A Roadmap to Support the Circularity and Recycling of Plastics in Canada – Technical Standards, Regulations and Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2013 Postconsumer Plastics Recycling in Canada
2013 Postconsumer Plastics Recycling in Canada February 2015 Prepared by Moore Recycling Associates for the Canadian Plastics Industry Association Moore Recycling Associates Inc PO Box 1327 Sonoma, CA 95476 707-935-3390 707-935-1998! www.MooreRecycling.com 2013 Postconsumer Plastics Recycling in Canada 1 Introduction This is the fifth year that Moore Recycling Associates has conducted a survey to determine the amount of postconsumer plastic recovered in Canada for recycling. This report documents how much Canadian postconsumer plastic was collected and reclaimed by U.S or Canadian reclaimers and how much was sold to overseas markets. This study is sponsored by the Canadian Plastic Industry Association (CPIA) and is made possible by the businesses that cooperated by providing data. Executive Summary In 2013, at least 311.5 million kilograms of postconsumer (including commercial)1 plastic material in Canada was collected for recycling. This represents a 9% increase in recycling over 2012, mostly due to a significant increase in purchases by domestic reclaimers. Postconsumer Plastic Collected (kgs) 400,000,000 300,000,000 200,000,000 100,000,000 0 2009 2010 2011 2012 2013 PET Bottles HDPE Bottles PP Bottles Non-bottle Rigid Film Foam 1 Throughout this report the term “postconsumer” refers to plastics that have been used for their intended purpose by consumers and by businesses. Commercial materials are often recovered outside of curbside or drop-off collection programs and include items such as totes, pallets, crates, and other commercial packaging (this report does not cover the recycling of industrial plastic, which the U.S. EPA defines as materials, such as scrap and trimmings, that are generated in manufacturing and converting processes). -
Athabasca University Mba Program Applied Project
ATHABASCA UNIVERSITY MBA PROGRAM APPLIED PROJECT REPORT PLASTIC RECYCLING: IS IT WORTH IT? STRATEGIC ANALYSIS OF A PLASTIC RECYCLING START-UP COMPANY IN BRITISH COLUMBIA APPLIED PROJECT SUPERVISOR: ANN GREGORY STUDENT: JENNIFER R. BIKAW 1 TABLE OF CONTENTS ABSTRACT ................................................................................................................................ 4 1.0 INTRODUCTION .................................................................................................................. 5 2.0 RESEARCH ......................................................................................................................... 5 2.1 RESEARCH QUESTIONS ................................................................................................... 5 2.2 BACKGROUND ................................................................................................................... 6 2.3 LITERATURE REVIEW ........................................................................................................ 7 2.4 ENVIRONMENTAL ISSUES .............................................................................................. 11 2.4.1 Environmental Concerns of Plastic and Biodegradable Products .................... 11 2.4.2 Recycled Plastic in the Construction Industry ..................................................... 12 2.4.3 The Human Relation to the Environment ............................................................. 12 3.0 PLASTICS RECYCLING INDUSTRY ................................................................................ -
Biodegradation of Bio-Sourced and Synthetic Organic Electronic Materials Towards Green Organic Electronics ✉ ✉ Eduardo Di Mauro1, Denis Rho2 & Clara Santato 1
ARTICLE https://doi.org/10.1038/s41467-021-23227-4 OPEN Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics ✉ ✉ Eduardo Di Mauro1, Denis Rho2 & Clara Santato 1 Ubiquitous use of electronic devices has led to an unprecedented increase in related waste as well as the worldwide depletion of reserves of key chemical elements required in their 1234567890():,; manufacturing. The use of biodegradable and abundant organic (carbon-based) electronic materials can contribute to alleviate the environmental impact of the electronic industry. The pigment eumelanin is a bio-sourced candidate for environmentally benign (green) organic electronics. The biodegradation of eumelanin extracted from cuttlefish ink is studied both at 25 °C (mesophilic conditions) and 58 °C (thermophilic conditions) following ASTM D5338 and comparatively evaluated with the biodegradation of two synthetic organic electronic materials, namely copper (II) phthalocyanine (Cu–Pc) and polyphenylene sulfide (PPS). Eumelanin biodegradation reaches 4.1% (25 °C) in 97 days and 37% (58 °C) in 98 days, and residual material is found to be without phytotoxic effects. The two synthetic materials, Cu–Pc and PPS, do not biodegrade; Cu–Pc brings about the inhibition of microbial respiration in the compost. PPS appears to be potentially phytotoxic. Finally, some considerations regarding the biodegradation test as well as the disambiguation of “biodegradability” and “bioresorbability” are highlighted. 1 Département de Génie Physique, Polytechnique Montréal, Montréal, QC, Canada. 2 Aquatic and Crop Resource Development, National Research Council ✉ Canada, Montréal, QC, Canada. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:3167 | https://doi.org/10.1038/s41467-021-23227-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23227-4 lectronic equipment has become ubiquitous in our everyday successfully diverts organic wastes from disposal in landfills10 and life. -
