On the Aggregatability of Multicast Forwarding State David G

Total Page:16

File Type:pdf, Size:1020Kb

On the Aggregatability of Multicast Forwarding State David G INFOCOM 2000 1 On the Aggregatability of Multicast Forwarding State David G. Thaler Mark Handley Microsoft AT&T Center for Internet Research [email protected] [email protected] Abstract— It has been claimed that multicast state can- do not concern ourselves with state the router may need to not be aggregated. In this paper, we will debunk this myth keep in order to maintain these forwarding tables, nor with and present a simple technique that can be used to aggre- routing protocols needed to maintain them. The memory gate multicast forwarding state. In particular, we present to hold such ancillary state does not need to be either fast an interface-centric data structure model which allows ag- or directly located on interface processors, so it is not a sig- gregation of ranges of multicast addresses in the forwarding table. nificant limitation on router performance. Similarly, join Understanding the limits of possible aggregation is criti- messages involved in multicast routing need not be aggre- cal to our knowledge of how IP multicast will scale as it be- gated1 so long as their rate is scaled back to prevent the comes widely deployed. We show through analysis and sim- routing traffic dominating, and the multicast routing pro- ulation that some aggregation is possible, even under purely tocols use appropriate scalable timers[7]. random address allocation and purely random group mem- With respect to multicast forwarding state, we will ar- bership distribution. We further show how other methods gue: of allocation can significantly improve the ability to aggre- Shared trees used by second and third generation multi- gate, and how non-random distributions of membership can affect aggregation both positively and negatively. cast routing protocols (such as CBT[2], BGMP[4], and to some extent PIM-SM[1]) mean that the number and loca- tion of sources does not affect aggregatability. I. INTRODUCTION If we consider forwarding state on a per-interface ba- With the advent of second and third generation multicast sis, then aggregation can be performed independent of the routing protocols[1], [2], [3], [4] and widespread host im- number of interfaces on a router. plementations, IP Multicast is finally starting to be widely For incoming interface state on point-to-point links, and deployed in the Internet. There are still relatively few mul- outgoing interface state on all links, we only need to con- ticast applications in use, but it is expected that this will sider the groups traversing a particular router and can com- start to change rapidly as application writers start to be pletely aggregate all groups that do not traverse that router. able to assume that many hosts will have access to multi- For bidirectional trees such as those built by CBT and cast. BGMP, no incoming interface state is required at all on To date, most work on multicast scalability has centered point-to-point links between routers. on the applications and on multicast routing. However, in Some aggregation of both incoming and outgoing for- the long run, the biggest issue facing multicast deployment warding state is possible, even with completely random is likely to be the scalability of multicast forwarding state multicast address allocation and random group member- as the number of multicast groups increases. It has been ship. claimed [5], [6] that multicast forwarding state cannot be Allocating multicast addresses in a hierarchical fashion aggregated, but this is incorrect. In this paper we examine can increase the ability to aggregate forwarding state. this issue to derive both limits and expectations for our The clustering of groups by locality (well known for ability to aggregate multicast forwarding state in Internet telephony traffic) can increase the aggregatability of for- routers. warding state when hierarchical multicast address alloca- It is important to understand that our results apply to tion is also performed. the forwarding tables in a router that are used to forward We will only consider perfect forwarding state aggrega- packets. Since a lookup among O(N) state can be done in tion in this paper; that is aggregation that does not change log(N) time, reducing the state requirement is the most sig- the distribution of multicast traffic. Imperfect or leaky ag- ¡ nificant benefit of aggregation, although the speed of mul- It may be possible to do some aggregation of these messages, but ticast packet forwarding may also benefit as a result. We even if this is not done, it will not normally cause problems. INFOCOM 2000 2 gregation is also possible, in which some low rate groups we desire to explore the scalability of multicast state, we are allowed to traverse links that would not normally need will hereafter concern ourselves primarily with protocols to carry the traffic. Leaky aggregation is an extension of which use group-shared trees and hence - will be synony- perfect