Questions About Powers of Numbers Barry Mazur

Total Page:16

File Type:pdf, Size:1020Kb

Questions About Powers of Numbers Barry Mazur fea-mazur.qxp 12/6/99 10:26 AM Page 195 Questions about Powers of Numbers Barry Mazur umber theory has quite a few famous of which have not yet been treated in the literature ancient and modern problems that can and for which, perhaps, the “circle method” may be asked in not too technical, almost provide at least partial answers.1 premathematical, language: Problems about Perfect Powers N• questions about prime numbers and their A perfect power is the n-th power of an integer for “placement” among all numbers (e.g., the Gold- some natural number n>1. These have attracted bach conjecture, the twin prime conjecture, the attention from the earliest times, beginning with “Schinzel hypothesis” predicting when there perfect squares, which arise in the Pythagorean are an infinite number of prime number val- Theorem, applied to right-angle triangles all three ues of a given polynomial, etc.); of whose sides are integral multiples of a given unit. and also Of course, perfect squares arise in other ways as • questions about the behavior of the sets of well; consider Fibonacci’s reflection in the trans- “perfect powers” under simple arithmetic op- lation [F] of his treatise on perfect squares, Liber erations. Quadratorum, in 1225: It is this second type of question that we will be discussing here as a way of introducing some basic I thought about the origin of all square issues in contemporary number theory. More numbers and discovered that they arise specifically, we want to stay on the level of fairly out of the increasing sequence of odd elementary mathematics, holding back from any numbers; for the unity is a square, specific discussion of advanced topics (e.g., the namely 1; to this unity is added 3, mak- arithmetic theory of elliptic curves, and modular ing the second square, namely 4, with forms), and to give, nevertheless, a hint of why cer- root 2; if the sum is added to the third tain constructions “coming from” the theory of el- odd number, namely 5,…. liptic curves (see the “quadratic and sextic trans- There is no end of famous problems regarding fers” below) find a very natural place in the study the most simple-seeming questions of placement of problems involving integers. We will also see why of perfect powers, and sums of them, on the num- 2 3 the Mordell Equation, y + x = k, plays a pivotal ber line: role. At the same time, I hope this article serves • Fermat. For n>2 the sum of two n-th pow- as an elementary introduction to the still unre- ers is never an n-th power. solved “ABC-Conjecture” due to Masser and Oesterlé. It also gives a pretext for asking related 1The circle method, a powerful Fourier analytic technique questions (called “(a, b, c)-questions” below), many designed for applications to number theory, will occa- sionally be alluded to in this article but will not be discussed Barry Mazur is professor of mathematics at Harvard Uni- in detail; the reader need not know about the circle method versity. His e-mail address is [email protected]. to understand the article. FEBRUARY 2000 NOTICES OF THE AMS 195 fea-mazur.qxp 12/6/99 10:26 AM Page 196 • Catalan, 1844 (cf. [R], [B2]). The numbers 8 and why not generalize somewhat the notion of “per- 9 are the only consecutive perfect powers. fect power” and deal instead with integers pos- • Waring Problems. This is a host of problems sessing comparatively large perfect power divi- having to do with the number of ways an in- sors? We will make this notion precise below and teger can be written as a sum of k “perfect” then formulate what I want to call rounded Dio- n-th powers. One does not have to go far to phantine problems. I have two reasons for doing come to an unsolved problem among these this. Waring problems. For example, it is guessed My main reason for considering this kind of that any integer not congruent to 4 or 5 mod- generalization is that it is a leisurely way of get- ulo 9 can be expressed as a sum of three cubes, ting some intuition for, and appreciation of, the re- but to tackle such a question seems to be out cent ABC-conjecture due to Masser and Oesterlé. of range of any of the available techniques. The current view of this conjecture is that it lies Also, there is the problem (at first glance, it is at the core of arithmetic. Nevertheless, it has the somewhat curious to single this problem out!) of simplicity of any one of