Effects of the Solar Cycles and Longer-Term

Total Page:16

File Type:pdf, Size:1020Kb

Effects of the Solar Cycles and Longer-Term University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 2019 Effects of the Solar Cycles and Longer-Term Solar Variations: Modulation of Galactic Cosmic Radiation and Filtration of Neutral Atoms from the Local Interstellar Medium Fatemeh Rahmanifard University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Rahmanifard, Fatemeh, "Effects of the Solar Cycles and Longer-Term Solar Variations: Modulation of Galactic Cosmic Radiation and Filtration of Neutral Atoms from the Local Interstellar Medium" (2019). Doctoral Dissertations. 2483. https://scholars.unh.edu/dissertation/2483 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Effects of the Solar Cycles and Longer-Term Solar Variations: Modulation of Galactic Cosmic Radiation and Filtration of Neutral Atoms from the Local Interstellar Medium BY Fatemeh Rahmanifard B.Sc., Amirkabir University of Technology, 2007 M.Sc., Amirkabir University of Technology, 2011 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics September, 2019 ALL RIGHTS RESERVED c Year My Name ii This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by: Thesis Director, Dr. Nathan Schwadron, Presidential Chair, Norman S. and Anna Marie Waite Physics Professor Dr. Eberhard M¨obius,Physics Professor Emeritus Dr. Martin Lee, Physics Professor Emeritus Dr. Lynn Kistler, Physics Professor Dr. Karsten Pohl, Physics Professor On July 22, 2019. Original approval signatures are on file with the University of New Hampshire Graduate School. iii DEDICATION To my mom and dad, to my sisters, to my brother, and to Hamid, for being who they are. iv ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Nathan Schwadron, for being a source of inspiration and support, and for teaching me what it takes to be a physicist. I am thankful for Eberhard M¨obiuswho has been an endless source of knowledge and pa- tience. I appreciate all the time and effort he devoted to answering my questions. I would also like to thank Marty Lee, Lynn Kistler, and Karsten Pohl for accepting to serve on my committee and for setting good examples of dedicated scientists. Many thanks to all my friends and colleagues at UNH, on the IBEX team, on the CRaTER team, and to my amazing coauthors from whom I learned a lot. v TABLE OF CONTENTS DEDICATION iv ACKNOWLEDGEMENTS v LIST OF TABLES ix LIST OF FIGURES x LIST OF ACRONYMS xiii ABSTRACT xvi 1 Introduction 1 1.1 From The Milky Way to Our Solar System . .1 1.2 An Overview of This Research . .4 2 Variations of the Heliospheric Magnetic Field with Solar Cycles 8 2.1 Introduction . .8 2.2 HMF Variations with Solar Cycles . .9 2.2.1 Steady-State HMF . .9 2.2.2 HMF at Solar Minimum . 12 2.2.3 HMF at Solar Maximum . 13 2.2.4 Evolution of the HMF through a Solar Cycle . 15 2.3 Long-Term Variations of the HMF . 19 vi 2.4 Conclusion . 20 3 Inferring the Heliospheric Magnetic Field Back through the Maunder Min- imum (Study 1) 21 3.1 Introduction . 21 3.2 Theory and Background . 25 3.2.1 Sources and Losses of the Ambient Heliospheric Magnetic Field . 25 3.2.2 Heliospheric Magnetic Flux System . 28 3.2.3 Frequency of Coronal Mass Ejections . 30 3.2.4 Paleocosmic Radiation (PCR) Data . 31 3.2.5 Chi-Square Analysis . 32 3.3 Results . 34 3.4 Discussion . 40 3.5 Summary and Conclusion . 49 4 An Example of Radiation Risk from Solar Energetic Particles, September 2017 Event (Study 2) 52 4.1 Intorduction . 52 4.2 Cosmic Ray Telescope for the Effects of Radiation . 54 4.3 The SEP Hazard During Periods of Weak Activity . 55 4.4 Conclusion . 57 5 Characterization of the Space Radiation Environment Through a Modern Secular Minimum (Study 2) 63 5.1 Introduction . 63 5.2 CRaTER Data . 64 5.3 Galactic Cosmic Rays . 64 5.4 Modulation Potential . 66 5.5 Predictions of Solar Activity . 73 vii 5.6 Extreme Scenarios for a Modern Minimum . 75 5.7 Conservative Radiation Risks Based on Extreme Scenarios . 79 5.8 Summary and Conclusion . 85 6 Radiation Pressure from Interstellar Hydrogen Observed by IBEX Through Solar Cycle 24 (Study 3) 88 6.1 Introduction . 88 6.2 ISN H Trajectory . 93 6.3 ISN H Distribution Function . 94 6.4 Instrument Description . 97 6.5 Data Selection . 98 6.6 Shift of the ISN H peak longitude over time . 