Characterization of the Endosymbiotic Forms of Sinorhizobium Sp. Strain

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Endosymbiotic Forms of Sinorhizobium Sp. Strain UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département de Botanique et Biologie Végétale Dr. Xavier Perret, MER ___________________________________________________________________ Characterization of the Endosymbiotic Forms of Sinorhizobium sp. Strain NGR234 THÈSE présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention biologie par Nadia BAKKOU de Salé (Maroc) Thèse N° 4286 Genève Atelier d’impression ReproMail 2011 Remerciements Cette thèse a été réalisée au sein de l’Unité de Microbiologie dans le département de Botanique et Biologie végétale à l’université de Genève. Je tiens à remercier en premier lieu le Dr. Xavier Perret qui a dirigé cette thèse, pour sa disponibilité et pour sa confiance, qui m’ont permis de mener à bien ce projet. Je tiens également à remercier le Prof. Jurek Paszkowski, pour m’avoir permis de réaliser ma thèse dans ce département. Je remercie les membres du jury: le Dr. Cornelia Reimmann et le Prof. Hans-Martin Fischer, pour m’avoir fait l’honneur d’accepter de juger mon travail, pour leur remarques et conseils pertinents. Je tiens à associer à ces remerciements toutes les personnes qui ont participé à ce projet et sans qui ce travail n’aurait pas été possible. Je remercie donc le Dr. Michèle Crèvecœur, le Dr. Peter Mergaert et le Prof. Eva Kondorosi pour leur collaboration et leur aide scientifique et technique lors de la caractérisation morphologique et physiologique des bactéroides de Sinorhizobium sp. NGR234. Je remercie sincèrement Madame Yin Aung, le Dr. William Deakin et le Prof. Bill Broughton pour leur disponibilité, leurs conseils avisés et leur soutien tout au long de ce travail. Toute l’équipe du LBMPS et les personnes qui sont passées par l’unité de Microbiologie avec qui j’ai eu beaucoup de plaisir à travailler pendant toutes ces années, en particulier j’aimerai remercier: Kumi, Silvia, Olivier, Greg, Antoine, Maged, Abder, Loic, Coralie, Natalia, Karl, Rosa, et toutes les autres personnes que j’ai oublié. Vous m’avez permis d’accomplir ce travail dans des conditions agréables et chaleureuses donc je vous adresse un grand merci pour votre compétence, pour votre efficacité, mais surtout pour votre bonne humeur, pour vos encouragements, pour votre sympathie et pour votre amitié. Je clos enfin ces remerciements en dédiant cette thèse de doctorat à mes parents, à mes sœurs, à dabdoub, à mes «apéro girls» et à tous mes amis que j'ai eus la chance d'avoir à mes côtés et qui m'ont soutenue tout au long de ces années. i ii Table of contents Page Remerciements i Résumé en français 1 English summary 3 List of abbreviations 5 List of figures 7 List of Tables 9 Chapter 1. General introduction 11 1.1. Biological nitrogen fixation 13 1.2. Legumes, rhizobia and nitrogen fixation 15 1.3. From a free-living to an endosymbiotic lifestyle 18 1.4. Symbiosome formation and bacteroid differentiation 25 1.5. Nitrogenase and the regulation of nitrogen fixation 28 1.6. The promiscuous Sinorhizobium sp. strain NGR234 33 1.7. Aims of the PhD project 41 Chapter 2. Morphological characterization of NGR234 bacteroids 43 2.1. Distinct hosts and different nodule types 45 2.2. Percoll gradients to standardize cell populations 48 2.3. Sizes and shapes of free-living cells and bacteroids of NGR234 51 2.4. Physiological characteristics of bacteroids of NGR234 53 2.5. Nodule-specific modulation of the cell cycle in bacteroids of NGR234 57 2.6. Survival of bacteroids of NGR234 isolated from nitrogen-fixing nodules 60 2.7. Conclusions to Chapter 2 61 Chapter 3. From local to global transcription profiles of the versatile NGR234 63 3.1. Generalities on transcription in prokaryotes 65 3.2. Down-regulation of housekeeping functions in bacteroids 72 iii 3.3. Characterization of selected NGR234 promoter regions 74 3.4. Assessing promoter activities using transcriptional Gus-fusions 76 3.5. Implementation of qRT-PCR to follow gene expression in NGR234 80 3.6. Do numbers of replicons vary during the NGR234 lifestyles? 