the grand “direct” un- finding for any fixed integer k all integral solutions learned questions about numbers. (x, y) to the Mordell Equation A second reason for the generalization of “per- fect power” comes from thinking about the circle 2 3 Y X = k, method, which is the key technique that is brought to bear on Waring-type problems: this method has where x and y are relatively prime integers. What do we know about these problems? the disturbing feature (disturbing, at least, to peo- As for Fermat’s Last Theorem, we now have a ple like me who are not expert in it) of not really proof of it, thanks to the celebrated efforts of caring about the particular nature of the equation Wiles (1995). it is solving. It would seem that all one has to “tell” In the direction of the Catalan Problem, we the circle method in order to get it going is the de- know, thanks to a 1976 paper by Tijdeman [T], who gree of an equation, the number of variables in- used Baker’s theory of lower bounds for nonvan- volved, and the codimension of its singularity ishing linear forms in logarithms [B1], that there locus. Perhaps, then, the circle method, applied to is only a finite set of pairs of consecutive perfect problems about perfect powers, is also effective in powers. By work of Langevin, an upper bound for estimating the number of solutions to some prob- a perfect power whose successor is also a perfect lems having to do with integers possessing com- power can be computed from Tijdeman’s proof to paratively large perfect power divisors. We will be formulate below such problems, which have the e730 further advantage that they can be stated in rela- ee e . tively nontechnical language.2 As for the Mordell Equation, a general theorem Powered Numbers of Siegel (1929) guarantees that for a given nonzero integer k the equation has only a finite number of Motivated by the use of the term radical in ring the- integral solutions (as does any affine curve of ory, one defines the radical of a nonzero integer genus > 0 over the ring of integers). Moreover, N, denoted rad(N), as the product of all the prime much explicit work has been done toward finding divisors of N; so rad( 1) = 1, rad(24) = 6, etc. concretely the solutions for given values of Definition. For N an integer other than 0 and 1, k<100, 000 (cf. [G-P-Z]). the power function of N, denoted P(N), is the But, for the moment, let me say that this Mordell real-valued function Equation, special as it may seem, is a central player log |N| in the Diophantine drama and in a certain sense P(N)= . “stands for” the arithmetic theory of elliptic curves. log rad(N) One of the objects of this article is to give hints It is reasonable to simply convene P(1) := ∞ about why the Mordell Equation plays this central so that the power function is defined for all role. The proposition in the last section of the ar- nonzero integers. We have that P(N) 1 and, for ticle gives one relationship of the kind we have in N>1, P(N)=1if and only if N is “squarefree”, i.e., mind. if and only if N is not divisible by any perfect If one views each of the problems above as “Dio- square > 1. If N is a perfect n-th power, we have phantine”, i.e., as the problem of finding integral solutions to specific algebraic equations, one is that P(N) n. struck by how specific indeed these equations are. 2Nevertheless, they are reminiscent of the constellation of To emphasize the point, I will label all of these more precise (but quite technical) conjectures predicting problems about perfect powers as sharp Dio- the asymptotics of rational points of bounded height in phantine problems. To nudge ourselves towards varieties with ample anticanonical bundle—work initi- a more flexible type of problem that still carries ated by Manin and continued by Batyrev, Franke, Peyre, much of the flavor of the ones we have reviewed, Strauch, and Tschinkel. 196 NOTICES OF THE AMS VOLUME 47, NUMBER 2 fea-mazur.qxp 12/6/99 10:26 AM Page 197 For a>1 a real number, by an a-powered num- Since ber let us mean a nonzero integer N with P(N) a. 1 1 1 We will want to study the properties of the set of 1 2 2 + 2 X p p (p1p2) a-powered numbers—the “placement” of these 1 2 sets among all integers, the behavior of these sets 1 1 = 1 2 1 2 X, under simple arithmetic operations. p1 p2 As a way of introduction, let us first answer the we can see the pattern that is emerging. Sifting over question of “how many” integers N there are with all primes p that could possibly contribute to a P(N)=1.
