The Doppler Effect on Light Waves

Total Page:16

File Type:pdf, Size:1020Kb

The Doppler Effect on Light Waves International Journal of Pure and Applied Physics. ISSN 0973-1776 Volume 14, Number 2 (2018), pp. 73-85 © Research India Publications http://www.ripublication.com The Doppler Effect on Light Waves Waldemar Friesen Technical University Vienna, D-60528 Frankfurt, Im Mainfeld 7 / 5 OG 1, Germany. Abstract After the Doppler effect on sound, where the sound of a passing vehicle is getting lower and lower, I calculate that in light the change in frequency due to the Doppler effect would only be about 5/3 10-6 of the frequency. Because of this, one has to go to the wavelength and look at a distance of about 106 wavelengths. Because of the high velocities, the rectilinearly moved receiver is replaced by one rotating on one wheel, in fact two, if you include the opposite one rotating with the opposite direction of speed. Specifically, light from a light source falls on two parallel mirrors mounted opposite each other on a wheel. At a certain angle of rotation, the reflected light comes together in a telescope lens fixed outside in the room and the interference of the two rays is considered enlarged. If the propagation of the light depends on the receiver, the mirrors, and if the distance from the light source to the mirrors is much greater than that from the telescope, the first is predominant and there is interference in contrast to static mirrors. If the propagation of the light depends on the transmitter, the interference occurs with a very large distance from the mirrors to the telescope. Possible dimensions are 500 revolutions/min, wheel radius = 0.5m, distance mirror-wheel = 2.5m. The experiment is only conceived, not executed. I expect the light to propagate depends on the receiver, the mirrors. Subsequently, several, even more difficult, tests are given of how to decide that the propagation is rotated with the receiver as it rotates around the transmitter or when one of them is rotated on its own. Keywords. Doppler Effect, Light Propagation. 1. The Doppler Effect in General The aim of this essay is to devise an experiment that proves that there is no Doppler effect on electromagnetic waves, especially light waves. If a source generates a signal 74 Waldemar Friesen F(t) = (f1(t), f2(t), f3(t)) at the point x = (x1, x2, x3) of the three-dimensional space, it is conventionally assumed that it radially propagates in the vacuum in the three directions at the velocity of light c. Here, it does not matter that the amplitude decreases, for example with 1/r2, where r is the distance from the source, r = ||y - x||. Because the amplitude depends only on the distance, it is a one-dimensional problem and I denote with y further any arbitrary but fixed spatial direction and with f the field F in that direction. The signal f(t) is given at point x. At y I get a constant times f(t) with infinitely fast light propagation. Since I do not care about the amplitude and the signal is proportional to that at x, at y I also say f(t). Because of the finite propagation velocity c, I get the signal with the time difference T, which it takes to go through the distance y - x. y - x = cT, I get f(t - T) = f(t - (y - x)/c). Now I always fix the place of the source and choose it as the origin of the coordinate system, x = 0. I only look at different receivers y. The signal simplifies to f(t - y/c). As mentioned at the beginning, I consider the signal only in one direction y. In the Doppler effect, the frequency is changed by a velocity v in that direction. This requires a periodic function f. Therefore, I now go to f(t) = sin ωt as the simplest representative of such a function with the signal sin ω(t - y/c). The Doppler effect is based on a signal dependent only on the source, which propagates in space. It does not matter if it happens in a vacuum or in a medium. Now, as a receiver moves away from the source at velocity v, he sees a slowed propagation velocity of c - v as he moves away from the signal peaks and they follow him, moving towards the source he sees the velocity of c + v. With T = 1/μ I denote the oscillation period, ω = 2π/T, and with μ = ω/2π the frequency. The signal has traversed the path d = cT after T. For the same distance d, if one moves with v from the source d = (c - v)T-, corresponding to the angular frequency ω- = 2π/T- = 2π(c - v)/d = 2π(c - v)/(cT) = ω(c - v)/c with the frequency μ- = ω-/2π = (ω/2π)(c -v)/c = μ(c - v)/c = μ - μv/c. Similarly, if one moves to the source with -v the increased propagation velocity c + v yields, the same path d = cT and d = (c + v)T+ with the angular frequency ω+ = 2π/T+ = ω(c + v)/c with frequency μ+ = ω+/2π = (ω/2π)(c + v)/c = μ(c + v)/c = μ + μv/c. The frequency μ is essentially reduced by -μv/c or set high by μv/c. 2. The Doppler Effect on Sound and Electromagnetic Waves In the following, I give a numerical example of the Doppler effect. If you drive by bus at night on the highway, the traffic has calmed down and a lorry meets you only every 100 meters, you can hear the car sound from a distance with a high note, which is getting closer, louder and louder and gets lower, loudest, when the truck drives past one, then quietens again and gets still lower, until it disappears with a dark tone. This can be explained by the Doppler effect. At the beginning you move towards the source, the frequency is increased by μv/c, later decreased by -μv/c. The total difference is 2μv/c. Only the velocity in the direction to the source, that is in the radial direction, enters in v. That the sound is getting lower, follows from the fact that this v at the beginning corresponds to the speed of the two vehicles on the highway, as they approach, the proportion in the direction of the distance gets always smaller until it is The Doppler Effect on Light Waves 75 after all almost 0 when they lie side by side, since the distance stands perpendicular to the velocity, and then it gets bigger again, but now you move away from the source. Overall, the speed v to be considered becomes smaller and smaller, so that the sound frequency decreases more and more. In numbers: the trucks drive on the highway about 80km/h, so that it can be calculated easier afterwards, I say 90km/h, because they come from opposite directions the double speed counts, v = 180km/h = 180/3.6 m/sec = 50m/sec. The propagation speed of the sound is 330m/sec. v/c = 50/330 = 0.1̅5…. The difference between the highest frequency μ+ and the lowest frequency μ- is 2μv/c = 2μ 0.1̅5… = 0.3̅0...μ. The value of v/c = 50/330 = 5/33 delivers μ+ = 38/33 μ and μ- = 28/33 μ, the ratio of the two frequencies amounts to 38/28, ie about 4/3. In the case of electromagnetic waves, for a ratio of v/c = 5/33 at v, it would be necessary to generate a speed of 300,000 5/33 km/sec, ie almost 50,000km/sec, which is in reality bad to manage. I now calculate which frequency shift you can really expect, if there is a Doppler effect. I'm assuming a wheel with a radius of 1 meter, which rotates with 5000 revolutions per minute. The circumference moves at a speed of 2π 1m 5000/min. π = 3.1415..., 2π = 6.283... ≈ 6. I'll cancel that for the 60 seconds and get the speed 500m/sec. It is equivalent to 3.6 times the kilometers per hour, ie 1800 kilometers per hour. For v/c I get 500/(3 108) = 5/3 10-6. The Doppler effect assumes that the signal propagates in space at fixed velocity c. If I move to the transmitter with speed v, the wavelength λ remains unchanged. Only because of my velocity v do I see a propagation velocity of c - v and thus a frequency μ- = (c - v)/λ. Regarding the frequency shift, I notice nothing at the small value 5/3 10-6. You can also let the transmitter, as above the truck, move with v. Then the propagation velocity c remains, the frequency changes to μ+ and thus due to c = λ + μ+ the wavelength. Now, one can prove a change in frequency over the change in wavelength by tracking the signal over so many wavelengths λ that the total change at the end of the path is approximately in the range of one wavelength. We have c = λ+μ+ = λ+μ(1 + v/c). It follows that λ+ = c / (μ(1+v/c)) ≈ (c/μ)(1 - v/c) = λ(1 - v/c). The wavelength change -λv/c is therefore calculated roughly the same as the frequency change μv/c only with the sign reversed. To determine the sum of all wavelength changes nλv/c, it must be in the range λ, that is n = c/v = 3/5 10-6 = 0.6 10-6. I have to track the signal roughly over a distance of 106 wavelengths.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • M204; the Doppler Effect
