The Development of Intersection Homology Theory Steven L

The Development of Intersection Homology Theory Steven L

<p>The Development of Intersection Homology Theory </p><p>Steven L. Kleiman </p><p>Contents Foreword </p><p>Received October 9, 2006. </p><p>226 </p><p>Steven L. Kleiman </p><p>Preface </p><p>The Development of Intersection Homology Theory </p><p>227 </p><p>Discovery </p><p>228 </p><p>Steven L. Kleiman </p><p>∈</p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p></p><ul style="display: flex;"><li style="flex:1">⊃</li><li style="flex:1">⊃</li></ul><p>⊃</p><ul style="display: flex;"><li style="flex:1">⊃</li><li style="flex:1">⊃ · · · ⊃ </li><li style="flex:1">⊃</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">−2 </li><li style="flex:1">−3 </li><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">−2 </li></ul><p></p><p>−</p><p>−1 </p><p>−</p><p>−1 </p><p>×<br>⊃ · · · ⊃ </p><p>−1 </p><p>∩<br>×</p><p>−</p><p>−2 </p><p>The Development of Intersection Homology Theory </p><p>229 </p><p>−</p><p>−</p><p>−</p><p>−</p><p>++ − </p><p></p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">−→ </li></ul><p>−</p><p>230 </p><p>Steven L. Kleiman </p><p>2<br>−2 </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">c</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li></ul><p></p><p>The Development of Intersection Homology Theory </p><p>231 </p><p>A fortuitous encounter </p><p>2 − </p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li></ul><p><sub style="top: 0.1481em;">2 ∗ </sub>· · · </p><p></p><ul style="display: flex;"><li style="flex:1">2∗ </li><li style="flex:1">−</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≤ (2 ) </li><li style="flex:1">≤ (2) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">−2 </li></ul><p></p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">−2 </li></ul><p></p><p>−</p><p>2 − </p><p>−</p><p>2 − +1 </p><p>≤</p><p>232 </p><p>Steven L. Kleiman </p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li></ul><p>−</p><p>−1 </p><p>The Development of Intersection Homology Theory </p><p>233 </p><p>§<br>§</p><p>§<br>§</p><p>→</p><p>∗</p><p>§§</p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">≥</li></ul><p></p><p>−2 </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">c</li></ul><p></p><p>2<br>2 − </p><p>§</p><p>234 </p><p>Steven L. Kleiman </p><p>|</p><p>0</p><p>|<br>→</p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">∈</li><li style="flex:1">|</li><li style="flex:1">≥ } </li></ul><p>⊗</p><p>∗</p><p>×</p><p>+ = </p><p>§<br>§</p><p>§</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>§</p><ul style="display: flex;"><li style="flex:1">∩</li><li style="flex:1">→</li></ul><p></p><ul style="display: flex;"><li style="flex:1">∩</li><li style="flex:1">−→ </li></ul><p></p><p>∗</p><p>The Development of Intersection Homology Theory </p><p>235 </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p>∗</p><p>≤</p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">∩</li><li style="flex:1">→</li><li style="flex:1">−</li></ul><p>−</p><ul style="display: flex;"><li style="flex:1">∩</li><li style="flex:1">→</li><li style="flex:1">−</li></ul><p></p><p>∗</p><p>−<br>§</p><p>§<br>§</p><p>The Kazhdan–Lusztig conjecture </p><p>236 </p><p>Steven L. Kleiman </p><p>≤</p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)− ( ) </li></ul><p></p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p>−</p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p>≤</p><p>−<br>≤</p><p>§</p><p></p><ul style="display: flex;"><li style="flex:1">3</li><li style="flex:1">4</li><li style="flex:1">5</li><li style="flex:1">3</li><li style="flex:1">3</li><li style="flex:1">4</li><li style="flex:1">4</li><li style="flex:1">4</li><li style="flex:1">3</li><li style="flex:1">5</li></ul><p></p><ul style="display: flex;"><li style="flex:1">6</li><li style="flex:1">4</li></ul><p></p><p>The Development of Intersection Homology Theory </p><p>237 </p><p>→<br>∈</p><p>2</p><p>§</p><p>238 </p><p>Steven L. Kleiman </p><p>∼</p><p>2<br>2</p><p>∈</p><p>−</p><p>+</p><p>∼</p><p></p><ul style="display: flex;"><li style="flex:1">∩</li><li style="flex:1">−→ </li></ul><p></p><p>2 +1 <br>2</p><p>2</p><p>-modules </p><p>∗<br>∗</p><p>The Development of Intersection Homology Theory </p><p>239 </p><p>∞</p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li><li style="flex:1">· · · </li><li style="flex:1">−</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">( ) </li><li style="flex:1">( −1) </li></ul><p></p><p>· · · </p><p>1</p><p>−</p><p>240 </p><p>Steven L. Kleiman </p><p>−</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">−→ </li><li style="flex:1">−→ </li><li style="flex:1">−→ </li></ul><p>·</p><p></p><ul style="display: flex;"><li style="flex:1">−→ </li><li style="flex:1">−→ </li><li style="flex:1">−→ </li></ul><p></p><p>The Development of Intersection Homology Theory </p><p>241 </p><p>∗<br>∗</p><p>∈</p><p>∗</p><p>Ω</p><ul style="display: flex;"><li style="flex:1">Ω</li><li style="flex:1">−1 </li></ul><p></p><p>⊗</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗∗ </li><li style="flex:1">∗</li></ul><p>∗</p><p>∗</p><p>→</p><p>242 </p><p>Steven L. Kleiman </p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">→ · · · → </li><li style="flex:1">⊗</li><li style="flex:1">→</li></ul><p></p><p>∗</p><p>12 </p><p>→</p><p>The Development of Intersection Homology Theory </p><p>243 triv </p><p>∈</p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">⊗</li></ul><p></p><p>triv </p><p>→</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p>⊗<br>⊗<br>−<br>−<br>−</p><p>∈</p><p>triv </p><p>⊗</p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">⊗</li></ul><p></p><p>C</p><p>244 </p><p>Steven L. Kleiman </p><p>(</p><p>)− </p><p>−</p><p>− ( ) </p><p>−</p><p>Perverse sheaves </p><p>§<br>∼</p><p>The Development of Intersection Homology Theory </p><p>245 </p><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">≥</li></ul><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">≥</li></ul><p>§</p><p>∗</p><p>14 </p><p>∼</p><p>15 17 </p><p>−<br>−</p><p>246 </p><p>Steven L. Kleiman </p><p>−<br>§<br>∈</p><p>−1 </p><p>→</p><p>18 </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p>→</p><p>∗<br>∗</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">→</li></ul><p></p><p>The Development of Intersection Homology Theory </p><p>247 </p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">→</li><li style="flex:1">−</li></ul><p>∈<br>→<br>∈</p><p>∗</p><p>∼</p><p>∗</p><p>·</p><p>248 </p><p>Steven L. Kleiman </p><p>−</p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p>+1 </p><p>§</p><p>triv </p><p>Purity and decomposition </p><p>∗</p><p>→</p><p>2</p><p>−<br>−<br>−</p><p>The Development of Intersection Homology Theory </p><p>249 </p><p>§<br>≥<br>→</p><p>∗</p><p>−</p><p>i</p><p>∗</p><p>1<br>250 </p><p>Steven L. Kleiman </p><p>§<br>−</p><p>i</p><p>§<br>→</p><p>∗</p><p>§</p><p>The Development of Intersection Homology Theory </p><p>251 <br>2( − ) </p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li><li style="flex:1">≤</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">[</li><li style="flex:1">2] </li></ul><p>252 </p><p>Steven L. Kleiman </p><p>11<br>22<br>3</p><p>−−</p><ul style="display: flex;"><li style="flex:1">− · · · </li><li style="flex:1">∩ · · · ∩ </li></ul><p>∩ · · · ∩ </p><p>1</p><p>≥</p><p>3</p><p>− · · · </p><p>1</p><p>§<br>→<br>≥ }&nbsp;≥ </p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">∈</li><li style="flex:1">|</li></ul><p>§</p><p>∈<br>−</p><p></p><ul style="display: flex;"><li style="flex:1">§</li><li style="flex:1">→</li></ul><p></p><p>∗</p><p>−</p><p>i</p><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">≥</li></ul><p></p><p>∗</p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p>The Development of Intersection Homology Theory </p><p>253 </p><p>0</p><p>→</p><p>∗<br>∗</p><p>→</p><p>∗</p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">0</li></ul><p></p><p>0</p><p>∗</p><p>§</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">⊗</li></ul><p></p><p>∗∗</p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2dim( </li><li style="flex:1">)</li></ul><p></p><p>0</p><p>|</p><p>0</p><p>∗</p><p>⊗</p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>§<br>§</p><p>254 </p><p>Steven L. Kleiman </p><p>0</p><p>Other work and open problems </p><p>2<br>2<br>(2) </p><p></p><ul style="display: flex;"><li style="flex:1">∧ ∗ </li><li style="flex:1">∞</li><li style="flex:1">∧ ∗ </li><li style="flex:1">∞</li></ul><p>∗</p><p>2</p><p>∗</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us