Recommended publications
  • 81684-1B SP.Pdf
    INTERMEDIATE ALGEBRA The Why and the How First Edition Mathew Baxter Florida Gulf Coast University Bassim Hamadeh, CEO and Publisher Jess Estrella, Senior Graphic Designer Jennifer McCarthy, Acquisitions Editor Gem Rabanera, Project Editor Abbey Hastings, Associate Production Editor Chris Snipes, Interior Designer Natalie Piccotti, Senior Marketing Manager Kassie Graves, Director of Acquisitions Jamie Giganti, Senior Managing Editor Copyright © 2018 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions, translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cognella Licensing Department at [email protected]. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Cover image copyright © Depositphotos/agsandrew. Printed in the United States of America ISBN: 978-1-5165-0303-2 (pbk) / 978-1-5165-0304-9 (br) iii |  CONTENTS 1 The Real Number System 1 RealNumbersandTheirProperties 2:1.1 RealNumbers 2 PropertiesofRealNumbers 6 Section1.1Exercises 9 TheFourBasicOperations 11:1.2 AdditionandSubtraction 11 MultiplicationandDivision
    [Show full text]
  • The Unique Natural Number Set and Distributed Prime Numbers
    mp Co uta & tio d n e a li Jabur and Kushnaw, J Appl Computat Math 2017, 6:4 l p M p a Journal of A t h DOI: 10.4172/2168-9679.1000368 f e o m l a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access The Unique Natural Number Set and Distributed Prime Numbers Alabed TH1* and Bashir MB2 1Computer Science, Shendi University, Shendi, Sudan 2Shendi University, Shendi, Sudan Abstract The Natural number set has a new number set behind three main subset: odd, even and prime which are unique number set. It comes from a mathematical relationship between the two main types even and odd number set. It consists of prime and T-semi-prime numbers set. However, finding ways to understand how prime number was distributed was ambiguity and it is impossible, this new natural set show how the prime number was distributed and highlight focusing on T-semi-prime number as a new sub natural set. Keywords: Prime number; T-semi-prime number; Unique number purely mathematical sciences and it has been used prime number set within theoretical physics to try and produce a theory that ties together prime numbers with quantum chaos theory [3]. However, researchers Introduction were made a big effort to find algorithm which can describe how prime The Unique natural number set is sub natural number set which number are distributed, still distribution of prime numbers throughout consist of prime and T-semi-prime numbers. T-semi-prime is natural a list of integers leads to the emergence of many unanswered and number divided by one or more prime numbers.
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • Appendix a Tables of Fermat Numbers and Their Prime Factors
    Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard
    [Show full text]
  • William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri [email protected]
    #A3 INTEGERS 16 (2016) EVERY NATURAL NUMBER IS THE SUM OF FORTY-NINE PALINDROMES William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri [email protected] Received: 9/4/15, Accepted: 1/4/16, Published: 1/21/16 Abstract It is shown that the set of decimal palindromes is an additive basis for the natural numbers. Specifically, we prove that every natural number can be expressed as the sum of forty-nine (possibly zero) decimal palindromes. 1. Statement of Result Let N .= 0, 1, 2, . denote the set of natural numbers (including zero). Every { } number n N has a unique decimal representation of the form 2 L 1 − j n = 10 δj, (1) j=0 X where each δj belongs to the digit set .= 0, 1, 2, . , 9 , D { } and the leading digit δL 1 is nonzero whenever L 2. In what follows, we use − ≥ diagrams to illustrate the ideas; for example, n = δL 1 δ1 δ0 − · · · represents the relation (1). The integer n is said to be a decimal palindrome if its decimal digits satisfy the symmetry condition δj = δL 1 j (0 j < L). − − Denoting by the collection of all decimal palindromes in N, the aim of this note P is to show that is an additive basis for N. P INTEGERS: 16 (2016) 2 Theorem 1. The set of decimal palindromes is an additive basis for the natural P numbers N. Every natural number is the sum of forty-nine (possibly zero) decimal palindromes. The proof is given in the next section. It is unlikely that the second statement is optimal; a refinement of our method may yield an improvement.