100 6.7 Discussion . 102 6.8 Summary and Conclusion . 109 7 Variations of the Radiation Pressure with Time and Radial Velocity (Study 3) 114 8 Conclusions and Outlook 120 LIST OF REFERENCES 124 A Derivation of Parker Spirals 144 B Sunspot Group Number 146 viii LIST OF TABLES 3.1 Reduced χ2 values and parameters found for cases investigated in this study using different toroidal field components and for the two cases with parameters from Smith et al. (2013) using the old and new sunspot numbers. 42 5.1 Minimum and maximum values obtained for the modulation potential and permissible missions duration (PMD) based on a Dalton-like and a Gleissberg- like cycle 25. For the case without a floor, we have applied the correlation obtained for cycle 24 to expected cycle 25 scenarios. For the case with the floor, we have applied the same correlation and raised all modulation values so that the minimum values reach the 420 MV floor in BON14 model. 84 6.1 Parameters associated with the ISN H distribution function (identical to those used by Kowalska-leszczynska et al., 2018). 97 6.2 H transmission function essential parameters for E-Step 1 and 2. 98 ix LIST OF FIGURES 1.1 A schematic view of the heliospheric interface . .4 1.2 An Overview of This Research . .7 2.1 Steady-state solar magnetic field in the ecliptic plane . 11 2.2 Ideal Parker spirals . 12 2.3 Summary of Ulysses observations . 14 2.4 The internal rotation profile of the Sun . 17 2.5 A sketch of the evolution of the HMF . 18 2.6 Reconstructions of the total open solar flux since 1610 . 20 3.1 Three processes responsible for transformation of CMEs . 27 3.2 CME rate derived from sunspot number . 32 3.3 chi-square analysis to find parameters involved in the balance of the helio- spheric magnetic flux . 35 3.4 The HMF time series since 1610, assuming a constant toroidal field . 36 3.5 Constant toroidal field versus toroidal field that scales with the mean field . 38 3.6 The HMF time series since 1610, assuming the toroidal component scales with the mean field . 39 3.7 Compairing HMF predictions from this work with previous work . 44 3.8 10Be variability . 47 3.9 HMF inversion . 49 4.1 CRaTER instrument . 59 x 4.2 CRaTER observed dose rates over cycle 24 . 60 4.3 Accumulated doses on the lunar surface during the September 2017 event . 61 4.4 Large X-class flares that began the September 2017 event with lunar dose rates and proton flux reported by CRaTER and PREDICCS during this event 62 5.1 Comparing dose rates measured by D1-D2 detector pair with and without coincidence conditions . 65 5.2 Variations of GCRs count rates with solar cycles . 67 5.3 The correlation between the modulation potential, the HMF strength, and global solar wind speed . 74 5.4 Recent decline in solar activity, compared to previous secular minima . 76 5.5 Prediction of the modulation potential for a Dalton-like and a Gleissberg-like cycle 25 . 79 5.6 HMF, solar wind speed, and modulation potential through space age and extending to a speculated cycle 25 . 83 5.7 predicted modulation potential and dose rates for a Dalton-like and a Gleissberg- like cycle 25 . 85 5.8 predicted PMD for male and female 45-year-old astronauts behind a 20 g=cm2 Al shielding for a Dalton-like and a Gleissberg-like cycle 25 . 86 6.1 Schematic view of the trajectory of the ISN atoms . 94 6.2 Distribution function of ISN H flow in IBEX-inertial frame at 1 AU overlaid on the normalized energy transmission function for E-Step 1 and E-Step 2 . 99 6.3 A Gaussian function fitted to ISN H observed count rates . 102 6.4 aFINM predictions for ISN H . 103 6.5 Variations of the ISN H flow peak longitude and the resulting radiation pa- rameter with solar activity . 111 xi 6.6 ISN H atoms trajectories for two cases of the Sun transiting to a solar mini- mum/maximum as the atoms reach 1 AU . 112 6.7 Comparing µeff with µ0, µ(vr=-25 km/s), and µ(vr=-35 km/s) from Kowalska- Leszczynska et al. (2018) . 112 6.8 µeff versus total irradiance from LASP . 113 7.1 Observed profiles of disk-averaged solar Lyα .................. 117 7.2 Radiation profile for the years 2009, 2012, and 2017 . 118 7.3 Simulated trajectory, radial velocity, net force, µ, and µ0 for an ISN H atom starting from 100 AU . 119 B.1 The old sunspot number compared to the new sunspot number .