aggregation that results in a further compression of mous with the group address. In other words, using group- the forwarding state at the expense of using additional link shared trees makes the number and location of sources ir- bandwidth. We leave the study of leaky aggregation for relevant, since per-source state is not kept. future work. If the packet passes the input filter, the forwarder must We also do not consider methods of reducing forward- then determine which of its other interfaces are consid- ing state that rely on encapsulation, although these meth- ered “outgoing” interfaces for the packet, and send the ods also show significant promise. In such mechanisms packet out of each outgoing interface. This operation can (e.g., Dynamic Tunnel Multicast [8]), sparse groups may be logically viewed as an output packet filter per interface %& ¡¤£/ # "' ( - be unicast encapsulated across sections of the backbone ( . ). A packet received by the router is where no multicast fanout occurs, relieving the interven- sent out of a given interface if it passes both the input filter ing routers of the need to hold forwarding state. on the incoming interface, as well as the output filter on The remainder of this paper is organized as follows: the outgoing interface. Section II gives some background on multicast forward- Some misconceptions of state requirements are based on ing, and section III presents an interface-centric state the popular Unix kernel implementation. This implemen- model. Section IV provides an analysis of aggregatability tation keeps multicast forwarding state per (group,source) under independence assumptions, and section V presents pair, consisting of an incoming interface, and an outgo- simulations of aggregatability after removing these as- ing interface list2. When a packet arrives, a matching sumptions. Finally, section VI discusses related work, and (group,source) entry is found or created, the incoming in- section VII covers conclusions and future work. terface check is done to see whether to drop it on in- put, and if not dropped, then the packet is sent out of II. BACKGROUND each interface in the outgoing interface list. Since this We start by describing the actions that must be per- implementation is common, it is easy to incorrectly as- formed by a multicast forwarder. First, a packet arrives on sume that this is the only possible implementation model. some interface, and the forwarder must decide whether to In this model, the input filter is implemented by com- accept or drop the packet. For example, the decision might paring the interface on which the packet arrived with be based on whether it arrived on the interface towards the incoming interface stored in the (group,source) en- ¢¡¤£¥§© !" © the source (known as a “Reverse Path Forwarding (RPF) try. Hence, is implemented as “ 1020 ¥§ © ¤! +© check”), such as is done when DVMRP [9] or PIM-SM is ¦43 ”. The output filter is implemented by running on the arrival interface. It might instead be based testing to see whether a given interface is in the outgoing on some other criteria (as in the case of MOSPF [10] or interface list stored with the (group,source) entry. Hence, ¡¤£4¥§ © ¤! +© :9;¥§© !" © 65 ¦387 CBT). In general, this decision can be viewed as applying . is “ ”. ¢¡¤£¦¥¨§ © © an input packet filter per interface . In the next section, we present an alternative implemen- The acceptance decision can then be viewed independently tation model which illustrates more clearly how forward- of the multicast protocol in use on the interface; the pro- ing state aggregation may be done without loss of infor- ¢¡¤£¤¥§© !" © $# tocol merely supplies the filter mation. %& "' ( . ¡ In general, a filter is an implementation of a function III. IMPLEMENTATION MODEL %& "' ( ¡)*¥§© !" +© ,# While the Unix kernel has a (group,source)-centric state implementation model, we describe in this section an " © We now concatenate §© and into one double- interface-centric implementation model. length address - , and the filter becomes: Let each interface be associated with its own copy of an %& input filter and an output filter. Each filter is again such that ¡) # "' ( - it yields a pass-or-fail answer for a given group and source. Each interface’s state is independent of the state for all This representation will allow our results to apply both to other interfaces. When a packet arrives on an interface, it architectures which require (group,source) state, as well < as those (like CBT) which only require group state and The list is stored in the Unix kernel as a bitmap of 32 interfaces. To for whom - would simply be the group address. Since efficiently support an arbitrary number, an actual list would be needed. INFOCOM 2000 3 must first pass that interface’s input filter. If it passes, then after assume that a router has state for a given address only the output filter of every other interface is independently if it has downstream receivers, and therefore is on the dis- checked to see whether the packet should be sent out of tribution tree3.