    MISN-0-204 THE DOPPLER EFFECT by Mary Lu Larsen THE DOPPLER EFFECT Towson State University 1. Introduction a. The E®ect . .1 b. Questions to be Answered . 1 2. The Doppler E®ect for Sound a. Wave Source and Receiver Both Stationary . 2 Source Ear b. Wave Source Approaching Stationary Receiver . .2 Stationary c. Receiver Approaching Stationary Source . 4 d. Source and Receiver Approaching Each Other . 5 e. Relative Linear Motion: Three Cases . 6 f. Moving Source Not Equivalent to Moving Receiver . 6 g. The Medium is the Preferred Reference Frame . 7 Moving Ear Away 3. The Doppler E®ect for Light a. Introduction . .7 b. Doppler Broadening of Spectral Lines . 7 c. Receding Galaxies Emit Doppler Shifted Light . 8 4. Limitations of the Results . 9 Moving Ear Toward Acknowledgments. .9 Glossary . 9 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-204 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Doppler E®ect OF PROJECT PHYSNET Author: Mary Lu Larsen, Dept. of Physics, Towson State University The goal of our project is to assist a network of educators and scientists in Version: 4/17/2002 Evaluation: Stage 0 transferring physics from one person to another. We support manuscript processing and distribution, along with communication and information Length: 1 hr; 24 pages systems. We also work with employers to identify basic scienti¯c skills Input Skills: as well as physics topics that are needed in science and technology. A number of our publications are aimed at assisting users in acquiring such 1.
    [Show full text]
  • Determining the Motion of Galaxies Using Doppler Redshift
    Determining the Motion of Galaxies Using Doppler Redshift Caitlin M. Matyas The Arts Academy at Benjamin Rush Overview Rationale Objective Strategies Classroom Activities Annotated Bibliography / Resources Standards Appendices Overview The Doppler effect of sound is a method used to determine the relative speeds of an object emitting a sound and an observer. Depending on whether the source and/or observer are moving towards or away from each other, the frequency of the wave will change. This in turn creates a change in pitch perceived by the observer. The relative speeds can easily be calculated using the following formula: � ± �′ = �( ), � ± where f’ represents the shifted frequency, f represents the frequency of the source, v is the speed of sound, vo is the speed of the observer, and vs is the speed of the source. Vo is added if moving towards and subtracted if moving away from the source. vs is added if moving away and subtracted if moving towards the observer. The figures below help to demonstrate the perceived change in frequency. The source is located at the center of the smallest circle. The picture shows waves expanding as they move outwards away from the source, so the earliest emitted waves create the biggest circles. If both the source and observer were stationary, the waves appear to pass at equal periods of time, as seen in figure IA. However, if the source is moving, the frequency appears to change. Figure IB shows what would happen if the source moves towards the right. Although the waves are emitted at a constant frequency, they seem closer together on the right side and farther spaced on the left.
    [Show full text]
  • Glossary | Speed Measuring Device Resources 191.94 KB
    GLOSSARY Absorption - The transmitted R.A.D.A.R. beam will, unless otherwise acted upon (absorbed, reflected, or refracted), travel infinitely far. Under practical circumstances, the beam may be partially absorbed by natural and man-made substances. Vegetation such as trees, grass, and bushes will absorb R.A.D.A.R. energy. Freshly turned earth, such as that in a freshly plowed field, will also absorb R.A.D.A.R. Plastics of certain types and foam products will absorb R.A.D.A.R., as makers of "stealth" automotive accessories have discovered. Absorption of R.A.D.A.R. will not result in any inaccuracies in the R.A.D.A.R. readings. It will reduce the strength of the returned signal, and the operational range of the device depending upon the circumstances. Absolute speed limits - Holds that a given speed limit is in force, regardless of environment conditions, i.e., 35 mph or 50 mph. Accuracy - When used in conjunction with R.A.D.A.R. devices means the degree to which the R.A.D.A.R. device measures and displays the correct speed of a target vehicle that it is tracking. Ambient interference - The conducted and/or radiated electromagnetic interference and/or mechanical motion interference at a specific location and at a time which would be detrimental to proper R.A.D.A.R. performance. Antenna horn - The antenna horn is that portion of the R.A.D.A.R. device that shapes and directs the microwave energy (beam). The antenna horn also "catches" the returning microwave energy and directs it to the R.A.D.A.R.