Economic Study of the Canadian Plastic Industry, Market and Waste
© Deloitte LLP and affiliated entities. This study was conducted by a consortium composed of Deloitte and Cheminfo Services Inc. Deloitte Partner Joe Solly Project Manager Gildas Poissonnier Researchers Jérôme Petigny, Christophe Ménigault, Tamara Luisce, Erwan Harscoët, Anthonin David, Andreas Mitsios, Matt Laberge, Dmitry Lysenko Cheminfo Services Inc. Project Manager Pat Moore Policy specialist Adrian Dimoff This project was overseen, funded and coordinated by Environment and Climate Change Canada (ECCC). © Deloitte LLP and affiliated entities. Disclaimer The assumptions and parameters used in the plastics waste management value chain modelling are based on a review of literature, industry reports and national statistics, as well as consultations completed with industry stakeholders. The Canadian Plastics Industry Association (CPIA) and the Chemistry Industry Association of Canada (CIAC) were consulted to ensure representation of the plastic resin industry. Stewardship organizations such as the Canadian Stewardship Services Alliances (CSSA) and Éco Entreprises Québec were consulted to gather information on residential packaging plastic waste collection and associated costs. Several provincial ministries, government agencies such as RECYC-QUÉBEC, and industry associations were consulted to inform the current state of recycling within their sector or region. To the extent possible, information gathered was cross-checked with additional sources of information such as data from Statistics Canada Waste Management Information Survey (WMIS) and reports such as the 2016 Post-consumer Plastics Recycling in Canada report from More Recycling (More Recycling, 2018). For greenhouse gas emissions life cycle data from previous studies conducted in Europe and from recognized lifecycle databases has been leveraged to provide greenhouse gas emissions factors for key steps of the value chain. -
Review on Bacterial Biodegradation of Municipal Solid Waste Management in India
ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Website: www.ijirset.com Vol. 6, Issue 1, January 2017 Review on Bacterial Biodegradation of Municipal Solid Waste Management in India Veeramani 1, Nirmal Kumar 1, and Kavitha 2 Ph.D Scholar, Department of Environmental and Herbal Science, Faculty of Science, Tamil University, Thanjavur, Tamil Nadu, India. 1 Assistant Professor, Department of Environmental and Herbal Science, Faculty of Science, Tamil University, Thanjavur, Tamil Nadu, India.2 ABSTRACT: Biodegradation is alternative way to manage or to degrade the Municipal Solid Waste Management (MSWM). It is eco-friendly and much cost effective is compared to other traditional technique such as incineration and composting. The main purpose of this paper is to pay more attention towards biodegradation of MSWM in Indian cities. Municipal Solid Waste (MSW) consist lots of waste such as household garbage and rubbish, street sweeping, agricultural waste, construction and demolition debris, sanitation residues, trade and non-hazardous industrial refuse and treated bio-medical solid waste. Review of this paper focused characteristics, collection, transportation, disposal and different microbial process of biodegradation, their limitation and the process to microbial different MSW dumping sites and these isolates could be vital sources for the microbial diversity is stated here and discussed. KEYWORDS: Municipal solid waste management, Bacteria, biodegradation I. INTRODUCTION Municipal Solid Waste Management (MSWM) has become a critical area of practice and research due to the increasing concern of environmental pollution and resources shortage Brewer, 2001. [4] Every day huge quantities of waste materials are generated in all cities and municipal areas of India. -
Managing End-Of-Life Tires