82 3.7. Mapping the transcriptional start sites of reference promoters 84 3.8. Exploring the transcriptome using high-throughput sequencing 86 3.9. Conclusion to Chapter 3 96 Chapter 4. Characterization of the BxqH regulon of NGR234 99 4.1. Genetics of quorum sensing (QS) 101 4.2. QS in Sinorhizobium sp. strain NGR234 106 4.3. BxqH is structurally similar to QS-dependent regulators 108 4.4. bxqH expression inside bacteroids is 54 dependent 110 4.5. Analysis of the BxqH-regulon of NGR234 112 4.6. Role of BxqH in symbiosis 114 4.7. Construction of reporter systems dedicated to the analysis of BxqH 117 4.8. Conclusion to Chapter 4 121 Chapter 5. Functional analysis of the T3SS-II locus of NGR234 123 5.1. A symbiotic role for Type-Three Secretion Systems (T3SS) 125 5.2. pNGR234b codes for a second and complete T3SS locus 128 5.3. Transcription analysis of the T3SS-II locus 130 5.4. Construction of the T3SS-II deletion strains 132 5.5. Symbiotic phenotype of T3SS-II deleted mutants of NGR234 135 5.6. T3SS-II sequences are conserved in various strains of Sinorhizobium 136 5.7. Conclusion to Chapter 5 138 Chapter 6. Discussion 141 6.1. T3SS-II, a tool for another and yet unknown lifestyle of NGR234? 143 6.2. Many bacteroid « differentiation » states for many symbioses 147 6.3. Symbiosis and modulation of gene expression in NGR234 151 iv 6.4. Concluding remarks 160 Chapter 7. Material and Methods 165 7.1. Nodulation tests 167 7.2. Microbiology techniques 167 7.3. Preparation of RNA templates for qRT-PCR and 5’-RACE PCR 172 7.4. cDNA synthesis and Quantitative Real-Time PCR 173 7.5. Mapping of transcriptional sites with 5’ RACE-PCR 175 7.6. Microscopical analysis of nodule sections 176 7.7. Isolation of bacteroids via Percoll gradient 177 7.8. Staining and observation of endosymbiotic or free-living cells of NGR234 177 7.9. Flow cytometry and cell cycle analysis 178 7.10. Construction of gusA-reporter fusions 178 7.11. Fluorometric β-glucuronidase (Gus) assay 180 7.12. Construction of T3SS-II deleted mutant strains 180 References 183 Appendix 205 v vi Résumé en français La plupart des plantes appartenant à la famille des légumineuses ont la capacité de former des symbioses fixatrices d’azote avec des bactéries du sol appelées rhizobia. La fixation d’azote se déroule uniquement à l’intérieur d’organes spécialisés appelés nodules (ou nodosités) qui ne se développent sur les racines, et plus rarement sur les tiges des plantes hôtes, qu’en présence d’une souche bactérienne compatible. Pour fixer l’azote, les rhizobia doivent coloniser le cytoplasme des cellules végétales des nodosités et s’y différentier en bactéroïdes fixateurs d’azote. Dans les légumineuses d’importance agronomique on distingue deux principaux types de nodosités : les nodules de type déterminé (DNs) et indéterminé (IDNs) qui se distinguent notamment par leur profil de croissance et la persistance ou non de zones méristématiques. Notre souche modèle Sinorhizobium sp. NGR234, possède un spectre d’hôte particulièrement étendu. En effet, NGR234 peut induire la formation de nodules sur plus de 120 genres de légumineuses et fixe l’azote atmosphérique dans des nodules DNs ou IDNs de plus de 150 plantes appartenant à toutes les sous-familles des légumineuses. Cette extraordinaire capacité fait de NGR234 un modèle de choix pour étudier les mécanismes moléculaires