Recommended publications
  • Rule-Based Forwarding (RBF): Improving the Internet's Flexibility
    Rule-based Forwarding (RBF): improving the Internet’s flexibility and security Lucian Popa∗ Ion Stoica∗ Sylvia Ratnasamy† 1Introduction 4. rules allow flexible forwarding: rules can select ar- From active networks [33] to the more recent efforts on bitrary forwarding paths and/or invoke functionality GENI [5], a long-held goal of Internet research has been made available by on-path routers; both path and to arrive at a network architecture that is flexible.Theal- function selection can be conditioned on (dynamic) lure of greater flexibility is that it would allow us to more network and packet state. easily incorporate new ideas into the Internet’s infras- The first two properties enable security by ensuring tructure, whether these ideas aim to improve the existing the network will not forward a packet unless it has network (e.g., improving performance [36, 23, 30], relia- been explicitly cleared by its recipients while the third bility [12, 13], security [38, 14, 25], manageability [11], property ensures that rules cannot be (mis)used to attack etc.) or to extend it with altogether new services and the network itself. As we shall show, our final property business models (e.g., multicast, differentiated services, enables flexibility by allowing a user to give the network IPv6, virtualized networks). fine-grained instructions on how to forward his packets. An unfortunate stumbling block in these efforts has In the remainder of this paper, we present RBF, a been that flexibility is fundamentally at odds with forwarding architecture that meets the above properties. another long-held goal: that of devising a secure network architecture.
    [Show full text]
  • Routing and Packet Forwarding
    Routing and Packet Forwarding Tina Schmidt September 2008 Contents 1 Introduction 1 1.1 The Different Layers of the Internet . .2 2 IPv4 3 3 Routing and Packet Forwarding 5 3.1 The Shortest Path Problem . .6 3.2 Dijkstras Algorithm . .7 3.3 Practical Realizations of Routing Algorithms . .8 4 Autonomous Systems 10 4.1 Intra-AS-Routing . 10 4.2 Inter-AS-Routing . 11 5 Other Services of IP 11 A Dijkstra's Algorithm 13 1 Introduction The history of the internet and Peer-to-Peer networks starts in the 60s with the ARPANET (Advanced Research Project Agency Network). Back then, when computers were expen- sive and linked to several terminals, the aim of ARPANET was to establish a continuous network inbetween mainframe computers in the U.S. Starting with only three computers in 1969, mainly universities were involved in establishing the ARPANET. The ARPANET became a network inbetween networks of mainframe computes and therefore was called inter-net. Today it became the internet which links millions of computers. For a long time nobody knew what use such a Wide Area Netwok (WAN) could have for the pop- ulation. The internet was used for e-mails, newsgroups, exchange of scientific data and some special software, all in all services that were barely known in public. The spread of 1 Application Layer Peer-to-Peer-networks, e.g. Telnet = Telecommunication Network FTP = File Transfer Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol Transport Layer TCP = Transmission Control Protocol UDP = User Datagram Protocol Internet Layer IP = Internet Protocol ICMP = Internet Control Message Protocol IGMP = Internet Group Management Protocol Host-to-Network Layer device drivers or Link Layer (e.g.
    [Show full text]
  • Introduction to IP Multicast Routing
    Introduction to IP Multicast Routing by Chuck Semeria and Tom Maufer Abstract The first part of this paper describes the benefits of multicasting, the Multicast Backbone (MBONE), Class D addressing, and the operation of the Internet Group Management Protocol (IGMP). The second section explores a number of different algorithms that may potentially be employed by multicast routing protocols: - Flooding - Spanning Trees - Reverse Path Broadcasting (RPB) - Truncated Reverse Path Broadcasting (TRPB) - Reverse Path Multicasting (RPM) - Core-Based Trees The third part contains the main body of the paper. It describes how the previous algorithms are implemented in multicast routing protocols available today. - Distance Vector Multicast Routing Protocol (DVMRP) - Multicast OSPF (MOSPF) - Protocol-Independent Multicast (PIM) Introduction There are three fundamental types of IPv4 addresses: unicast, broadcast, and multicast. A unicast address is designed to transmit a packet to a single destination. A broadcast address is used to send a datagram to an entire subnetwork. A multicast address is designed to enable the delivery of datagrams to a set of hosts that have been configured as members of a multicast group in various scattered subnetworks. Multicasting is not connection oriented. A multicast datagram is delivered to destination group members with the same “best-effort” reliability as a standard unicast IP datagram. This means that a multicast datagram is not guaranteed to reach all members of the group, or arrive in the same order relative to the transmission of other packets. The only difference between a multicast IP packet and a unicast IP packet is the presence of a “group address” in the Destination Address field of the IP header.
