Genome-Wide Binding of the Orphan Nuclear Receptor TR4 Suggests Its General Role in Fundamental Biological Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comprehensive Study of Nuclear Receptor DNA Binding Provides a Revised Framework for Understanding Receptor Specificity
ARTICLE https://doi.org/10.1038/s41467-019-10264-3 OPEN Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity Ashley Penvose 1,2,4, Jessica L. Keenan 2,3,4, David Bray2,3, Vijendra Ramlall 1,2 & Trevor Siggers 1,2,3 The type II nuclear receptors (NRs) function as heterodimeric transcription factors with the retinoid X receptor (RXR) to regulate diverse biological processes in response to endogenous 1234567890():,; ligands and therapeutic drugs. DNA-binding specificity has been proposed as a primary mechanism for NR gene regulatory specificity. Here we use protein-binding microarrays (PBMs) to comprehensively analyze the DNA binding of 12 NR:RXRα dimers. We find more promiscuous NR-DNA binding than has been reported, challenging the view that NR binding specificity is defined by half-site spacing. We show that NRs bind DNA using two distinct modes, explaining widespread NR binding to half-sites in vivo. Finally, we show that the current models of NR specificity better reflect binding-site activity rather than binding-site affinity. Our rich dataset and revised NR binding models provide a framework for under- standing NR regulatory specificity and will facilitate more accurate analyses of genomic datasets. 1 Department of Biology, Boston University, Boston, MA 02215, USA. 2 Biological Design Center, Boston University, Boston, MA 02215, USA. 3 Bioinformatics Program, Boston University, Boston, MA 02215, USA. 4These authors contributed equally: Ashley Penvose, Jessica L. Keenan. Correspondence -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Bidirectional Cooperation Between Ubtf1 and SL1 Determines RNA Polymerase I Promoter
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447350; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Bidirectional cooperation between Ubtf1 and SL1 determines RNA Polymerase I promoter 2 recognition in cell and is negatively affected in the UBTF-E210K neuroregression syndrome. 3 4 Michel G. Tremblay1, Dany S. Sibai1,2, Melissa Valère1,2, Jean-Clément Mars1,2,+, Frédéric Lessard1, 5 Roderick T. Hori3, Mohammad M. Khan4, Victor Y. Stefanovsky1, Mark S. Ledoux5 and Tom Moss1,2*. 6 7 1Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer 8 Division of the Quebec University Hospital Research Centre, Québec, Canada. 2Department of 9 Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, 10 Québec, Canada. 3Departments of Microbiology, Immunology and Biochemistry and 4Departments of 11 Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, 12 TN, USA. 5Department of Psychology, University of Memphis, Memphis TN and Veracity 13 Neuroscience LLC, Memphis, TN 14 15 +Present address, IRIC, Université de Montréal, Montréal, Québec, Canada 16 17 Correspondence should be addressed to; 18 Tom Moss, PhD, 19 Edifice St Patrick, 9 rue McMahon, Québec, QC, G1R 3S3, Canada. 20 E-mail. [email protected] 21 Tel. 1 418 691 5281 22 FAX 1 418 691 5439 23 24 Short title: Ubtf1-SL1 cooperation and the Ubtf-E210K syndrome. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
DR1 Antibody A
Revision 1 C 0 2 - t DR1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 7 4 Web: [email protected] 4 www.cellsignal.com 6 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP H M R Mk Endogenous 19 Rabbit Q01658 1810 Product Usage Information 7. Yeung, K.C. et al. (1994) Genes Dev 8, 2097-109. 8. Kim, T.K. et al. (1995) J Biol Chem 270, 10976-81. Application Dilution 9. Kamada, K. et al. (2001) Cell 106, 71-81. Western Blotting 1:1000 Immunoprecipitation 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity DR1 Antibody recognizes endogenous levels of total DR1 protein. Species Reactivity: Human, Mouse, Rat, Monkey Species predicted to react based on 100% sequence homology: D. melanogaster, Zebrafish, Dog, Pig Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly112 of human DR1 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background Down-regulator of transcription 1 (DR1), also known as negative cofactor 2-β (NC2-β), forms a heterodimer with DR1 associated protein 1 (DRAP1)/NC2-α and acts as a negative regulator of RNA polymerase II and III (RNAPII and III) transcription (1-5). -
Construction of Subtype‑Specific Prognostic Gene Signatures for Early‑Stage Non‑Small Cell Lung Cancer Using Meta Feature Selection Methods