nécessaires à l’établissement de symbioses fonctionnelles sur un aussi grand nombre de plantes hôtes. Encore récemment, les recherches se focalisaient essentiellement sur les mécanismes moléculaires permettant à NGR234 d’induire la formation de nodules puis de les coloniser (processus de nodulation), laissant la fixation de l’azote per se pratiquement inexplorée. Afin de combler cette importante lacune, ce travail de thèse a porté sur l’analyse comparative de caractères morphologiques et physiologiques des bactéroïdes fixateurs d’azote de NGR234, et dans le décryptage détaillé des mécanismes moléculaires qui régissent la régulation génique lors de la fixation de l’azote. Nous avons aussi tenté d’examiner la fonction du deuxième système de sécrétion de type III (T3SS-II) qui a été récemment identifié suite au séquençage du génome de NGR234. Seuls les bactéroïdes différentiés à l’intérieur des nodules sont capables de réduire l’azote atmosphérique grâce à la nitrogénase, enzyme irréversiblement inactivée par la présence d’oxygène libre. Ce processus de différenciation peut être irréversible, comme dans le cas de Sinorhizobium meliloti en symbiose avec les espèces Medicago (nodules IDNs). Les bactéries endosymbiotiques sont alors incapables de former des colonies une fois isolées des nodosités. En examinant les bactéroïdes de NGR234 isolés à partir de nodules des plantes Vigna unguiculata (DNs), Leuceana leucocephala (IDNs) ou Tephrosia vogelii (IDNs), nous avons montré que cette différenciation était réversible pour les cellules isolées des nodules DNs et irréversible pour celles isolées des nodosités IDNs. L’utilisation de colorants fluorescents en combinaison avec des techniques de microscopie et de cytométrie de flux démontra que l’irréversibilité de la différenciation n’était pas, comme c’est le cas chez -1- S. meliloti, liée à une endoréduplication du génome. En revanche, les bactéroïdes de NGR234 incapables de se multiplier bloqués en phase G0/G1 du cycle cellulaire, possédaient une perméabilité membranaire notablement altérée. Ces résultats ouvrent la porte à l’identification dans des plantes autres que les Galegae de nouveaux composés végétaux susceptibles de bloquer la croissance bactérienne. La faible pression partielle en oxygène qui règne à l’intérieur des nodules est responsable de l’expression spécifique des gènes bactériens de la fixation de l’azote.
Recommended publications
  • Azorhizobium Doebereinerae Sp. Nov
    ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 197–206 www.elsevier.de/syapm Azorhizobium doebereinerae sp. Nov. Microsymbiont of Sesbania virgata (Caz.) Pers.$ Fa´tima Maria de Souza Moreiraa,Ã, Leonardo Cruzb,Se´rgio Miana de Fariac, Terence Marshd, Esperanza Martı´nez-Romeroe,Fa´bio de Oliveira Pedrosab, Rosa Maria Pitardc, J. Peter W. Youngf aDepto. Cieˆncia do solo, Universidade Federal de Lavras, C.P. 3037 , 37 200–000, Lavras, MG, Brazil bUniversidade Federal do Parana´, C.P. 19046, 81513-990, PR, Brazil cEmbrapa Agrobiologia, antiga estrada Rio, Sa˜o Paulo km 47, 23 851-970, Serope´dica, RJ, Brazil dCenter for Microbial Ecology, Michigan State University, MI 48824, USA eCentro de Investigacio´n sobre Fijacio´n de Nitro´geno, Universidad Nacional Auto´noma de Mexico, Apdo Postal 565-A, Cuernavaca, Mor, Me´xico fDepartment of Biology, University of York, PO Box 373, York YO10 5YW, UK Received 18 August 2005 Abstract Thirty-four rhizobium strains were isolated from root nodules of the fast-growing woody native species Sesbania virgata in different regions of southeast Brazil (Minas Gerais and Rio de Janeiro States). These isolates had cultural characteristics on YMA quite similar to Azorhizobium caulinodans (alkalinization, scant extracellular polysaccharide production, fast or intermediate growth rate). They exhibited a high similarity of phenotypic and genotypic characteristics among themselves and to a lesser extent with A. caulinodans. DNA:DNA hybridization and 16SrRNA sequences support their inclusion in the genus Azorhizobium, but not in the species A. caulinodans. The name A. doebereinerae is proposed, with isolate UFLA1-100 ( ¼ BR5401, ¼ LMG9993 ¼ SEMIA 6401) as the type strain.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • The Rkpu Gene of Sinorhizobium Fredii HH103 Is Required for Bacterial K