Managing End-of-Life Tires Full report World Business Council for Sustainable Development Contents WBCSD Tire Industry Project: An introduction 1 The life of a tire: Facts and trends 2 What are tires made of? What is the environmental impact of a tire during its life cycle? What is an end-of-life tire? End-of-life tire generation and recovery worldwide How does the end-of-life tire recovery rate compare with other goods? End-of-life tire uses: Numerous possibilities, existing and under development 6 Why use end-of-life tires and for what purposes? Energy recovery Material recovery Other innovative and emerging uses for end-of-life tires Management systems for collecting and recovering end-of-life tires 11 Tire industry responsibility Government/community responsibility Free market approach Landfill and waste piles End-of-life tire management in developing regions What is the future outlook? 13 Useful resources 14 Photo credits: © Lebanmax – Fotolia.com © www.guardian.co.uk/business/gallery/2007 Copyright: © WBCSD, November 2008 ISBN: 978-3-940388-31-5 Printer: Atar Roto Presse SA, Switzerland Printed on paper containing 50% recycled content and 50% from mainly certified forests (FSC and PEFC). 100% chlorine free. ISO 14001 certified mill. WBCSD Tire Industry Project: An introduction Today, when people think of the environmental impacts of tires, they mostly focus on the management of tires at the end of their useful lives (end-of-life tires, or ELTs), as this topic usually draws the most public attention. Globally, an estimated one billion tires reach the end of their useful lives every year. -
Enhancing the Biodegradation of Waste Rubber a Novel Approach to Sustainable Management of Discarded Rubber Materials
INTERNATIONAL LATEX CONFERENCE 2015 Enhancing the Biodegradation of Waste Rubber A novel approach to sustainable management of discarded rubber materials Teresa Clark 8/12/2015 Rubber items are a critical part of modern society and a focus on the waste management of rubber is becoming more critical. Advancements have been made in recycling rubber waste, but a vast majority of rubber products are discarded into landfills. Sustainability efforts must include self-remediation through biodegradation of rubber (pre- consumer and post-consumer) in these waste sites. Current advancements provide insight into alternative methods of utilizing bio-mimicry to these return waste products to the natural carbon cycle, produce “green” energy and expand the scope of “Zero Waste”. Included are an assessment of the unique environment within landfills and the energy impact of utilizing these methods. Additionally, a brief update to the current progress in validating the biodegradation of rubber waste is included. Enhancing the Biodegradation of Waste Rubber International Latex Conference 2015 - Teresa Clark Contents Introduction .................................................................................................................................................. 2 Waste disposal of rubber materials .............................................................................................................. 2 Composting of Rubber ................................................................................................................................. -
Hazardous Trade? an Examination of US-Generated Spent Lead-Acid
Hazardous An Examination of US- generated Spent Lead-acid Battery Exports and Secondary Lead Recycling in Trade? Canada, Mexico, and the United States Secretariat of the Commission for Environmental Cooperation disclaimer This independent report was prepared by the CEC Secretariat of the Commission for Environmental Cooperation (CEC) pursuant to Article 13 of the North American Agreement on Environmental Cooperation (NAAEC). The content and recommendations of this report do not necessarily reflect the opinions of the CEC or the governments of Canada, Mexico, or the United States of America. Reproduction of this document in whole or in part and in any form for educational or non-profit purposes may be made without special permission from the CEC Secretariat, provided acknowledgment of the source is made. Except where otherwise noted, this work is protected under a Creative Commons Attribution-Noncommercial-No Derivative Works License. Commission for Environmental Cooperation, 2013 Publication details Publication type: Independent Secretariat Report (Article 13) Publication date: April 2013 Original language: English ISBN 978-2-89700-024-0 (print), 978-2-89700-025-7 (electronic) Disponible en español: 978-2-89700-026-4 (versión impresa), 978-2-89700-027-1 (versión electrónica) Disponible en français: 978-2-89700-028-8 (version imprimée), 978-2-89700-029-5 (version électronique) Legal deposit—Biblioghèque et Archives nationales du Québec, 2013 Legal deposit—Library and Archives Canada, 2013 Printed in Canada on Rolland Enviro 100 paper For more information: containing 100% post-consumer fiber and produced Commission for environmental Cooperation using biogas energy. This paper is certified EcoLogo, 393, rue St-Jacques ouest Processed Chlorine-free and FSC recycled. -
Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products. -
Claims on Biodegradability and Compostability on Products and Packaging
