Tesis Doctoral Presentada Por: Da

Total Page:16

File Type:pdf, Size:1020Kb

Tesis Doctoral Presentada Por: Da UNIVERSIDAD CATÓLICA DE VALENCIA SAN VICENTE MÁRTIR ETHICAL ISSUES OF SYNTHETIC BIOLOGY: A PERSONALIST PERSPECTIVE Tesis doctoral Presentada por: Da. LUCÍA GÓMEZ TATAY Dirigida por: DR. D. JOSÉ MIGUEL HERNÁNDEZ ANDREU 2019 1 2 4 Agradecimientos Gracias A José Miguel, que es parte de esta tesis. A Samuel, que es parte de mí. A Justo, Nuria, Manuel, Ester y Cristina, que han sido parte de mi día a día en la realización de este trabajo. A Dios, por todo. 5 6 ABSTRACT Synthetic Biology is a scientific area that combines biology and engineering to build new biological systems that could provide solutions to a wide range of social needs. Multiple and promising applications are expected from this discipline. However, Synthetic Biology also raises several ethical concerns that need to be addressed, not only to protect those values that may be threatened by the different applications of this discipline, but also because failure to fully confront them could be, together with social rejection, an obstacle to the realization of these applications. This work has been carried out under the hypothesis that a detailed study of the current state of Synthetic Biology from a personalist perspective will highlight the main bioethical issues that could be a threat for a genuine development, respectful of human life and dignity, and provide solutions for it to become a reality. The main objective of this thesis is to assess the bioethical issues raised by Synthetic Biology from a specific bioethical approach, personalism, specifically ontological personalism, a philosophy that shows the objective value of the person on the basis of its ontological structure. The person, as a being endowed with reason, freedom and awareness, has a special value which is above that of other beings. This thesis has been divided into three main phases: contextualization (explanation of what Synthetic Biology is); identification and definition of the ethical issues raised by this discipline; and approach to bioethical issues from an ontological personalist framework. A literature search was therefore carried out to define the state of the question, covering the development of this discipline, the main advances achieved and the applications in this field, and to identify the ethical concerns that have been associated with Synthetic Biology. The bioethical principles derived from ontological personalism 7 (Sgreccia, 2012) have been applied to give an answer from this ethical framework to the different issues raised. From this critical analysis, different conclusions have been drawn regarding the questions raised, as well as proposals that are in accordance with the personalist framework. Thus, the implications of the personalist principles for each of the ethical issues identified have been discussed and then examined in more depth by evaluating the different branches of Synthetic Biology separately. Finally, directions for future research have been outlined. 8 RESUMEN INTRODUCCIÓN La Biología Sintética es un área científica que combina la biología y la ingeniería para construir nuevos sistemas biológicos que podrían brindar soluciones a una amplia gama de necesidades sociales. Se esperan múltiples y prometedoras aplicaciones de esta disciplina. Sin embargo, la Biología Sintética también plantea varias inquietudes éticas que deben abordarse, no solo para proteger los valores que pueden verse amenazados por las diferentes aplicaciones de esta disciplina, sino también porque un abordaje deficiente de estas cuestiones éticas puede ser, junto con el rechazo social. , un obstáculo para la realización de estas aplicaciones. HIPÓTESIS Este trabajo se ha llevado a cabo bajo la hipótesis de que un estudio detallado del estado actual de la Biología Sintética desde una perspectiva personalista sacará a relucir los principales problemas bioéticos que podrían ser una amenaza para un desarrollo genuino, respetuoso con la vida y la dignidad humana, y proporcionará soluciones para que se convierta en una realidad. OBJETIVOS El objetivo principal de este trabajo es evaluar las cuestiones bioéticas planteadas por la Biología Sintética desde un enfoque bioético específico, el personalismo, específicamente el personalismo ontológico, una filosofía que muestra el valor objetivo de la persona sobre la base de su estructura ontológica. METODOLOGÍA Se han realizado tres fases principales de trabajo: contextualización (definición de la Biología Sintética y del estado de la cuestión); identificación y definición de las cuestiones éticas planteadas por esta disciplina; y abordaje de las cuestiones bioéticas 9 desde un marco personalista ontológico. Así, se ha realizado una búsqueda en la literatura para definir el estado de la