    Microbiology (2010), 156, 3398–3411 DOI 10.1099/mic.0.042499-0 The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea A´ ngeles Hidalgo,1 Isabel Margaret,1 Juan C. Crespo-Rivas,1 Maribel Parada,13 Piedad del Socorro Murdoch,2 Abigail Lo´pez,1 Ana M. Buendı´a-Claverı´a,1 Javier Moreno,3 Marta Albareda,4 Antonio M. Gil-Serrano,5 Miguel A. Rodrı´guez-Carvajal,5 Jose M. Palacios,4 Jose´ E. Ruiz-Sainz1 and Jose´ M. Vinardell1 Correspondence 1Departamento de Microbiologı´a, Facultad de Biologı´a, Universidad de Sevilla, Av. Reina Mercedes 6. Jose´ M. Vinardell 41012-Sevilla, Spain [email protected] 2Departamento de Bioquı´mica Vegetal y Biologı´a Molecular, Facultad de Biologı´a, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain 3Departamento de Biologı´a Celular, Facultad de Biologı´a, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain 4Departamento de Biotecnologı´a, Escuela Te´cnica Superior de Ingenieros Agro´nomos, and Centro de Biotecnologı´a y Geno´mica de Plantas (CBGP), Universidad Polite´cnica de Madrid, Campus de Montegancedo, Carretera M40, Km. 37.7, 28223 Pozuelo de Alarco´n, Madrid, Spain 5Departamento de Quı´mica Orga´nica, Facultad de Quı´mica, Universidad de Sevilla, Apdo. 553. 41071-Sevilla, Spain In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied.
    [Show full text]
  • The Effect of FITA Mutations on the Symbiotic Properties of Sinorhizobium Fredii Varies in a Chromosomal-Background-Dependent Manner
    Arch Microbiol (2004) 181 : 144–154 144 DOI 10.1007/s00203-003-0635-3 ORIGINAL PAPER José María Vinardell · Francisco Javier López-Baena · Angeles Hidalgo · Francisco Javier Ollero · Ramón Bellogín · María del Rosario Espuny · Francisco Temprano · Francisco Romero · Hari B. Krishnan · Steven G. Pueppke · José Enrique Ruiz-Sainz The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner Received: 30 June 2003 / Revised: 07 November 2003 / Accepted: 24 November 2003 / Published online: 20 December 2003 © Springer-Verlag 2003 Abstract nodD1 of Sinorhizobium fredii HH103, which of S. fredii USDA192 and USDA193 (USDA192C and is identical to that of S. fredii USDA257 and USDA191, re- USDA193C, respectively). Soybean responses to inocula- pressed its own expression. Spontaneous flavonoid-inde- tion with S. fredii USDA192C and USDA193C transcon- pendent transcription activation (FITA) mutants of S. fredii jugants carrying pSym251 and pSymHH103M were not HH103 M (=HH103 RifR pSym::Tn5-Mob) showing con- significantly different, whereas more nodules were formed stitutive expression of nod genes were isolated. No differ- after inoculation with transconjugants carrying pSym255. ences were found among soybean cultivar Williams plants Only transconjugant USDA192C(pSym255) produced a inoculated with FITA mutants SVQ250 or SVQ253 or with significant increase in soybean dry weight. the parental strain HH103M. Soybean plants inoculated with mutant SVQ255 formed more nodules, and those in- Keywords Sinorhizobium fredii · nodD · FITA oculated with mutant SVQ251 had symptoms of nitrogen mutations · Soybean · Nodulation starvation. Sequence analyses showed that all of the FITA mutants carried a point mutation in their nodD1 coding re- gion.