Recommended publications
  • → Investigating Solar Cycles a Soho Archive & Ulysses Final Archive Tutorial
    → INVESTIGATING SOLAR CYCLES A SOHO ARCHIVE & ULYSSES FINAL ARCHIVE TUTORIAL SCIENCE ARCHIVES AND VO TEAM Tutorial Written By: Madeleine Finlay, as part of an ESAC Trainee Project 2013 (ESA Student Placement) Tutorial Design and Layout: Pedro Osuna & Madeleine Finlay Tutorial Science Support: Deborah Baines Acknowledgements would like to be given to the whole SAT Team for the implementation of the Ulysses and Soho archives http://archives.esac.esa.int We would also like to thank; Benjamín Montesinos, Department of Astrophysics, Centre for Astrobiology (CAB, CSIC-INTA), Madrid, Spain for having reviewed and ratified the scientific concepts in this tutorial. CONTACT [email protected] [email protected] ESAC Science Archives and Virtual Observatory Team European Space Agency European Space Astronomy Centre (ESAC) Tutorial → CONTENTS PART 1 ....................................................................................................3 BACKGROUND ..........................................................................................4-5 THE EXPERIMENT .......................................................................................6 PART 1 | SECTION 1 .................................................................................7-8 PART 1 | SECTION 2 ...............................................................................9-11 PART 2 ..................................................................................................12 BACKGROUND ........................................................................................13-14
    [Show full text]
  • Level and Length of Cyclic Solar Activity During the Maunder Minimum As Deduced from the Active-Day Statistics
    A&A 577, A71 (2015) Astronomy DOI: 10.1051/0004-6361/201525962 & c ESO 2015 Astrophysics Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics J. M. Vaquero1,G.A.Kovaltsov2,I.G.Usoskin3, V. M. S. Carrasco4, and M. C. Gallego4 1 Departamento de Física, Universidad de Extremadura, 06800 Mérida, Spain 2 Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia 3 Sodankylä Geophysical Observatory and ReSoLVE Center of Excellence, University of Oulu, 90014 Oulu, Finland e-mail: [email protected] 4 Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain Received 25 February 2015 / Accepted 25 March 2015 ABSTRACT Aims. The Maunder minimum (MM) of greatly reduced solar activity took place in 1645–1715, but the exact level of sunspot activity is uncertain because it is based, to a large extent, on historical generic statements of the absence of spots on the Sun. Using a conservative approach, we aim to assess the level and length of solar cycle during the MM on the basis of direct historical records by astronomers of that time. Methods. A database of the active and inactive days (days with and without recorded sunspots on the solar disc) is constructed for three models of different levels of conservatism (loose, optimum, and strict models) regarding generic no-spot records. We used the active day fraction to estimate the group sunspot number during the MM. Results. A clear cyclic variability is found throughout the MM with peaks at around 1655–1657, 1675, 1684, 1705, and possibly 1666, with the active-day fraction not exceeding 0.2, 0.3, or 0.4 during the core MM, for the three models.
    [Show full text]
  • Coronal Mass Ejections and Solar Radio Emissions
    CORONAL MASS EJECTIONS AND SOLAR RADIO EMISSIONS N. Gopalswamy∗ Abstract Three types of low-frequency nonthermal radio bursts are associated with coro- nal mass ejections (CMEs): Type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Ob- servatory (SOHO) and the WAVES experiment on board Wind. 1 Introduction Coronal mass ejections (CMEs) are associated with a whole host of radio bursts caused by nonthermal electrons accelerated during the eruption process. Radio bursts at low frequencies (< 15 MHz) are of particular interest because they are associated with ener- getic CMEs that travel far into the interplanetary (IP) medium and affect Earth’s space environment if Earth-directed. Low frequency radio emission needs to be observed from space because of the ionospheric cutoff (see Fig. 1), although some radio instruments permit observations down to a few MHz [Erickson 1997; Melnik et al., 2008]. Three types of radio bursts are prominent at low frequencies: type III, type II, and type IV bursts, all due to nonthermal electrons accelerated during solar eruptions. The radio emission is thought to be produced by the plasma emission mechanism [Ginzburg and Zheleznyakov, 1958], involving the generation of Langmuir waves by nonthermal electrons accelerated during the eruption and the conversion of Langmuir waves to electromagnetic radiation. Langmuir waves scattered off of ions or low-frequency turbulence result in radiation at the fundamental (or first harmonic) of the local plasma frequency.