    [Show full text]
  • Doppler Effect
    Physical Science Workshop: Astronomy Applications of Light & Color 1 Activity: Doppler Effect Background: • The Doppler effect causes a train whistle, car, or airplane to sound higher when it is moving towards you, and lower when it is moving away from you. From: http://www.physics.purdue.edu/astr263l/inlabs/doppler.html • For sound: high pitch = high frequency = short wavelength • Light is also a wave, and affected by the Doppler effect o longer wavelengths (lower frequencies) of light appear redder o The spectrum of a star moving towards you will appear blueshifted (shorter wavelengths / higher frequencies) o The spectrum of a star moving away from you will appear redshifted (longer wavelengths / lower frequencies) From: http://www.astrosociety.org/education/publications/tnl/55/astrocappella3.html Lab Materials: • computer with internet access S. Sallmen Activity: Doppler Effect Physical Science Workshop: Astronomy Applications of Light & Color 2 Activity: Doppler Basics: • Go to: http://www.fearofphysics.com/Sound/dopwhy2.html 1. Watch the waves reaching your ear if: • the source moves towards your ear at 100 meters / second • the source moves away from your ear at 100 meters / second a. In which case is the frequency of sound higher? b. In which case is the wavelength of the sound waves longest? c. If these were light waves, in which case would the light reaching your eye be redder? d. If these were light waves, in which case would the light reaching your eye be bluer? 2. Watch the waves reaching your ear if: • the source moves away from your ear at 100 meters / second • the source moves away from your ear at 200 meters / second a.
    [Show full text]
  • Gravity Tests with Radio Pulsars
    universe Review Gravity Tests with Radio Pulsars Norbert Wex 1,* and Michael Kramer 1,2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany; [email protected] 2 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK * Correspondence: [email protected] Received: 19 August 2020; Accepted: 17 September 2020; Published: 22 September 2020 Abstract: The discovery of the first binary pulsar in 1974 has opened up a completely new field of experimental gravity. In numerous important ways, pulsars have taken precision gravity tests quantitatively and qualitatively beyond the weak-field slow-motion regime of the Solar System. Apart from the first verification of the existence of gravitational waves, binary pulsars for the first time gave us the possibility to study the dynamics of strongly self-gravitating bodies with high precision. To date there are several radio pulsars known which can be utilized for precision tests of gravity. Depending on their orbital properties and the nature of their companion, these pulsars probe various different predictions of general relativity and its alternatives in the mildly relativistic strong-field regime. In many aspects, pulsar tests are complementary to other present and upcoming gravity experiments, like gravitational-wave observatories or the Event Horizon Telescope. This review gives an introduction to gravity tests with radio pulsars and its theoretical foundations, highlights some of the most important results, and gives a brief outlook into the future of this important field of experimental gravity. Keywords: gravity; general relativity; pulsars 1.
    [Show full text]
  • Lecture 21: the Doppler Effect
    Matthew Schwartz Lecture 21: The Doppler effect 1 Moving sources We’d like to understand what happens when waves are produced from a moving source. Let’s say we have a source emitting sound with the frequency ν. In this case, the maxima of the 1 amplitude of the wave produced occur at intervals of the period T = ν . If the source is at rest, an observer would receive these maxima spaced by T . If we draw the waves, the maxima are separated by a wavelength λ = Tcs, with cs the speed of sound. Now, say the source is moving at velocity vs. After the source emits one maximum, it moves a distance vsT towards the observer before it emits the next maximum. Thus the two successive maxima will be closer than λ apart. In fact, they will be λahead = (cs vs)T apart. The second maximum will arrive in less than T from the first blip. It will arrive with− period λahead cs vs Tahead = = − T (1) cs cs The frequency of the blips/maxima directly ahead of the siren is thus 1 cs 1 cs νahead = = = ν . (2) T cs vs T cs vs ahead − − In other words, if the source is traveling directly towards us, the frequency we hear is shifted c upwards by a factor of s . cs − vs We can do a similar calculation for the case in which the source is traveling directly away from us with velocity v. In this case, in between pulses, the source travels a distance T and the old pulse travels outwards by a distance csT .