cuestión, abarcando el desarrollo de esta disciplina, los principales avances logrados y las aplicaciones en este campo, y para identificar las cuestiones éticas asociadas con la Biología Sintética. Los principios bioéticos derivados del personalismo ontológico (Sgreccia, 2012) se han aplicado para dar una respuesta desde este marco ético a las diferentes cuestiones planteadas. A partir de este análisis crítico, se han extraído diferentes conclusiones sobre las cuestiones planteadas, así como propuestas de actuación acordes al marco personalista. RESULTADOS Y DISCUSIÓN Evaluación desde el personalismo de las cuestiones bioéticas planteadas por la Biología Sintética. La evaluación personalista de las cuestiones bioéticas planteadas por la Biología Sintética encuentra diferentes implicaciones para cada una de las cuestiones evaluadas: -Con respecto a la cuestión del impacto de la Biología Sintética en el concepto de vida y su creación, ninguna rama de esta disciplina se ha encontrado inevitablemente contraria a los principios personalistas. Sin embargo, las interpretaciones mecanicistas o reduccionistas del concepto de vida, que podrían derivarse de estos enfoques, podrían amenazar los valores defendidos por el principio de protección del ecosistema y el medio ambiente o incluso el principio de protección de la vida y la identidad genética de cada individuo humano. -Respecto al valor moral de los organismos sintéticos, sus intereses deben ser tenidos en cuenta. Se pueden derivar algunas conclusiones adicionales. En primer lugar, las consideraciones sobre el posible florecimiento dañado de los organismos sintéticos debido a su diseño no tienen relevancia moral desde nuestro punto de vista. En segundo lugar, deben observarse las características de los organismos sintéticos para determinar 10 sus intereses o requerimientos y preservarlos en la medida de lo posible. En tercer lugar, no existe un deber moral de salvaguardar la conservación de las especies sintéticas, ya que no forman parte de la biodiversidad que debe protegerse bajo el principio de protección del ecosistema y el medio ambiente. Finalmente, siempre se debe observar la primacía de la persona, teniendo en cuenta que, desde nuestro marco ético, los intereses humanos prevalecen sobre los intereses de los organismos vivos no humanos. Además, usar el término "máquina" para describir los organismos sintéticos puede ser peligroso. Si bien hoy en día los únicos organismos sintéticos que pueden producirse son microorganismos, cuyos requisitos de manipulación no tienen impacto a nivel moral, esto podría cambiar cuando se produzcan organismos más complejos. Nombrarlos adecuadamente desde el principio garantizaría que los intereses de los organismos sintéticos más complejos se respeten en el futuro. -Con respecto a los problemas de biosafety, hay algunas características de esta disciplina que justifican mejoras en las medidas de biosafety para salvaguardar los principios personalistas. Además, la legislación debe tener un papel en su regulación, incluidas las acciones de los biohackers, tanto a nivel nacional como internacional, teniendo en cuenta la naturaleza de los riesgos y los beneficios esperados. Se ha encontrado un punto débil en el desarrollo de los cinco principios personalistas aplicados en esta tesis. En consecuencia, parece que el principio de la competencia de la comunidad debería reformularse para incluir específicamente y describir el principio de libertad de investigación. Por lo tanto, el principio podría ser el principio de libertad de investigación y competencia de la comunidad. Su contenido debe incluir explícitamente el principio de libertad de investigación, su subordinación a los principios 1 y 2, de los cuales se deriva la investigación responsable, y la necesidad de tener en cuenta las opiniones de todos los interesados y la sociedad. 11 - También son necesarias mejoras en las medidas de biosecurity para responder a los riesgos, incluyendo el establecimiento de autoridades para la toma de decisiones y el desarrollo de normas, regulaciones y políticas de financiamiento para promover la seguridad, así como la implementación de formas eficientes y eficaces de controlar las secuencias genéticas distribuidas y las diseminación del conocimiento de alto riesgo, entre otras. - La posibilidad de aplicar la Biología Sintética a los seres humanos ha sido sugerida por importantes representantes en este campo, y podría servir para introducir grandes modificaciones en nuestro genoma (bioingeniería) o para sintetizarlo artificialmente (genómica sintética). Incluso bases no canónicas podrían introducirse en nuestro genoma (xenobiología). Según los principios empleados en este trabajo, la modificación del genoma humano es aceptable solo cuando es necesaria para el tratamiento de una enfermedad de otro modo incurable.
