The Development of Intersection Homology Theory
Steven L. Kleiman
Contents Foreword
Received October 9, 2006.
226
Steven L. Kleiman
Preface
The Development of Intersection Homology Theory
227
Discovery
228
Steven L. Kleiman
∈
- ∈
- ∈
- ⊃
- ⊃
⊃
- ⊃
- ⊃ · · · ⊃
- ⊃
- −1
- −2
- −3
- 1
- 0
- −1
- −2
−
−1
−
−1
×
⊃ · · · ⊃
−1
∩
×
−
−2
The Development of Intersection Homology Theory
229
−
−
−
−
++ −
- ×
- −→
−
230
Steven L. Kleiman
2
−2
- b
- c
2
- ≤
- ≤
The Development of Intersection Homology Theory
231
A fortuitous encounter
2 −
- {
- }
2 ∗ · · ·
- 2∗
- −
- ≤ (2 )
- ≤ (2)
- 2
- −2
−
- 2
- −2
−
2 −
−
2 − +1
≤
232
Steven L. Kleiman
- {
- }
−
−1
The Development of Intersection Homology Theory
233
§
§
§
§
→
∗
§§
- ≥
- ≥
−2
- b
- c
2
2 −
§
234
Steven L. Kleiman
|
0
|
→
−1
- {
- ∈
- |
- ≥ }
⊗
∗
×
+ =
§
§
§
- →
- →
- 1
- 1
- 2
- 2
- 1
- 2
§
- ∩
- →
- ∩
- −→
∗
The Development of Intersection Homology Theory
235
- −
- −
∗
≤
∗
- ∩
- →
- −
−
- ∩
- →
- −
∗
−
§
§
§
The Kazhdan–Lusztig conjecture
236
Steven L. Kleiman
≤
- (
- )− ( )
−
- −
- −
−
- −
- −
≤
−
≤
§
- 3
- 4
- 5
- 3
- 3
- 4
- 4
- 4
- 3
- 5
- 6
- 4
The Development of Intersection Homology Theory
237
→
∈
2
§
238
Steven L. Kleiman
∼
2
2
∈
−
+
∼
- ∩
- −→
2 +1
2
2
-modules
∗
∗
The Development of Intersection Homology Theory
239
∞
- −
- −
- · · ·
- −
- 0
- 1
- ( )
- ( −1)
· · ·
1
−
240
Steven L. Kleiman
−
1
- −→
- −→
- −→
·
- −→
- −→
- −→
The Development of Intersection Homology Theory
241
∗
∗
∈
∗
Ω
- Ω
- −1
⊗
- ∗
- ∗∗
- ∗
∗
∗
→
242
Steven L. Kleiman
1
- →
- →
- ⊗
- → · · · →
- ⊗
- →
∗
12
→
The Development of Intersection Homology Theory
243 triv
∈
- →
- ⊗
triv
→
- −
- −
- −
- −
⊗
⊗
−
−
−
∈
triv
⊗
- −
- ⊗
C
244
Steven L. Kleiman
(
)−
−
− ( )
−
Perverse sheaves
§
∼
The Development of Intersection Homology Theory
245
- ≥
- ≥
- ≥
- ≥
§
∗
14
∼
15 17
−
−
246
Steven L. Kleiman
−
§
∈
−1
→
18
- −
- −
→
∗
∗
- ∈
- →
The Development of Intersection Homology Theory
247
∗
- −
- →
- −
∈
→
∈
∗
∼
∗
·
248
Steven L. Kleiman
−
−1
- −
- −
+1
§
triv
Purity and decomposition
∗
→
2
−
−
−
The Development of Intersection Homology Theory
249
§
≥
→
∗
−
i
∗
1
250
Steven L. Kleiman
§
−
i
§
→
∗
§
The Development of Intersection Homology Theory
251
2( − )
- ≤
- ≤
- ≤
- 0
- 1
−
- [
- 2]
252
Steven L. Kleiman
11
22
3
−−
- − · · ·
- ∩ · · · ∩
∩ · · · ∩
1
≥
3
− · · ·
1
§
→
≥ } ≥
−1
- {
- ∈
- |
§
∈
−
- §
- →
∗
−
i
- ≥
- ≥
∗
- ∗
- ∗
The Development of Intersection Homology Theory
253
0
→
∗
∗
→
∗
- ∗
- 0
0
∗
§
0
- −
- ⊗
∗∗
- (
- )
- (
- )
- (
- )
- 2dim(
- )
0
|
0
∗
⊗
- (
- )
- (
- )
- (
- )
§
§
254
Steven L. Kleiman
0
Other work and open problems
2
2
(2)
- ∧ ∗
- ∞
- ∧ ∗
- ∞
∗
2
∗