plan 2000 on Climate Change, Minerals and Metals Program — The Government of Canada Action Plan 2000 on Climate Change Minerals and Metals Program, managed by the Minerals and Metals Sector of Natural Resources Canada, is working towards reducing Canada’s greenhouse gas (GHG) emissions from the minerals and metals sector. By matching funds with other partners, this program supports initiatives that enhance recycling practices and provide GHG emission reductions. Page i Scan of Metals and Minerals Recycling Programs and Associated Climate Change Impacts Executive Summary The extent and effectiveness of programs diverting metals and minerals waste varies significantly across Canada, as well as internationally. The significant differences in approaches to diverting these materials from the waste stream presents obstacles to programs managers attempting to assess the best approach to program development. This project included the identification of policies and programs within Canada, as well as internationally, that address the diversion of metals and minerals. Using available program data where possible, these programs were evaluated using a number of factors to measure their effectiveness. Effectiveness was then correlated to program approach to assess the level of success of various program types. To provide local expertise and national perspective to the project, non- governmental organizations across the country were solicited as project partners, with the Recycling Council of Alberta as the project coordinator.
    [Show full text]
  • Economic Study of the Canadian Plastic Industry, Market and Waste
    This study was conducted by a consortium composed of Deloitte and Cheminfo Services Inc. Deloitte Partner Joe Solly Project Manager Gildas Poissonnier Researchers Jérôme Petigny, Christophe Ménigault, Tamara Luisce, Erwan Harscoët, Anthonin David, Andreas Mitsios, Matt Laberge, Dmitry Lysenko Cheminfo Services Inc. Project Manager Pat Moore Policy specialist Adrian Dimoff This project was overseen, funded and coordinated by Environment and Climate Change Canada (ECCC). © Deloitte LLP and affiliated entities. Disclaimer The assumptions and parameters used in the plastics waste management value chain modelling are based on a review of literature, industry reports and national statistics, as well as consultations completed with industry stakeholders. The Canadian Plastics Industry Association (CPIA) and the Chemistry Industry Association of Canada (CIAC) were consulted to ensure representation of the plastic resin industry. Stewardship organizations such as the Canadian Stewardship Services Alliances (CSSA) and Éco Entreprises Québec were consulted to gather information on residential packaging plastic waste collection and associated costs. Several provincial ministries, government agencies such as RECYC-QUÉBEC, and industry associations were consulted to inform the current state of recycling within their sector or region. To the extent possible, information gathered was cross-checked with additional sources of information such as data from Statistics Canada Waste Management Information Survey (WMIS) and reports such as the 2016 Post-consumer
    [Show full text]
  • Recycling in Canada
    Recycling in Canada Teacher’s Notes Objectives Students will: • participate in a class survey that includes questions on household environmental practices; • assess the degree of their household’s environmental responsibility; • analyse Canadian data and information regarding aspects of recycling and environmental responsibility; • make inferences about the effectiveness of various waste management practices; • recommend ways in which individuals, industries and governments can encourage better waste management practices; • communicate the results of the investigation using written and graphic formats. Answers to student worksheet Section A What percentage of households participate in environmentally friendly activities in Canada and in your class? Answers for your class will be found in your Census at School spreadsheet of class results. Section B Use the tables above to answer these questions: B.1 Which material was being recycled by the greatest percentage of Canadian households in 1994: Paper in 2006: Plastics B.2 From 1994 to 2006, what was the increase in the percentage of households that composted: 4% used any compact fluorescent bulbs: 39% B.3 In which categories is your class: a) very similar to the rest of Canada? b) more environmentally responsible than the rest of Canada? c) less environmentally responsible than the rest of Canada? Answers will be found in your spreadsheet of class results. 1 B.4 Based on the data above which of the following statements is most correct: c) Over 80% of households recycle some of their metal cans, plastic and paper, some of the time. C. Consider the total amount of waste produced by the products we consume. When households report that they recycle, this does not mean that they are recycling 100% of their recyclable garbage.
    [Show full text]
  • July 1999 Analysis of National Solid Waste Recycling Programs And
    July 1999 Analysis of National Solid Waste Recycling Programs and Development of Solid Waste Recycling Cost Functions: A Summary of the Literature by: B. Thomas Schuman The University of Tennessee Department of Political Science with Robert A. Bohm The University of Tennessee Department of Economics David H. Folz The University of Tennessee Department of Political Science Jean H. Peretz The University of Tennessee Energy, Environment and Resources Center (423) 974-3803 [email protected] Bruce E. Tonn Oak Ridge National Laboratory Policy Analysis Systems Group Research Product 1 from a cooperative agreement titled: Research into Economic Factors Influencing Decisions in Environmental Decision Making U.S. EPA Cooperative Agreement CR822614-01 Project Officer: Dr. Michael J. Podolsky Office of Policy U.S. Environmental Protection Agency Washington, D.C. 20460 Prepared for: Office of Policy U.S. Environmental Protection Agency Washington, D.C. 20460 DISCLAIMER This report has neither been reviewed nor approved by the U.S. Environmental Protection Agency for publication as an EPA report. The contents do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. The report is being made available for its scientific interest. Analysis of National Solid Waste Recycling Programs and Development of Solid Waste Recycling Cost Functions: A Summary of the Literature Contents page Summary of the Literature 1.0 Descriptive
    [Show full text]