Recommended publications
  • Addressing Evolutionary Questions with Synthetic Biology
    Addressing evolutionary questions with synthetic biology Florian Baier and Yolanda Schaerli Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland Correspondence: [email protected]; [email protected] Abstract Synthetic biology emerged as an engineering discipline to design and construct artificial biological systems. Synthetic biological designs aim to achieve specific biological behavior, which can be exploited for biotechnological, medical and industrial purposes. In addition, mimicking natural systems using well-characterized biological parts also provides powerful experimental systems to study evolution at the molecular and systems level. A strength of synthetic biology is to go beyond nature’s toolkit, to test alternative versions and to study a particular biological system and its phenotype in isolation and in a quantitative manner. Here, we review recent work that implemented synthetic systems, ranging from simple regulatory circuits, rewired cellular networks to artificial genomes and viruses, to study fundamental evolutionary concepts. In particular, engineering, perturbing or subjecting these synthetic systems to experimental laboratory evolution provides a mechanistic understanding on important evolutionary questions, such as: Why did particular regulatory networks topologies evolve and not others? What happens if we rewire regulatory networks? Could an expanded genetic code provide an evolutionary advantage? How important is the structure of genome and number of chromosomes? Although the field of evolutionary synthetic biology is still in its teens, further advances in synthetic biology provide exciting technologies and novel systems that promise to yield fundamental insights into evolutionary principles in the near future. 1 1. Introduction Evolutionary biology traditionally studies past or present organisms to reconstruct past evolutionary events with the aim to explain and predict their evolution.
    [Show full text]
  • And Chemical-Activated Nucleosides and Unnatural Amino Acids. (Under the Direction of Dr
    ABSTRACT LIU, QINGYANG. Synthesis of Photo- and Chemical-Activated Nucleosides and Unnatural Amino Acids. (Under the direction of Dr. Alexander Deiters). Synthetic oligonucleotides coupled with photolabile caging groups have been developed to regulate a variety of biological processes in a spatial and temporal fashion. A UV-cleavable caging group was installed on deoxyadenosine and two morpholino oligonucleotide (MO) monomers of which the morpholino core synthesis was also investigated. The synthesis of a two-photon caging group was optimized and two chromophores with > 400 nm absorption maximum were applied to cage thymidine. These caged monomers can serve as light-triggers of oligonucleotide function upon incorporation. Two phosphine-labile azido thymidine derivatives were synthesized as orthogonal small molecule-triggers to the above light-triggers. Additionally, two coumarin linkers were synthesized, which can cyclize a linear MO so as to inactivate MO activity until > 400 nm light irradiation. These two linkers have been applied to the wavelength-selective regulation of zebrafish embryo development. An azide linker was also synthesized to control MOs using phosphines, as well as a UV-cleavable phosphoramidite to regulate DNA oligonucleotide activities. On the regulation of proteins, a two-photon caged lysine, four azido lysines and an azido tyrosine were synthesized to control protein function with either light or small molecules. The phosphine-induced cleavage of the azido groups were investigated on a coumarin reporter. A fluorescent lysine and an isotope labeled lysine were also synthesized as additional biophysical probes to label protein. These unnatural amino acids have been or will be incorporated into proteins through exogenous tRNA-aaRSs pairs.