    [Show full text]
  • Dopper Effect Lesson Plan
    DOPPER EFFECT LESSON PLAN Description Through experiments students will see and hear the Doppler effect, and apply their new knowledge to the hydrogen emission spectrum. Curriculum Fit Grade 9, Unit E: Space Exploration Specific Learner Expectations 1. Describe and apply techniques for determining the position and motion of objects in space, including: describing in general terms how parallax and the Doppler effect are used to estimate distances of objects in space and to determine their motion Key Terms • Doppler effect: an increase (or decrease) in the frequency of sound, light, or other waves as the source and observer move toward (or away from) each other. The effect causes the sudden change in pitch noticeable in a passing siren, as well as the redshift seen by astronomers • Redshift: When light or any waves on the electromagnetic spectrum are lengthened as the source of those waves moves away from us. It is called a ‘redshift’ in the light as the wavelength shifts toward the red side (longer wavelengths) of the electromagnetic spectrum • Blueshift: When light or any waves on the electromagnetic spectrum are shortened (compressed) as the source of these waves moves toward us. It is called a ‘blueshift’ in the light as the wavelength shifts toward the blue side (shorter wavelengths) of the electromagnetic spectrum • Exoplanet: A planet outside of our solar system • Emission Spectrum: A spectrum of the electromagnetic radiation emitted by a source Introduction Watch the “Doppler Effect” video as an introduction to this lesson. Have you heard the wail of an emergency vehicle’s siren as the vehicle races toward you, and then experienced the sudden drop in pitch as it passes you? This change can be explained by the Doppler effect.
    [Show full text]
  • Chapter 12: Physics of Ultrasound
    Chapter 12: Physics of Ultrasound Slide set of 54 slides based on the Chapter authored by J.C. Lacefield of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with Physics or Ultrasound, commonly used in diagnostic imaging modality. Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 12. TABLE OF CONTENTS 12.1. Introduction 12.2. Ultrasonic Plane Waves 12.3. Ultrasonic Properties of Biological Tissue 12.4. Ultrasonic Transduction 12.5. Doppler Physics 12.6. Biological Effects of Ultrasound IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,2 12.1. INTRODUCTION • Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide nowadays • Ultrasound is an acoustic wave with frequencies greater than the maximum frequency audible to humans, which is 20 kHz IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,3 12.1. INTRODUCTION • Diagnostic imaging is generally performed using ultrasound in the frequency range from 2 to 15 MHz • The choice of frequency is dictated by a trade-off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue The information in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,4 12.1.
    [Show full text]
  • The Doppler Effect
    The Doppler Effect ASTR1001 ASTR1001 Spectroscopy • When the media covers astronomy, they nearly always show pretty pictures. This gives a biassed view of what astronomers actually do: well over 70% of all observations are not pictures - they are spectra. • Spectra are the most vital tool of astronomy - without them we’d be lost. However, they are slightly more complicated to understand than pictures (and nothing like as pretty), so the media ignores them. • Light is made up of waves of entwined electricity and magnetism. This applies to all types of light, including radio waves and X-rays. The general term for these waves is “Electromagnetic Waves”. • These waves always travel at the same speed: 300,000 kilometres per second. ASTR1001 Wavelengths • Electromagnetic waves, while all travelling at the same speed, can have different wavelengths (the distance between the crest of one wave and the next). • It is the wavelength that determines what type of light you have. Red Light: Wavelength 700nm Green Light: Wavelength 550nm Blue Light: Wavelength 400nm Ultra-Violet Light: Wavelength 300nm ASTR1001 The Electromagnetic Spectrum • Electromagnetic waves can have any wavelengths at all: anywhere from picometres to light-years. Blue: 400 nm Red: 700 nm Visible Microwaves Radio Waves Gamma X-Rays UV Infrared Rays UHF FM FM -12 -8 -4 4 10 10 10 1 10 Wavelength (metres) • These are all basically the same things: waves of entwined electricity and magnetism flying through space: the only thing that’s different is the wavelength. You also get waves longer than radio and shorter than Gamma Rays - but these are very rare, and as far as we know useless (at present).