2366 ONCOLOGY LETTERS 18: 2366-2375, 2019 Construction of subtype‑specific prognostic gene signatures for early‑stage non‑small cell lung cancer using meta feature selection methods CHUNSHUI LIU1*, LINLIN WANG2*, TIANJIAO WANG3 and SUYAN TIAN4 1Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021; 2Department of Ultrasound, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033; 3The State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Wild Economic Animal and Plant Science, Chinese Academy Agricultural Science, Changchun, Jilin 130133; 4Division of Clinical Research, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China Received September 17, 2018; Accepted June 5, 2019 DOI: 10.3892/ol.2019.10563 Abstract. Feature selection in the framework of meta-analyses surgical resection of the tumors (3). Postoperative adjuvant (meta feature selection), combines meta-analysis with a feature chemotherapy may improve the survival rate of patients selection process and thus allows meta-analysis feature selec- with a poor prognosis. However, it is not recommended for tion across multiple datasets. In the present study, a meta patients with stage IA NSCLC, whose five‑year survival rate feature selection procedure that fitted a multiple Cox regres- is approximately 70% (2). Therefore, using biomarkers to sion model to estimate the effect size of a gene in individual identify patients with NSCLC who may benefit from adjuvant studies and to identify the overall effect of the gene using a chemotherapy is of clinical importance. meta-analysis model was proposed. The method was used to A biomarker is a measurable indicator of a biological identify prognostic gene signatures for lung adenocarcinoma state or condition (4). -
Chromosome Abnormalities in Two Patients with Features of Autosomal Dominant Robinow Syndrome
ß 2007 Wiley-Liss, Inc. American Journal of Medical Genetics Part A 143A:1790–1795 (2007) Research Letter Chromosome Abnormalities in Two Patients With Features of Autosomal Dominant Robinow Syndrome Juliana F. Mazzeu,1 Ana Cristina Krepischi-Santos,1 Carla Rosenberg,1 Karoly Szuhai,2 Jeroen Knijnenburg,2 Janneke M.M. Weiss,3 Irina Kerkis,1 Zan Mustacchi,4 Guilherme Colin,5 Roˆmulo Mombach,6 Rita de Ca´ssia M. Pavanello,1 Paulo A. Otto,1 and Angela M. Vianna-Morgante1* 1Centro de Estudos do Genoma Humano, Departamento de Gene´tica e Biologia Evolutiva, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil 2Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands 3Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands 4Hospital Infantil Darcy Vargas, Sa˜o Paulo, Brazil 5Departamento de Gene´tica Me´dica, Univille, Joinville, Brazil 6Centrinho Prefeito Luiz Gomes, Secretaria Municipal de Sau´de, Joinville, Brazil Received 13 April 2006; Accepted 13 December 2006 How to cite this article: Mazzeu JF, Krepischi-Santos AC, Rosenberg C, Szuhai K, Knijnenburg J, Weiss JMM, Kerkis I, Mustacchi Z, Colin G, Mombach R, Pavanello RM, Otto PA, Vianna-Morgante AM. 2007. Chromosome abnormalities in two patients with features of autosomal dominant Robinow syndrome. Am J Med Genet Part A 143A:1790–1795. To the Editor: Patient 1 Robinow syndrome [OMIM 180700] is characteriz- At age 3 4/12 years the girl was diagnosed as ed by fetal facies, mesomelic dwarfism, and hypo- affected by DRS (Fig. 1A). Detailed clinical examina- plastic genitalia. -
Anti-DR1 Antibody (ARG58552)
Product datasheet [email protected] ARG58552 Package: 50 μl anti-DR1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes DR1 Tested Reactivity Ms Predict Reactivity Hu, Rat, Cow, Dog, Gpig, Hrs, Pig, Rb, Zfsh Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name DR1 Antigen Species Human Immunogen Synthetic peptide of Human DR1. (within the following sequence: KKTISPEHVIQALESLGFGSYISEVKEVLQECKTVALKRRKASSRLENLG) Conjugation Un-conjugated Alternate Names Dr1l; NC2; TATA-binding protein-associated phosphoprotein; Protein Dr1; NC2-beta; 1700121L09Rik; NC2beta; Down-regulator of transcription 1; Negative cofactor 2-beta; NC2B; NCB2 Application Instructions Predict Reactivity Note Predicted homology based on immunogen sequence: Cow: 100%; Dog: 100%; Guinea Pig: 93%; Horse: 100%; Human: 100%; Pig: 100%; Rabbit: 100%; Rat: 100%; Zebrafish: 100% Application table Application Dilution WB 1 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Mouse kidney Calculated Mw 19 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS, 0.09% (w/v) Sodium azide and 2% Sucrose. Preservative 0.09% (w/v) Sodium azide Stabilizer 2% Sucrose Concentration Batch dependent: 0.5 - 1 mg/ml www.arigobio.com 1/2 Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Androgen Signaling in Sertoli Cells Lavinia Vija