    [Show full text]
  • Secretariat of the CBD Technical Series No. 82 Convention on Biological Diversity
    Secretariat of the CBD Technical Series No. 82 Convention on Biological Diversity 82 SYNTHETIC BIOLOGY FOREWORD To be added by SCBD at a later stage. 1 BACKGROUND 2 In decision X/13, the Conference of the Parties invited Parties, other Governments and relevant 3 organizations to submit information on, inter alia, synthetic biology for consideration by the Subsidiary 4 Body on Scientific, Technical and Technological Advice (SBSTTA), in accordance with the procedures 5 outlined in decision IX/29, while applying the precautionary approach to the field release of synthetic 6 life, cell or genome into the environment. 7 Following the consideration of information on synthetic biology during the sixteenth meeting of the 8 SBSTTA, the Conference of the Parties, in decision XI/11, noting the need to consider the potential 9 positive and negative impacts of components, organisms and products resulting from synthetic biology 10 techniques on the conservation and sustainable use of biodiversity, requested the Executive Secretary 11 to invite the submission of additional relevant information on this matter in a compiled and synthesised 12 manner. The Secretariat was also requested to consider possible gaps and overlaps with the applicable 13 provisions of the Convention, its Protocols and other relevant agreements. A synthesis of this 14 information was thus prepared, peer-reviewed and subsequently considered by the eighteenth meeting 15 of the SBSTTA. The documents were then further revised on the basis of comments from the SBSTTA 16 and peer review process, and submitted for consideration by the twelfth meeting of the Conference of 17 the Parties to the Convention on Biological Diversity.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE an Expanded Genetic Code
    UNIVERSITY OF CALIFORNIA, IRVINE An expanded genetic code for the characterization and directed evolution of tyrosine-sulfated proteins DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILSOPHY in Biomedical Engineering by Xiang Li Dissertation Committee: Assistant Professor Chang C. Liu, Chair Associate Professor Wendy Liu Associate Professor Jennifer A. Prescher 2018 Portion of Chapter 2 © John Wiley and Sons Portion of Chapter 3 © Springer Portion of Chapter 4 © Royal Society of Chemistry All other materials © 2018 Xiang Li i Dedication To My parents Audrey Bai and Yong Li and My brother Joshua Li ii Table of Content LIST OF FIGURES ..................................................................................................................VI LIST OF TABLES ................................................................................................................. VIII CURRICULUM VITAE ...........................................................................................................IX ACKNOWLEDGEMENTS .................................................................................................... XII ABSTRACT .......................................................................................................................... XIII CHAPTER 1. INTRODUCTION ................................................................................................ 1 1.1. INTRODUCTION .................................................................................................................
    [Show full text]
  • Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation
    G C A T T A C G G C A T genes Review Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation Christian Diwo 1 and Nediljko Budisa 1,2,* 1 Institut für Chemie, Technische Universität Berlin Müller-Breslau-Straße 10, 10623 Berlin, Germany; [email protected] 2 Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada * Correspondence: [email protected] or [email protected]; Tel.: +49-30-314-28821 or +1-204-474-9178 Received: 27 November 2018; Accepted: 21 December 2018; Published: 28 December 2018 Abstract: The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution.
    [Show full text]
  • Expanding the Genetic Code Lei Wang and Peter G
    Reviews P. G. Schultz and L. Wang Protein Science Expanding the Genetic Code Lei Wang and Peter G. Schultz* Keywords: amino acids · genetic code · protein chemistry Angewandte Chemie 34 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/anie.200460627 Angew. Chem. Int. Ed. 2005, 44,34–66 Angewandte Protein Science Chemie Although chemists can synthesize virtually any small organic molecule, our From the Contents ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, 1. Introduction 35 modifications are largely restricted to substitutions among the common 20 2. Chemical Approaches 35 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and 3. In Vitro Biosynthetic eukaryotic organisms. Over 30 novel amino acids have been genetically Approaches to Protein encoded in response to unique triplet and quadruplet codons including Mutagenesis 39 fluorescent, photoreactive, and redox-active amino acids, glycosylated 4. In Vivo Protein amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom- Mutagenesis 43 containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps 5. An Expanded Code 46 entire organisms with new or enhanced properties. 6. Outlook 61 1. Introduction The genetic codes of all known organisms specify the same functional roles to amino acid residues in proteins. Selectivity 20 amino acid building blocks. These building blocks contain a depends on the number and reactivity (dependent on both limited number of functional groups including carboxylic steric and electronic factors) of a particular amino acid side acids and amides, a thiol and thiol ether, alcohols, basic chain.