    [Show full text]
  • Analysis and Improvement of Name-Based Packet Forwarding
    Analysis and Improvement of Name-based Packet Forwarding over Flat ID Network Architectures Antonio Rodrigues Peter Steenkiste Ana Aguiar [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Faculty of Engineering, Univ. of Porto Pittsburgh, PA, USA Pittsburgh, PA, USA Instituto de Telecomunicações Faculty of Engineering, Univ. of Porto Porto, Portugal Instituto de Telecomunicações Porto, Portugal ABSTRACT URLs to identify web objects. Name-based Information Centric One of ICN’s main challenges is attaining forwarding table scala- Networks (ICNs) such as NDN [8] promise to be a good fit for such bility when confronted with a huge content space. This is specially applications, for two reasons: (1) no need for external name lookup true in flat ID architectures, which do not naturally support route (e.g., DNS or GNS [18]) by using name-based forwarding at the aggregation for hierarchical names. Previous work has proposed network layer; and (2) reduced forwarding table sizes as a result improving scalability by aggregating content names in a fixed-size of the aggregation enabled by the hierarchical structure of names. Bloom Filters (BF). However, the negative impact of false positive In contrast, ICNs based on flat IDs (defined as fixed-size bit strings (FPs) matches on forwarding correctness and performance has not in this paper), e.g., DONA [12], PURSUIT [6], do not natively have been studied thoroughly. In this paper, we study the end-to-end net- these benefits. work performance of BF-based forwarding. We devise an analytical Recently, a forwarding scheme based on Bloom Filters (BFs) [13, model that accurately models BF-based forwarding and the flow of 14] has been proposed to enable aggregation of content descriptors BF-based packets over inter-domain topologies.
    [Show full text]
  • Unicast Reverse Path Forwarding Configuration Guide, Cisco IOS XE 17 (Cisco ASR 900 Series)
    Unicast Reverse Path Forwarding Configuration Guide, Cisco IOS XE 17 (Cisco ASR 900 Series) First Published: 2020-01-10 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • A Scalable and Flexible Packet Forwarding Method for Future Internet Networks
    Globecom 2014 - Next Generation Networking Symposium A Scalable and Flexible Packet Forwarding Method for Future Internet Networks Andrzej Beben, Piotr Wiśniewski Jordi Mongay Batalla George Xilouris Warsaw University of Technology National Institute of Telecommunications NCSR Demokritos Warsaw, Poland Warsaw, Poland Athens, Greece {abeben, p.wisniewski}tele.pw.edu.pl [email protected] [email protected] Abstract—The paper proposes a novel flexible packet in the data plane while improving SDN scalability thanks to the forwarding (FPF) method designed for Future Internet networks. reduction of state information in SDN forwarders [4]. It follows the source routing principle at an inter-domain level and applies the list of domain customized identifiers to forward II. ANALYSIS OF RELATED WORKS packets on the end-to-end path. The main features are capability to introduce flexible routing path selection, native support for One of the main FI challenges is to design effective routing multipath and multicast packet transfer, ability for exploitation and forwarding methods that overcame limitations of the IP of advanced in-network packet processing as, e.g., content protocol. The key objectives are providing more flexible recoding and caching. The performance and scalability of FPF routing path selection and enabling innovative in-network approach were evaluated by experimentation on developed packet processing, while assuring scalability of the solution. prototype as well as by scalability studies assuming Internet-scale Many of recently proposed approaches are based on the source network scenario. routing principle, which is not really a new idea. The original studies on exploiting source routing in IP networks are Future Internet, source routing, packet forwarding, SDN presented in [5].