Androgen Signaling in Sertoli Cells Lavinia Vija To cite this version: Lavinia Vija. Androgen Signaling in Sertoli Cells. Human health and pathology. Université Paris Sud - Paris XI, 2014. English. NNT : 2014PA11T031. tel-01079444 HAL Id: tel-01079444 https://tel.archives-ouvertes.fr/tel-01079444 Submitted on 2 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : Signalisation et Réseaux Intégratifs en Biologie Laboratoire Récepteurs Stéroïdiens, Physiopathologie Endocrinienne et Métabolique Reproduction et Développement THÈSE DE DOCTORAT Soutenue le 09/07/2014 par Lavinia Magdalena VIJA SIGNALISATION ANDROGÉNIQUE DANS LES CELLULES DE SERTOLI Directeur de thèse : Jacques YOUNG Professeur (Université Paris Sud) Composition du jury : Président du jury : Michael SCHUMACHER DR1 (Université Paris Sud) Rapporteurs : Serge LUMBROSO Professeur (Université Montpellier I) Mohamed BENAHMED DR1 (INSERM U1065, Université Nice)) Examinateurs : Nathalie CHABBERT-BUFFET Professeur (Université Pierre et Marie Curie) Gabriel -
Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2020/01/24/dmd.119.089102.DC1 1521-009X/48/4/272–287$35.00 https://doi.org/10.1124/dmd.119.089102 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 48:272–287, April 2020 Copyright ª 2020 by The American Society for Pharmacology and Experimental Therapeutics Minireview Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism s Andrew J. Annalora, Craig B. Marcus, and Patrick L. Iversen Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.) Received August 16, 2019; accepted December 31, 2019 ABSTRACT Downloaded from The human genome encodes 48 nuclear receptor (NR) genes, whose Exon inclusion options are differentially distributed across NR translated products transform chemical signals from endo- subfamilies, suggesting group-specific conservation of resilient func- xenobiotics into pleotropic RNA transcriptional profiles that refine tionalities. A deeper understanding of this transcriptional plasticity drug metabolism. This review describes the remarkable diversifica- expands our understanding of how chemical signals are refined and tion of the 48 human NR genes, which are potentially processed into mediated by NR genes. This expanded view of the NR transcriptome dmd.aspetjournals.org over 1000 distinct mRNA transcripts by alternative splicing (AS). The informs new models of chemical toxicity, disease diagnostics, and average human NR expresses ∼21 transcripts per gene and is precision-based approaches to personalized medicine. -
Mapping of the Chromosomal Amplification 1P21-22 in Bladder Cancer Mauro Scaravilli1, Paola Asero1, Teuvo LJ Tammela1,2, Tapio Visakorpi1 and Outi R Saramäki1*
Scaravilli et al. BMC Research Notes 2014, 7:547 http://www.biomedcentral.com/1756-0500/7/547 RESEARCH ARTICLE Open Access Mapping of the chromosomal amplification 1p21-22 in bladder cancer Mauro Scaravilli1, Paola Asero1, Teuvo LJ Tammela1,2, Tapio Visakorpi1 and Outi R Saramäki1* Abstract Background: The aim of the study was to characterize a recurrent amplification at chromosomal region 1p21-22 in bladder cancer. Methods: ArrayCGH (aCGH) was performed to identify DNA copy number variations in 7 clinical samples and 6 bladder cancer cell lines. FISH was used to map the amplicon at 1p21-22 in the cell lines. Gene expression microarrays and qRT-PCR were used to study the expression of putative target genes in the region. Results: aCGH identified an amplification at 1p21-22 in 10/13 (77%) samples. The minimal region of the amplification was mapped to a region of about 1 Mb in size, containing a total of 11 known genes. The highest amplification was found in SCaBER squamous cell carcinoma cell line. Four genes, TMED5, DR1, RPL5 and EVI5,showedsignificant overexpression in the SCaBER cell line compared to all the other samples tested. Oncomine database analysis revealed upregulation of DR1 in superficial and infiltrating bladder cancer samples, compared to normal bladder. Conclusions: In conclusions, we have identified and mapped chromosomal amplification at 1p21-22 in bladder cancer as well as studied the expression of the genes in the region. DR1 was found to be significantly overexpressed in the SCaBER, which is a model of squamous cell carcinoma. However, the overexpression was found also in a published clinical sample cohort of superficial and infiltrating bladder cancers.