    [Show full text]
  • Galactic Cosmic Ray Radiation Hazard in the Unusual Extended Solar Minimum Between Solar Cycle 23 and 24
    1 Galactic Cosmic Ray Radiation Hazard in the Unusual Extended Solar 2 Minimum between Solar Cycle 23 and 24 3 4 N. A. Schwadron, A. J. Boyd, K. Kozarev 5 Boston University, Boston, Mass, USA 6 M. Golightly, H. Spence 7 University of New Hampshire, Durham New Hampshire, USA 8 L. W. Townsend 9 University of Tennessee, Knoxville, TN, USA 10 M. Owens 11 Space Environment Physics Group, Department of Meteorology, University of Reading, 12 UK 13 14 Abstract. Galactic Cosmic Rays (GCRs) are extremely difficult to shield against and 15 pose one of most severe long-term hazards for human exploration of space. The recent 16 solar minimum between solar cycle 23 and 24 shows a prolonged period of reduced solar 17 activity and low interplanetary magnetic field strengths. As a result, the modulation of 18 GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 19 years in the Fall of 2009. Here, we explore the dose-rates of GCRs in the current 20 prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter 21 (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now 22 measuring GCRs in the lunar environment. Our results confirm the weak modulation of 23 GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of 24 little solar activity. 25 26 Background – Galactic Cosmic Rays and Human Health 27 28 In balloon flights in 1912-1913, Hess first measured a form of radiation that intensified 29 with altitude [Hess, 1912; 1913].
    [Show full text]
  • Abstract Book
    Abstract Book IAU SYMPOSIUM 340 Long Term Datasets for the Understanding of Solar and Stellar Magnetic Cycles 19 – 24 February 2018 B. M. Birla Auditorium, Jaipur, India Table of Contents Title Page Number Monday, 19th February 2018 Session 1: Velocity Fields in the Convective Zone [Chair: Siraj Hasan] 1 Aaron C Birch - Data and Methods for Helioseismology 1 Shravan Hanasoge - New constraints on interior convection from measurements of normal-mode 1 coupling Chia-Hsien Lin - Probing solar-cycle variations of magnetic fields in the convective zone using 2 meridional flows Robert Cameron - Small-scale flows and the solar dynamo 2 Sarbani Basu - Solar Large-scale flows and their variations 2 Sushant S. Mahajan - Torsional oscillations: a tool to map magnetic field amplification inside the 3 Sun Session 2. Most widely used Indices of Solar Cycle - Magnetic Field and Sunspot Number 3 [Chair - Alexi Peptsov] Aimee Norton - A Century of Solar Magnetograms 3 J Todd Hoeksema - Long-term Measurement of the Solar Magnetic Field 3 Nataliia Shchukina - Kyiv monitoring program of spectral line variations with 11-year cycle. Quiet 4 Sun Dilyara Baklanova - Long-term stellar magnetic field study at the Crimean Astrophysical 4 Observatory Cesare Scalia - The long term variation of the effective magnetic field of the active star epsilon 5 Eridani Frédéric Clette - Sunspot number datasets : status, divergences and unification 5 Richard Bogart - MDI + HMI: 22 Years of Full-Disc Imagery from Space 6 Jagdev Singh - Variations in Ca-K line profiles and normalized Intensity as a function of latitude and 6 solar cycle during the 20th century: Implication to Meridional flows Angela R.
    [Show full text]
  • ESA Bulletin No
    MARSDEN 6/12/03 5:08 PM Page 60 Artist’s impression of Ulysses’ exploratory mission (by D. Hardy) Science 60 esa bulletin 114 - may 2003 www.esa.int MARSDEN 6/12/03 5:08 PM Page 61 News from the Sun’s Poles News from the Sun’s Poles Courtesy of Ulysses Richard G. Marsden ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Edward J. Smith Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA True to its classical namesake in Dante’s Introduction Launched from Cape Canaveral more than 13 years ago, Ulysses Inferno, the ESA-NASA Ulysses mission has is well on its way to completing two full circuits of the Sun in a unique orbit that takes it over the north and south poles of our ventured into the ‘unpeopled world star. In doing so, the European-built space probe and its payload of scientific instruments have added a fundamentally new beyond the Sun’,in the pursuit of perspective to our knowledge of the bubble in space in which the Sun and the Solar System exist, called ‘the heliosphere’. ‘knowledge high’! www.esa.int esa bulletin 114 - may 2003 61 MARSDEN 6/12/03 5:09 PM Page 62 Science A small spacecraft by today’s standards, Ulysses weighed just 367 kg at launch, including its scientific payload of 55 kg. The nine scientific instruments on board measure the solar wind, the heliospheric magnetic field, natural radio emission and plasma waves, energetic particles and cosmic rays, interplanetary and interstellar dust, neutral interstellar helium atoms, and cosmic gamma-ray bursts.