    [Show full text]
  • Appendix a Glossary
    BASICS OF RADIO ASTRONOMY Appendix A Glossary Absolute magnitude Apparent magnitude a star would have at a distance of 10 parsecs (32.6 LY). Absorption lines Dark lines superimposed on a continuous electromagnetic spectrum due to absorption of certain frequencies by the medium through which the radiation has passed. AM Amplitude modulation. Imposing a signal on transmitted energy by varying the intensity of the wave. Amplitude The maximum variation in strength of an electromagnetic wave in one wavelength. Ångstrom Unit of length equal to 10-10 m. Sometimes used to measure wavelengths of visible light. Now largely superseded by the nanometer (10-9 m). Aphelion The point in a body’s orbit (Earth’s, for example) around the sun where the orbiting body is farthest from the sun. Apogee The point in a body’s orbit (the moon’s, for example) around Earth where the orbiting body is farthest from Earth. Apparent magnitude Measure of the observed brightness received from a source. Astrometry Technique of precisely measuring any wobble in a star’s position that might be caused by planets orbiting the star and thus exerting a slight gravitational tug on it. Astronomical horizon The hypothetical interface between Earth and sky, as would be seen by the observer if the surrounding terrain were perfectly flat. Astronomical unit Mean Earth-to-sun distance, approximately 150,000,000 km. Atmospheric window Property of Earth’s atmosphere that allows only certain wave- lengths of electromagnetic energy to pass through, absorbing all other wavelengths. AU Abbreviation for astronomical unit. Azimuth In the horizon coordinate system, the horizontal angle from some arbitrary reference direction (north, usually) clockwise to the object circle.
    [Show full text]
  • Doppler Effect
    Doppler Effect ¾The Doppler effect is the shift in frequency and wavelength of waves that results from a moving source and/or moving observer relative to the wave medium ¾Consider a point source of traveling waves (a siren) at some frequency f0 We have λ=V/f0 where V is the wave velocity and V depends on the characteristics of the medium alone 1 Doppler Effect ¾ A source moving towards an observer with velocity vs The observer sees wave fronts that are “squeezed” in the direction of vs but the wave velocity remains unchanged v V − v λ′ = λ − s = s f0 f0 V ⎛ V ⎞ f ⎜ ⎟ 0 f = = f0 ⎜ ⎟ = λ′ V − v vs ⎝ s ⎠ 1− ¾ A source moving away from an observer V f f = 0 v 1+ s V 2 Doppler Effect 3 Doppler Effect Optical spectrum Optical spectrum of sun of cluster of distant galaxies 4 Doppler Effect ¾ An observer moving towards a source with velocity vo Here an observer will see the same wavelength λ but with a higher wave velocity (e.g. wading into an ocean) v′ = V + | vo | v′ V + | vo | | vo | ⎛ | vo |⎞ f = = = f0 + = f0 ⎜1+ ⎟ λ λ λ ⎝ V ⎠ ¾ An observer moving away from a source ⎛ | v |⎞ f = f ⎜1− o ⎟ 0 v ⎝ ⎠ 5 Doppler Effect ¾In the case of light waves Classical, moving source f f = 0 V 1m Classical, moving observer c ⎛ V ⎞ f = ⎜1± ⎟ f0 ⎝ c ⎠ ¾Makes sense, the frequency is higher if observer and source approach each other and lower if they are receding 6 Doppler Effect ¾But This is a classical calculation There is an asymmetry between moving source and moving observer Moving source f ⎛ V V 2 ⎞ f = 0 ≈ ⎜1± ± ± ...⎟ f V ⎜ 2 ⎟ 0 1 ⎝ c c ⎠ m c
    [Show full text]