    [Show full text]
  • REUNITE: a Recursive Unicast Approach to Multicast Ion Stoica, T
    REUNITE: A Recursive Unicast Approach to Multicast Ion Stoica, T. S. Eugene Ng, Hui Zhang Carnegie Mellon University, PA 15213 g fistoica, eugeneng, hzhang @cs.cmu.edu Abstract—We propose a new multicast protocol called REUNITE.The means to control who is allowed to send to the group – any host key idea of REUNITE is to use recursive unicast trees to implement mul- can send to any IP multicast address. While this is also the case ticast service. REUNITE does not use class D IP addresses. Instead, both group identification and data forwarding are based on unicast IP ad- for IP unicast, the waste of network resources, disruption or de- dresses. Compared with existing IP multicast protocols, REUNITE has sev- nial of service by unauthorized senders can be greatly amplified eral unique properties. First, only routers that are acting as multicast tree in the case of multicast due to the potentially large number of branching points for a group need to keep multicast forwarding state of the receivers in the group [6]. group. All other non-branching-point routers simply forward data packets by unicast routing. In addition, REUNITE can be incrementally deployed Several schemes (e.g., Simple Multicast [5] and EX- in the sense that it works even if only a subset of the routers implement the PRESS [6]) have been proposed recently to tackle the address protocol. Furthermore, REUNITE supports load balancing and graceful degradation such that when a router does not have resources (forwarding allocation and the sender access control problems. In these table entry, buffer space, processing power) to support additional multicast schemes, there is a special node (sender or core) associated with groups, the branching can be automatically migrated to other less loaded each group and the group is identified by a two-tuple <special routers.
    [Show full text]
  • Packet Forwarding with Source Verification
    Packet Forwarding with Source Verification Craig A. Shue Minaxi Gupta Matthew P. Davy Computer Science Department Computer Science Department Chief Network Engineer Indiana University Indiana University Indiana University [email protected] [email protected] [email protected] Abstract— Routers in the Internet do not perform any verifi- the face of routing asymmetries, a common occurrence in the cation of the source IP address contained in the packets, leading Internet and 2) they are primarily a goodwill gesture and fail to the possibility of IP spoofing. The lack of such verification to protect the implementing domains from being spoofed. The opens the door for a variety of vulnerabilities, including denial-of- service (DoS) and man-in-the-middle attacks. Currently proposed remaining techniques either require full deployment [22] or spoofing prevention approaches either focus on protecting only the presence of a key distribution infrastructure [23]. the target of such attacks and not the routing fabric used to With an expectation of prolonged partial deployment in forward spoofed packets, or fail under commonly occurring mind, we present a comprehensive solution to prevent IP situations like path asymmetry. With incremental deployability spoofing in the Internet. Our work is motivated by two main in mind, this paper presents two complementary hop-wise packet tagging approaches that equip the routers to drop spoofed goals. The first is to drop spoofed packets as close to their packets close to their point of origin. Our simulations show that origin as possible, while protecting all valid packets, even these approaches dramatically reduce the amount of spoofing in the face of routing asymmetries.
    [Show full text]
  • Multicast Forwarding Information Base Overview
    Multicast Forwarding Information Base Overview The Multicast Forwarding Information Base (MFIB) architecture provides modularity and separation between the multicast control plane (Protocol Independent Multicast [PIM] and Internet Group Management Protocol [IGMP]) and the multicast forwarding plane (MFIB). This architecture is used in Cisco IOS IPv6 multicast implementations. With the introduction of the IPv4 MFIB infrastructure, the Cisco IOS IPv4 multicast implementation has been enhanced, making the MFIB forwarding model the only forwarding engine used. • Information About the Multicast Forwarding Information Base, on page 1 • Where to Go Next, on page 8 • Additional References, on page 8 • Feature Information for the Multicast Forwarding Information Base, on page 9 Information About the Multicast Forwarding Information Base Benefits of the MFIB Architecture • Simplifies multicast operation through the separation of the control and forwarding planes. • Protects mission critical multicast applications by enabling new services such as multicast high availability (HA). • Eliminates the need for the route cache maintenance associated with demand caching schemes such as multicast fast switching. Types of Multicast Tables The following tables are used for general multicast routing and forwarding: • IGMP--Contains local IGMP memberships on the router. • Multicast Route (Mroute)--Contains (*, G) and (S, G) multicast states on the router (including PIM mode, incoming interfaces, and outgoing interfaces). • Multicast Source Discovery Protocol (MSDP)--Contains all Source-Active (SA) messages. • Multicast Routing Information Base (MRIB)--Contains (*, G), (S, G), and (*, G/m) MRIB entries. • MFIB--Contains (*, G), (S, G), and (*, G/m) MFIB entries. Multicast Forwarding Information Base Overview 1 Multicast Forwarding Information Base Overview Types of Multicast Entries Multicast tables can be further defined by the following contexts: • Global--Non-VRF context.