EuropeanEuropean Bioplastics Bioplastics e.V. Marienstr. e.V. Marienstr. 19/20 19/20 10117 Berlin 10117 Berlin EuropeanEuropean Bioplastics Bioplastics e.V. e.V. European Bioplastics e.V. Marienstr. 19/20 10117 Berlin European Bioplastics e.V. Marienstr.Marienstr. 19/20, 19/20, 10117 10117 Berlin Berlin phone phone+49.30.28+49.30.28 48 23 48 50 23 50 fax fax+49.30.28Marienstr.+49.30.28 48 19/20,23 48 59 23 1011759 Berlin [email protected][email protected] 48 23 50 webfax webwww.european-bioplastics.org+49.30.28www.european-bioplastics.org 48 23 59 e-mail [email protected] web www.european-bioplastics.org European Bioplastics CLAIMS ON BIODEGRADABILITY AND COMPOSTABILITY ON PRODUCTS AND PACKAGING Claims about biodegradability and compostability are wide- vironmental conditions, the rate of biodegradation can vary ly used to label products and packaging regarding their end- for different products or materials. Thus, for example, fruit of-life. Biodegradation can take place in different systems pulp will biodegrade faster than fruit peelings or wood. (industrial or home composting) and environments (soil, Claiming biodegradability water). In general, the sole claim “biodegradable” on products and What is biodegradability? packaging, without indicating specific standards or environ- Biodegradability is the potential of a material to follow the ments in which the biodegradation takes place, is mislead- process of biodegradation. Biodegradation1 is a biochemi- ing and therefore should not be used.4 Biodegradability cal process during which microorganisms that are present claims must be transparent and verifiable and supported in the environment convert biodegradable materials into by standards that define the scope, i.e. -
Scrap Tire Recycling in Canada
CANMET Materials Technology Laboratory Scrap Tire Recycling in Canada A reference for all parties involved in the tire recycling industry on the options available for end-of-life OTR and passenger tires from an economic and environmental perspective Alexandra Pehlken and Elhachmi Essadiqi MTL 2005-08(CF) August 2005 Work on this project was funded by the Enhanced Recycling Program of Action Plan 2000 on Climate Change. CANMET-MTL DISCLAIMER Natural Resources Canada makes no representations or warranties respecting the contents of this report, either expressed or implied, arising by law or otherwise, including but not limited to implied warranties or conditions of merchantability or fitness for a particular purpose. ________________________________________________ CANMET-MTL i Scrap Tire Recycling in Canada Climate Change CANMET MATERIALS TECHNOLOGY LABORATORY REPORT MTL 2005-8(CF) SCRAP TIRE RECYCLING IN CANADA by A. Pehlken and E. Essadiqi ABSTRACT This report was supported by the Enhanced Recycling Program of Action Plan 2000 on Climate Change (managed by the Mineral and Metals Sector of Natural Resources Canada). Data from the provinces and the Canadian Association of Tire Recycling Agencies (CATRA) were collected from August 2004 to February 2005 with the objective of developing a clear picture of tire recovery and recycling in Canada, and the environmental impacts – including greenhouse- gas emissions (GHG) – of current and future practices. This study of “Scrap Tire Recycling in Canada” shows there is a great market potential for the processing of scrap tires into new applications and value-added products. Thanks to well- operated tire programs in nearly every Canadian province (only Ontario is currently developing its program), scrap tires are now being processed using several techniques. -
Multi-Page.Pdf
... ........ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.- ..........~ ....~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~ . :~ Public Disclosure Authorized ............... :. s~: ... - a ........ ....~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.~. .................~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ........ ........... _ - Public Disclosure Authorized ....~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- .... .... -,// . ... ..... ...... I 1 ..... 9~~~~~~~.... I .... .... .. .... ... .. Public Disclosure Authorized A ~~~~~~...... ..... Public Disclosure Authorized The World Bankis committedto knowledgesharing which involves not only the Bank's communitiesof practiceand their partners,but the entire developmentcommunity. A processof knowledgemanagement is essentialto makesense out of and act upon the vast quantitiesof informationavailable today. Still in the early stagesof implementation,knowledge management is expectedto changethe internaloperation of the World Bankand transformthe organization's relationshipswith externalclients, partners and stakeholders,becoming a key way of doing businessin the 21st Century. Giventhe speed of globalchange and the value of learningfrom ongoingactivities, the Urban DevelopmentDivision and Global UrbanPartnership of the World Bankare committedto communicatingthe resultsof the Bank'surban work to the developmentcommunity as quickly and clearlyas possible.Toward that end, this informalor 'gray paper'series is publishedin print, with abstractsfurnished on-line at www.worldbank.org. The Urban and LocalGovernment Working Papers