    [Show full text]
  • 1 Horizontal Gene Transfer of a Unique Nif Island Drives Convergent Evolution of Free-Living
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429501; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Horizontal gene transfer of a unique nif island drives convergent evolution of free-living 2 N2-fixing Bradyrhizobium 3 4 Jinjin Tao^, Sishuo Wang^, Tianhua Liao, Haiwei Luo* 5 6 Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of 7 Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 8 9 ^These authors contribute equally to this work. 10 11 *Corresponding author: 12 Haiwei Luo 13 School of Life Sciences, The Chinese University of Hong Kong 14 Shatin, Hong Kong SAR 15 Phone: (+852) 39436121 16 E-mail: [email protected] 17 18 Running Title: Free-living Bradyrhizobium evolution 19 Keywords: free-living Bradyrhizobium, nitrogen fixation, lifestyle, HGT 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429501; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Summary 21 The alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that 22 nodulate legumes, supported by the nif and nod gene clusters.
    [Show full text]
  • Sinorhizobium Fredii HH103 Rira Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean
    International Journal of Molecular Sciences Article Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean Juan Carlos Crespo-Rivas 1,†, Pilar Navarro-Gómez 1,†, Cynthia Alias-Villegas 1,†, Jie Shi 2, Tao Zhen 3, Yanbo Niu 3, Virginia Cuéllar 4, Javier Moreno 5 , Teresa Cubo 1 , José María Vinardell 1 , José Enrique Ruiz-Sainz 1, Sebastián Acosta-Jurado 1,* and María José Soto 4,* 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain; [email protected] (J.C.C.-R.); [email protected] (P.N.-G.); [email protected] (C.A.-V.); [email protected] (T.C.); [email protected] (J.M.V.); [email protected] (J.E.R.-S.) 2 Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163000, China; [email protected] 3 Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China; [email protected] (T.Z.); [email protected] (Y.N.) 4 Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain; [email protected] 5 Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain; [email protected] * Correspondence: [email protected] (S.A.-J.); [email protected] (M.J.S.); Tel.: +34-954-557121 (S.A.-J.); +34-958-181600 (M.J.S.) † These authors contributed equally to this work. Received: 14 January 2019; Accepted: 9 February 2019; Published: 12 February 2019 Abstract: Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA.
    [Show full text]
  • Bradyrhizobium Ivorense Sp. Nov. As a Potential Local Bioinoculant for Cajanus Cajan Cultures in Côte D’Ivoire
    TAXONOMIC DESCRIPTION Fossou et al., Int. J. Syst. Evol. Microbiol. 2020;70:1421–1430 DOI 10.1099/ijsem.0.003931 Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire Romain K. Fossou1,2, Joël F. Pothier3, Adolphe Zézé2 and Xavier Perret1,* Abstract For many smallholder farmers of Sub- Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1B T, CI- 14A, CI- 19D and CI- 41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI- 1BT sharing the highest sequence similarity (95.2 %) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86 % ANIb and 89 % ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI- 1BT, CI- 14A, CI- 19D and CI- 41S shared similar phenotypic and metabolic properties, growth of CI- 41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI- 1BT and CI- 41S scoring on the C. cajan ‘Light- Brown’ landrace as the most and least proficient bacteria, respectively. Also proficient on Vigna radiata (mung bean), Vigna unguiculata (cowpea, niébé) and additional C.