    [Show full text]
  • MPLS-Label-Assignment-Distribution
    Label Assignment and Distribution Overview This chapter describes the label assignment and distribution for unicast IP routing over MPLS. It contains the following topics: ■ Label Distribution Protocol (LDP) Role in Unicast IP Routing ■ Typical Label Distribution in Packet-mode MPLS ■ Convergence in Packet-mode MPLS ■ Typical Label Distribution over LC-ATM Interfaces and VC-Merge ■ MPLS Label Allocation, Distribution and Retention Modes ■ LDP Neighbor Discovery ■ Penultimate Hop Popping ■ Summary Objectives Upon completion of this chapter, you will be able to perform the following tasks: ■ Describe the need for LDP/TDP in MPLS network. ■ Describe the LDP/TDP neighbor discovery and session establishment procedures. ■ Explain the needs for different LDP/TDP label distribution modes. ■ Explain the difference between independent and ordered control. ■ Describe various LDP/TDP retention modes (conservative and liberal). ■ Explain the functions and benefits of penultimate-hop-popping. 2-2 Implementing Cisco MPLS (MPLS) v2.1 Copyright 2002, Cisco Systems, Inc. LDP Role in Unicast IP Routing Objectives Upon completion of this section, you will be able to perform the following tasks: ■ Explain the need for the Label Distribution Protocol (LDP) in unicast IP routing MPLS application. ■ Describe the LDP’s interaction with other Label Switch Router (LSR) components. Copyright 2002, Cisco Systems, Inc. Label Assignment and Distribution 2-3 MPLS Unicast IP Routing • MPLS introduces a new field that is used for forwarding decisions. • Although labels are locally significant, they have to be advertised to directly reachable peers. • One option would be to include this parameter into existing IP routing protocols. • The other option is to create a new protocol to exchange labels.
    [Show full text]
  • Chapter 3 Multi Segment Networks
    CHAPTER 3 MULTI SEGMENT NETWORKS Lab 3 takes a closer look at the forwarding capabilities of IP. In the associated lab exercises, you shall learn how to configure host routing tables and commercial routers. You will also be exposed to the setup of a PC as a router. This chapter has five sections. Each section covers material that you need to run the lab exercises. The first section gives an overview of IP forwarding and routing functions in hosts and routers. The second section is on router design principles and the evolution over time of the router architecture. Section three discusses the Cisco IOS environment, illustrating some of the more common configuration commands that you will use in the lab. In Section four we give an overview of the commands used in conjunction with PC router and Cisco router configuration. Section 5 presents the traceroute tool used for displaying path information between an IP source and an IP destination and we show how to use the kermit command to access a router. TABLE OF CONTENTS 1. IP FORWARDING AND ROUTING.......................................................................................2 1.1. TENETS OF IP FORWARDING.................................................................................................3 1.1.1. IP Forwarding At Hosts..................................................................................................4 1.1.2. IP Forwarding At Routers ..............................................................................................6 1.1.3. Difference between Routers
    [Show full text]
  • Introduction to Routing and Packet Forwarding
    Introduction to Routing and Packet Forwarding Routing Protocols and Concepts – Chapter 1 ITE PC v4.0 Chapter 1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives . Identify a router as a computer with an OS and hardware designed for the routing process. Demonstrate the ability to configure devices and apply addresses. Describe the structure of a routing table. Describe how a router determines a path and switches packets ITE PC v4.0 Chapter 1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 2 Router as a Computer . Describe the basic purpose of a router -Computers that specialize in sending packets over the data network. They are responsible for interconnecting networks by selecting the best path for a packet to travel and forwarding packets to their destination . Routers are the network center -Routers generally have 2 connections: -WAN connection (Connection to ISP) -LAN connection ITE PC v4.0 Chapter 1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 3 Router as a Computer . Data is sent in form of packets between 2 end devices . Routers are used to direct packet to its destination ITE PC v4.0 Chapter 1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 4 Router as a Computer . Routers examine a packet’s destination IP address and determine the best path by enlisting the aid of a routing table ITE PC v4.0 Chapter 1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 5 Router as a Computer . Router components and their functions” .CPU - Executes operating system instructions .Random access memory (RAM) - Contains the running copy of configuration file.
    [Show full text]