    [Show full text]
  • Pecularities of Cosmic Ray Modulation in the Solar Minimum 23/24
    PECULARITIES OF COSMIC RAY MODULATION IN THE SOLAR MINIMUM 23/24. M. V. Alania 1,2, R. Modzelewska 1 and A. Wawrzynczak 3 1 Institute Math. & Physics, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland. 2 Institute of Geophysics, Tbilisi State University, Tbilisi, Georgia. 3Institute of Computer Science, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland. [email protected], [email protected], [email protected], Abstract We study changes of the galactic cosmic ray (GCR) intensity for the ending period of the solar cycle 23 and the beginning of the solar cycle 24 using neutron monitors experimental data. We show that an increase of the GCR intensity in 2009 is generally related with decrease of the solar wind velocity U, the strength B of the interplanetary magnetic field (IMF), and the drift in negative (A<0) polarity epoch. We present that temporal changes of rigidity dependence of the GCR intensity variation before reaching maximum level in 2009 and after it, do not noticeably differ from each other. The rigidity spectrum of the GCR intensity variations calculated based on neutron monitors data (for rigidities > 10 GV) is hard in the minimum and near minimum epoch. We do not recognize any non-ordinary changes in the physical mechanism of modulation of the GCR intensity in the rigidity range of GCR particles to which neutron monitors respond. We compose 2-D non stationary model of transport equation to describe variations of the GCR intensity for 1996-2012 including the A>0 (1996-2001) and the A<0 (2002-2012) periods; diffusion coefficient of cosmic rays for rigidity 10-15 GV is increased by ~ 30% in 2009 (A<0) comparing with 1996 (A>0).
    [Show full text]
  • Reconstruction of Solar EUV Flux 1840-2014
    Reconstruction of Solar Extreme Ultraviolet Flux 1740–2015 Leif Svalgaard1 ([email protected]) 1 Stanford University, Cypress Hall C13, W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA Abstract: Solar Extreme Ultraviolet (EUV) radiation creates the conducting E–layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High– quality data go back to the ‘Magnetic Crusade’ of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.–A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and the sunspot number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices.
    [Show full text]
  • Analysing the Spotless Days As Predictors of the Solar Activity From
    Analysing the spotless days as predictors of the solar activity from the new sunspot number V.M.S. Carrasco1,2 • J.M. Vaquero3,4 • M.C. Gallego2,3 1 Centros de Estudios Energéticos y Radiofísicos, Badajoz, Spain 2 Departamento de Física, Universidad de Extremadura, Badajoz, Spain 3 Departamento de Física, Universidad de Extremadura, Mérida (Badajoz), Spain 4 Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Badajoz, Spain Abstract. The use of the spotless days to predict the future solar activity is here revised based on the new version of the sunspot number index with a 24-month filter. Data from Solar Cycle (SC) 10 are considered because from this solar cycle the temporal coverage of the records is 100 %. The interrelationships of the timing characteristics of spotless days and their comparison with sunspot cycle parameters are explored, in some cases finding very strong correlations. Such is the case for the relationship between the minimum time between spotless days either side of a given solar maximum and the maximum time between spotless days either side in the previous solar minimum, with r = -0.91 and a p-value < 0.001. However, the predictions for SC 24 or 23 made by other authors in previous works using the spotless days as a predictor of solar activity are not good since it has not been fulfilled. Although there seems to be a pattern of strong correlation for some relationships between the parameters studied, prediction of future solar cycles from these parameters defined as functions of the spotless days should be made with caution because sometimes the estimated values are far from the observed 1 ones.