    [Show full text]
  • 1 Powers of Two
    A. V. GERBESSIOTIS CS332-102 Spring 2020 Jan 24, 2020 Computer Science: Fundamentals Page 1 Handout 3 1 Powers of two Definition 1.1 (Powers of 2). The expression 2n means the multiplication of n twos. Therefore, 22 = 2 · 2 is a 4, 28 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 is 256, and 210 = 1024. Moreover, 21 = 2 and 20 = 1. Several times one might write 2 ∗ ∗n or 2ˆn for 2n (ˆ is the hat/caret symbol usually co-located with the numeric-6 keyboard key). Prefix Name Multiplier d deca 101 = 10 h hecto 102 = 100 3 Power Value k kilo 10 = 1000 6 0 M mega 10 2 1 9 1 G giga 10 2 2 12 4 T tera 10 2 16 P peta 1015 8 2 256 E exa 1018 210 1024 d deci 10−1 216 65536 c centi 10−2 Prefix Name Multiplier 220 1048576 m milli 10−3 Ki kibi or kilobinary 210 − 230 1073741824 m micro 10 6 Mi mebi or megabinary 220 40 n nano 10−9 Gi gibi or gigabinary 230 2 1099511627776 −12 40 250 1125899906842624 p pico 10 Ti tebi or terabinary 2 f femto 10−15 Pi pebi or petabinary 250 Figure 1: Powers of two Figure 2: SI system prefixes Figure 3: SI binary prefixes Definition 1.2 (Properties of powers). • (Multiplication.) 2m · 2n = 2m 2n = 2m+n. (Dot · optional.) • (Division.) 2m=2n = 2m−n. (The symbol = is the slash symbol) • (Exponentiation.) (2m)n = 2m·n. Example 1.1 (Approximations for 210 and 220 and 230).
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • PRIME-PERFECT NUMBERS Paul Pollack [email protected] Carl
    PRIME-PERFECT NUMBERS Paul Pollack Department of Mathematics, University of Illinois, Urbana, Illinois 61801, USA [email protected] Carl Pomerance Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755, USA [email protected] In memory of John Lewis Selfridge Abstract We discuss a relative of the perfect numbers for which it is possible to prove that there are infinitely many examples. Call a natural number n prime-perfect if n and σ(n) share the same set of distinct prime divisors. For example, all even perfect numbers are prime-perfect. We show that the count Nσ(x) of prime-perfect numbers in [1; x] satisfies estimates of the form c= log log log x 1 +o(1) exp((log x) ) ≤ Nσ(x) ≤ x 3 ; as x ! 1. We also discuss the analogous problem for the Euler function. Letting N'(x) denote the number of n ≤ x for which n and '(n) share the same set of prime factors, we show that as x ! 1, x1=2 x7=20 ≤ N (x) ≤ ; where L(x) = xlog log log x= log log x: ' L(x)1=4+o(1) We conclude by discussing some related problems posed by Harborth and Cohen. 1. Introduction P Let σ(n) := djn d be the sum of the proper divisors of n. A natural number n is called perfect if σ(n) = 2n and, more generally, multiply perfect if n j σ(n). The study of such numbers has an ancient pedigree (surveyed, e.g., in [5, Chapter 1] and [28, Chapter 1]), but many of the most interesting problems remain unsolved.