    [Show full text]
  • The Sinorhizobium (Ensifer) Fredii HH103 Nodulation Outer Protein
    PLANT MICROBIOLOGY crossm Downloaded from The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants http://aem.asm.org/ Irene Jiménez-Guerrero,a Francisco Pérez-Montaño,a Carlos Medina,b Francisco Javier Ollero,a Francisco Javier López-Baenaa Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spaina; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Seville, Spainb ABSTRACT The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver Received 7 October 2016 Accepted 13 December 2016 proteins, termed effectors, to the interior of the host cells. These effectors suppress Accepted manuscript posted online 16 on November 4, 2020 at USE/BCTA.GEN UNIVERSITARIA host defenses and interfere with signal transduction pathways to promote infection. December 2016 Some rhizobial strains possess a functional T3SS, which is involved in the suppres- Citation Jiménez-Guerrero I, Pérez-Montaño F, sion of host defense responses, host range determination, and symbiotic efficiency. Medina C, Ollero FJ, López-Baena FJ. 2017. The Sinorhizobium (Ensifer) fredii HH103 nodulation The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium outer protein NopI is a determinant for efficient fredii HH103 identified eight genes that code for putative T3SS effectors. Three of nodulation of soybean and cowpea plants. these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we dem- Appl Environ Microbiol 83:e02770-16. https:// doi.org/10.1128/AEM.02770-16.
    [Show full text]
  • Functional Genomics Approaches to Studying Symbioses Between Legumes and Nitrogen-Fixing Rhizobia
    Review Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia Martina Lardi and Gabriella Pessi * ID Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-635-2904 Received: 9 April 2018; Accepted: 16 May 2018; Published: 18 May 2018 Abstract: Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen- deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia). Keywords: alpha-rhizobia; beta-rhizobia; symbiosis; transcriptomics; proteomics; metabolomics; flavonoids; root exudates; root nodule 1. Introduction Nitrogen fixation in agricultural systems is of enormous agricultural importance, as it increases in situ the fixed nitrogen content of soil and can replace expensive and harmful chemical fertilizers [1]. For over a hundred years, all of the described symbiotic relationships between legumes and nitrogen-fixing rhizobia were confined to the alpha-proteobacteria (alpha-rhizobia) group, which includes Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium [2].
    [Show full text]
  • Stem-Nodulating Nitrogen-Fixing Bacterium Isolated from Sesbania Rostrata
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1988, p. 89-98 Vol. 38, No. 1 0020-7713/88/010089-10$02 .OO/O Copyright 0 1988, International Union of Microbiological Societies Characterization of Azorhizobium caulinodans gen. nov. sp. nov., a Stem-Nodulating Nitrogen-Fixing Bacterium Isolated from Sesbania rostrata B. DREYFUS,1*2*J. L. GARCIA,3 AND M. GILLIS4 Laboratoire de Biologie des Sols, O.R.S.T.O.M.,B.P. 1386, Dakar, Senegal’; Laboratorium voor Genetica, Rijksuniversiteit, Ledeganckstraat 35, B-9000 Gent, Belgium2; Laboratoire de Microbiologie, O.R.S.T.O.M., Universite‘ de Provence, 13331 Marseille Cedex, France3; and Laboratorium voor Microbiologie en Microbiele Genetica, Ruksuniversiteit, B-9000 Gent, Belgium4 Twenty stem- and root-nodulating bacterial strains isolated from stem nodules of Sesbania rostrata were compared by numerical analysis of 221 phenotypic features with nine strains which effectively nodulate only the roots of this plant and with representative strains from the genera Rhizobium and Bradyrhizobium. Representative organisms from the different clusters were investigated further, together with possibly related organisms, by performing comparative gel electrophoresis of whole-cell proteins and by performing deoxyri- bonucleic acid (DNA)-DNA and DNA-ribosomal ribonucleic acid (rRNA) hybridizations. 3H-labeledrRNA was prepared from Sesbunia stem- and root-nodulating bacterial strain ORS 571T (T = type strain); [14C]rRNA from Bradyrhizobium japonicum NZP 5549T was also used. The following conclusions were drawn: (i) the Sesbania root-nodulating bacterial strains are genuine rhizobia; (ii) the Sesbania stem- and root-nodulating strains are quite different from Rhizobium and Bradyrhizobium, and thus they constitute a separate rRNA subbranch on the Rhodopseudomonas palusfris rRNA branch in rRNA superfamily IV; and (iii) the closest relative of these organisms is Xanthobacfer, but they are phenotypically and genotypically sufficiently different from the latter genus to deserve a separate generic rank.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]