    [Show full text]
  • The Unusual Minimum of Sunspot Cycle 23 a Consequence of Sun's
    The unusual minimum of sunspot cycle 23 a consequence of Sun’s meridional plasma flow variations Dibyendu Nandy1, Andrés Muñoz-Jaramillo2,3 & Petrus C. H. Martens2,3 1Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741252,West Bengal, India 2Department of Physics, Montana State University, Bozeman, MT 59717, USA 3Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA Direct observations over the past four centuries1 show that the number of sunspots observed on the Sun’s surface vary periodically, going through successive maxima and minima. Following sunspot cycle 23, the Sun went into a prolonged minimum characterized by a very weak polar magnetic field2,3 and an unusually large number of days without sunspots4. Sunspots are strongly magnetized regions5 and are generated by a dynamo mechanism6 which recreates the solar polar field mediated via plasma flows7. Here we report results from kinematic dynamo simulations which demonstrate that a fast meridional flow in the early half of a cycle, followed by a slower flow in the latter half, reproduces both the characteristics of the minimum of sunspot cycle 23 – a large number of spotless days and a relatively weak polar field. Our model predicts that, in general, very deep minima are associated with weak polar fields. Sunspots govern the solar radiative energy8,9 and radio flux, and in conjunction with the polar field, modulates the solar wind, heliospheric open flux and consequently cosmic ray flux at Earth3,10,11; our results therefore provide a causal link between solar internal dynamics and the atypical values of these heliospheric forcing parameters during the recently concluded solar minimum.
    [Show full text]
  • Solar Cycle Variation of the Temperature Structure Within the Cores of Coronal Streamers
    A&A 381, 1049–1058 (2002) Astronomy DOI: 10.1051/0004-6361:20011563 & c ESO 2002 Astrophysics Solar cycle variation of the temperature structure within the cores of coronal streamers C. R. Foley1, S. Patsourakos1, J. L. Culhane1, and D. MacKay2 1 Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK 2 Department of Mathematical and Physical Sciences, St Andrews University, Scotland, UK Received 30 July 2001 / Accepted 8 November 2001 Abstract. We use the Coronal Diagnostic Spectrometer onboard the Solar and Heliospheric Observatory (SOHO) to analyze conditions in coronal streamer structures observed close to solar minimum (1996 July 8) and near maximum (1999 August 5). We measured the intensities of emission lines from Fe IX–XV ions and found the most intense emission to be from Fe XI at solar minimum and from Fe XV at solar maximum. We then used the line ratio method with transitions in selected ions to extract the radial temperature behavior in the structures. The solar minimum peak values were about 1.4 MK at 1.3 R , while values derived close to solar maximum were consistent with the Yohkoh observations at the last maximum, displaying an apparently asymptotic temperature of around 2.2 MK above 1.2 R . We discuss the observations in relation to possible mechanisms for energy deposition in large coronal structures at different phases of the solar cycle. Key words. Sun: corona – Sun: activity – Sun: X-rays, gamma rays – stars: coronae 1. Introduction Consequently, we now have the ability to examine the true distribution of plasma in many regions of the corona.
    [Show full text]
  • What Can the Annual 10Be Solar Activity Reconstructions Tell Us About Historic Space Weather?
    J. Space Weather Space Clim. 2018, 8, A23 © L. Barnard et al., Published by EDP Sciences 2018 https://doi.org/10.1051/swsc/2018014 Available online at: www.swsc-journal.org RESEARCH ARTICLE What can the annual 10Be solar activity reconstructions tell us about historic space weather? Luke Barnard1,*, Ken G. McCracken2, Mat J. Owens1 and Mike Lockwood1 1 Department of Meteorology, University of Reading, Reading, UK 2 100 Mt. Jellore Lane, Woodlands, 2575, Australia Received 11 August 2017 / Accepted 20 February 2018 Abstract – Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity, constraining past space climate with reasonable uncertainty. Much less is known about past space weather conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305–3069) (MB15) suggest that annually resolved 10Be can be significantly affected by solar energetic particle (SEP) fluxes. This poses a problem, and presents an opportunity, as the accurate quantification of past solar magnetic activity requires the SEP effects to be determined and isolated, whilst doing so might provide a valuable record of past SEP fluxes. Aims: We compare the MB15 reconstruction of the heliospheric magnetic field (HMF), with two independent estimates of the HMF derived from sunspot records and geomagnetic variability. We aim to quantify the differences between the HMF reconstructions, and speculate on the origin of these differences. We test whether the differences between the reconstructions appear to depend on known significant space weather events. Methods: We analyse the distributions of the differences between the HMF reconstructions. We consider how the differences vary as a function of solar cycle phase, and, using a Kolmogorov-Smirnov test, we compare the distributions under the two conditions of whether or not large space weather events were known to have occurred.
    [Show full text]