    [Show full text]
  • The Distribution of Pseudoprimes
    The Distribution of Pseudoprimes Matt Green September, 2002 The RSA crypto-system relies on the availability of very large prime num- bers. Tests for finding these large primes can be categorized as deterministic and probabilistic. Deterministic tests, such as the Sieve of Erastothenes, of- fer a 100 percent assurance that the number tested and passed as prime is actually prime. Despite their refusal to err, deterministic tests are generally not used to find large primes because they are very slow (with the exception of a recently discovered polynomial time algorithm). Probabilistic tests offer a much quicker way to find large primes with only a negligibal amount of error. I have studied a simple, and comparatively to other probabilistic tests, error prone test based on Fermat’s little theorem. Fermat’s little theorem states that if b is a natural number and n a prime then bn−1 ≡ 1 (mod n). To test a number n for primality we pick any natural number less than n and greater than 1 and first see if it is relatively prime to n. If it is, then we use this number as a base b and see if Fermat’s little theorem holds for n and b. If the theorem doesn’t hold, then we know that n is not prime. If the theorem does hold then we can accept n as prime right now, leaving a large chance that we have made an error, or we can test again with a different base. Chances improve that n is prime with every base that passes but for really big numbers it is cumbersome to test all possible bases.
    [Show full text]
  • SUPERHARMONIC NUMBERS 1. Introduction If the Harmonic Mean Of
    MATHEMATICS OF COMPUTATION Volume 78, Number 265, January 2009, Pages 421–429 S 0025-5718(08)02147-9 Article electronically published on September 5, 2008 SUPERHARMONIC NUMBERS GRAEME L. COHEN Abstract. Let τ(n) denote the number of positive divisors of a natural num- ber n>1andletσ(n)denotetheirsum.Thenn is superharmonic if σ(n) | nkτ(n) for some positive integer k. We deduce numerous properties of superharmonic numbers and show in particular that the set of all superhar- monic numbers is the first nontrivial example that has been given of an infinite set that contains all perfect numbers but for which it is difficult to determine whether there is an odd member. 1. Introduction If the harmonic mean of the positive divisors of a natural number n>1isan integer, then n is said to be harmonic.Equivalently,n is harmonic if σ(n) | nτ(n), where τ(n)andσ(n) denote the number of positive divisors of n and their sum, respectively. Harmonic numbers were introduced by Ore [8], and named (some 15 years later) by Pomerance [9]. Harmonic numbers are of interest in the investigation of perfect numbers (num- bers n for which σ(n)=2n), since all perfect numbers are easily shown to be harmonic. All known harmonic numbers are even. If it could be shown that there are no odd harmonic numbers, then this would solve perhaps the most longstand- ing problem in mathematics: whether or not there exists an odd perfect number. Recent articles in this area include those by Cohen and Deng [3] and Goto and Shibata [5].
    [Show full text]
  • The Simple Mersenne Conjecture
    The Simple Mersenne Conjecture Pingyuan Zhou E-mail:[email protected] Abstract p In this paper we conjecture that there is no Mersenne number Mp = 2 –1 to be prime k for p = 2 ±1,±3 when k > 7, where p is positive integer and k is natural number. It is called the simple Mersenne conjecture and holds till p ≤ 30402457 from status of this conjecture. If the conjecture is true then there are no more double Mersenne primes besides known double Mersenne primes MM2, MM3, MM5, MM7. Keywords: Mersenne prime; double Mersenne prime; new Mersenne conjecture; strong law of small numbers; simple Mersenne conjecture. 2010 Mathematics Subject Classification: 11A41, 11A51 1 p How did Mersenne form his list p = 2,3,5,7,13,17,19,31,67,127,257 to make 2 –1 become primes ( original Mersenne conjecture ) and why did the list have five errors ( 67 and 257 were wrong but 61,89,107 did not appear here )? Some of mathematicians have studied this problem carefully[1]. From verification results of new Mersenne conjecture we see three conditions in the conjecture all hold only for p = 3,5,7,13,17,19,31,61,127 though new Mersenne conjecture has been verified to be true for all primes p < 20000000[2,3]. If we only consider Mersenne primes and p is p k positive integer then we will discovery there is at least one prime 2 –1 for p = 2 ±1,±3 when k ≤ 7 ( k is natural number 0,1,2,3,…), however, such connections will disappear completely from known Mersenne primes when k > 7.
    [Show full text]