    [Show full text]
  • Synthetic Life Synthetic Life SL3-4
    15.11.2018 Aptamers Synthetic life SL3SL3SL3-SL3 ---4444 Aptamers (from the Latin aptus – fit, and Greek meros – part) are oligonucleotide or peptide molecules that bind to a specific target molecule. Aptamers are usually created by selecting them from a large random sequence pool, but natural aptamers also exist in riboswitches. •DNA or RNA or XNA aptamers – oligonucleotide strands (usually short) •Peptide aptamers - one (or more) short variable peptide domains, attached at both ends to a protein scaffold. Photo credit: Jenny Mottar, NASA NaturalNews.com WiSe 2018/19 Structure of an RNA aptamer specific for biotin. The aptamer surface and backbone Variety of target molecules Zbigniew Pianowski are shown in yellow. Biotin (spheres) fits snugly into a cavity of the RNA surface Fdardel Systematic evolution of ligands by exponential enrichment - SELEX Systematic evolution of ligands by exponential enrichment - SELEX In vitro selection begins with the generation 1990 – Gold et al. – selection of RNA ligands against T4 DNA polymerase of a diverse library of DNA or RNA molecules. 1990 – J. Szostak et al. – selecting RNA ligands towards organic dyes Multiple rounds are performed until The library is then the library converges on to a introduced to a target ligand collection of sequences with affinity for the target molecule. The bound sequences are then collected and PCR amplified for subsequent rounds of enrichment. A general overview of in vitro selection protocol. NA stands for Nucleic Acids (DNA, RNA) which Sequences demonstrating affinity start as a random pool, and are enriched through the selection process towards the target molecule are isolated from any unbound sequences.
    [Show full text]
  • Biomolecule, Pathway, and Circuit Engineering (Biomolecular Engineering)
    June 2019 Biomolecule, Pathway, and Circuit Engineering (Biomolecular Engineering) Engineering Biology: A Research Roadmap for the Next-Generation Bioeconomy 27 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 Phone: +1.510.871.3272 Fax: +1.510.245.2223 This material is based upon work supported by the National Science Foundation under Grant No. 1818248. © 2019 Engineering Biology Research Consortium June 2019 Biomolecule, Pathway, and Circuit Engineering Summary Biomolecule, Pathway, and Circuit Engineering focuses on the importance, challenges, and goals of engineering individual biomolecules themselves to have expanded or new functions. Successful progress would be demonstrated by production of functional macromolecules on- demand from both natural and non-natural building blocks, targeted design of complex circuits and pathways, and control over the dynamics of regulatory systems. Introduction and Impact At the molecular level, the functional richness, complexity, and diversity of biology can be localized predominantly to large “macro”-molecules (nucleic acids and proteins) and secondary metabolites. Indeed, evolution has produced and leveraged biomolecules and their assemblies to achieve extraordinarily sophisticated natural functions far surpassing our current engineering capabilities. If researchers are able to efficiently design, generate, synthesize, assemble, and regulate biomolecules in ways that rival the functional complexity of natural counterparts, but with user-defined functions, then all areas of bioengineering and synthetic biology should benefit. The challenge of crafting biomolecules, pathways, and circuits that carry out user-defined functions has historically been an exercise in building out from what exists in nature to what doesn’t. Certainly, this mode of bioengineering will be important going forward and will see transformations as our knowledge of and ability to harvest what exists in nature increases.
    [Show full text]
  • Molecular Basis of the Function of Transcriptional Enhancers
    cells Review Molecular Basis of the Function of Transcriptional Enhancers 1,2, 1, 1,3, Airat N. Ibragimov y, Oleg V. Bylino y and Yulii V. Shidlovskii * 1 Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; [email protected] (A.N.I.); [email protected] (O.V.B.) 2 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia 3 I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-4991354096 These authors contributed equally to this study. y Received: 30 May 2020; Accepted: 3 July 2020; Published: 5 July 2020 Abstract: Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription. Keywords: enhancer; promoter; chromatin; transcriptional bursting; transcription factories; enhancer RNA; epigenetic marks 1. Introduction Gene transcription is precisely organized in time and space. The process requires the participation of hundreds of molecules, which form an extensive interaction network. Substantial progress was achieved recently in our understanding of the molecular processes that take place in the cell nucleus (e.g., see [1–9]).
    [Show full text]
  • Flourishing and Discordance: on Two Modes of Human Science Engagement with Synthetic Biology
    Flourishing and Discordance: On Two Modes of Human Science Engagement with Synthetic Biology by Anthony Stavrianakis A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Anthropology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Paul Rabinow, Chair Professor Xin Liu Professor Charis Thompson Fall 2012 Abstract Flourishing and Discordance: On Two Modes of Human Science Engagement with Synthetic Biology by Anthony Stavrianakis Doctor of Philosophy in Anthropology University of California, Berkeley Professor Paul Rabinow, Chair This dissertation takes up the theme of collaboration between the human sciences and natural sciences and asks how technical, veridictional and ethical vectors in such co-labor can be inquired into today. I specify the problem of collaboration, between forms of knowledge, as a contemporary one. This contemporary problem links the recent past of the institutional relations between the human and natural sciences to a present experience of anthropological engagement with a novel field of bioengineering practice, called synthetic biology. I compare two modes of engagement, in which I participated during 2006–2011. One project, called Human Practices, based within the Synthetic Biology Engineering Research Center (SynBERC), instantiated an anthropological mode of inquiry, explicitly oriented to naming ethical problems for collaboration. This project, conducted in collaboration with Paul Rabinow and Gaymon Bennett, took as a challenge the invention of an appropriate practice to indeterminate ethical problems. Flourishing, a translation of the ancient Greek term eudaemonia, was a central term in orienting the Human Practices project. This term was used to posit ethical questions outside of the instrumental rationality of the sciences, and on which the Human Practices project would seek to work.
    [Show full text]
  • Enhancer Rnas Are an Important Regulatory Layer of the Epigenome
    REVIEW ARTICLE https://doi.org/10.1038/s41594-020-0446-0 Enhancer RNAs are an important regulatory layer of the epigenome Vittorio Sartorelli 1 and Shannon M. Lauberth 2 ✉ Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regula- tion of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function. he explosion of high-throughput sequencing data has Many different models for how enhancers function in gene con- revealed the complexity and diversity of the transcriptome. trol have been proposed since their initial discovery nearly four TThese data have also unexpectedly revealed that only 1–2% decades ago19–21. Specifically, there is considerable evidence demon- of the transcriptome provides instructions for the synthesis of strating that looping of distal enhancers to their target promoters is functional proteins, while the remaining 98–99% gives rise to a required for enhancer function (reviewed in ref. 22). For example, plethora of ncRNAs, including transfer RNAs (tRNAs), ribosomal a key study revealed that experimental induction of chromatin RNAs (rRNAs), intronic RNAs, small nuclear (sn)RNAs, small looping between the mouse β-globin (Hbb) promoter and its asso- nucleolar (sno)RNAs, microRNAs (miRNAs) and long noncoding ciated enhancer region results in transcriptional activation of the RNAs (lncRNAs). A recent addition to the expanding list of regu- Hbb gene23.
    [Show full text]
  • 21St Century Borders/Synthetic Biology: Focus on Responsibility and Governance
    Social science Engineering Framework Institute on Science for Global Policy (ISGP) Risk-benefit Media Public Synthetic Biology Genetic Governance Regulation Voluntary Anticipatory Databases Xenobiology 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance Conference convened by the ISGP Dec. 4–7, 2012 at the Hilton El Conquistador, Tucson, Arizona Risk Technology Oversight Plants Uncertainty Product Less-affluent countries DIYBIO Biotechnology Emerging Dynamic Environmental Government Biosafety Self-regulation Nefarious Genetically modified Protein Standards Dual use Distribution Applications Food Microbial Authority Assessment Agricultural Institute on Science for Global Policy (ISGP) 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance Conference convened by the ISGP in partnership with the University of Arizona at the Hilton El Conquistador Hotel Tucson, Arizona, U.S. Dec. 4–7, 2012 An ongoing series of dialogues and critical debates examining the role of science and technology in advancing effective domestic and international policy decisions Institute on Science for Global Policy (ISGP) Tucson, AZ Office 845 N. Park Ave., 5th Floor PO Box 210158-B Tucson, AZ 85721 Washington, DC Office 818 Connecticut Ave. NW Suite 800 Washington, DC 20006 www.scienceforglobalpolicy.org © Copyright Institute on Science for Global Policy, 2013. All rights reserved. ISBN: 978-0-9803882-4-0 ii Table of contents Executive summary • Introduction: Institute on Science for Global Policy (ISGP) .............. 1 Dr. George H. Atkinson, Founder and Executive Director, ISGP, and Professor Emeritus, University of Arizona • Conference conclusions: Areas of consensus and Actionable next steps ...................................... 7 Conference program ........................................................................................... 11 Policy position papers and debate summaries • Synthetic Biology — Do We Need New Regulatory Systems? Prof.
    [Show full text]