Sato-Tate Distributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalization of Anderson's T-Motives and Tate Conjecture
数理解析研究所講究録 第 884 巻 1994 年 154-159 154 Generalization of Anderson’s t-motives and Tate conjecture AKIO TAMAGAWA $(\exists\backslash i]||^{\wedge}x\ovalbox{\tt\small REJECT} F)$ RIMS, Kyoto Univ. $(\hat{P\backslash }\#\beta\lambda\doteqdot\ovalbox{\tt\small REJECT}\Phi\Phi\Re\Re_{X}^{*}ffi)$ \S 0. Introduction. First we shall recall the Tate conjecture for abelian varieties. Let $B$ and $B’$ be abelian varieties over a field $k$ , and $l$ a prime number $\neq$ char $(k)$ . In [Tat], Tate asked: If $k$ is finitely genera $tedo1^{\gamma}er$ a prime field, is the natural homomorphism $Hom_{k}(B', B)\bigotimes_{Z}Z_{l}arrow H_{0}m_{Z_{l}[Ga1(k^{sep}/k)](T_{l}(B'),T_{l}(B))}$ an isomorphism? This is so-called Tate conjecture. It has been solved by Tate ([Tat]) for $k$ finite, by Zarhin ([Zl], [Z2], [Z3]) and Mori ([Ml], [M2]) in the case char$(k)>0$ , and, finally, by Faltings ([F], [FW]) in the case char$(k)=0$ . We can formulate an analogue of the Tate conjecture for Drinfeld modules $(=e1-$ liptic modules ([Dl]) $)$ as follows. Let $C$ be a proper smooth geometrically connected $C$ curve over the finite field $F_{q},$ $\infty$ a closed point of , and put $A=\Gamma(C-\{\infty\}, \mathcal{O}_{C})$ . Let $k$ be an A-field, i.e. a field equipped with an A-algebra structure $\iota$ : $Aarrow k$ . Let $k$ $G$ and $G’$ be Drinfeld A-modules over (with respect to $\iota$ ), and $v$ a maximal ideal $\neq Ker(\iota)$ . Then, if $k$ is finitely generated over $F_{q}$ , is the natural homomorphism $Hom_{k}(G', G)\bigotimes_{A}\hat{A}_{v}arrow Hom_{\hat{A}_{v}[Ga1(k^{sep}/k)]}(T_{v}(G'), T_{v}(G))$ an isomorphism? We can also formulate a similar conjecture for Anderson’s abelian t-modules ([Al]) in the case $A=F_{q}[t]$ . -
Tate's Conjecture, Algebraic Cycles and Rational K-Theory In
K-Theory 13: 109–122, 1998. 109 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Tate’s Conjecture, Algebraic Cycles and Rational K-Theory in Characteristic p THOMAS GEISSER? Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen, Germany e-mail: [email protected] (Received: May 1997) Abstract. The purpose of this article is to discuss conjectures on motives, algebraic cycles and K-theory of smooth projective varieties over finite fields. We give a characterization of Tate’s conjecture in terms of motives and their Frobenius endomorphism. This is used to prove that if Tate’s conjecture holds and rational and numerical equivalence over finite fields agree, then higher rational K-groups of smooth projective varieties over finite fields vanish (Parshin’s conjecture). Parshin’s conjecture in turn implies a conjecture of Beilinson and Kahn giving bounds on rational K-groups of fields in finite characteristic. We derive further consequences from this result. Mathematics Subject Classifications (1991). 19E08, 14C35, 19E15. Key words: higher algebraic K-theory, Milnor K-theory, finite fields, Tate’s conjecture, Beilinson’s conjecture, Parshin’s conjecture, Chow groups. 1. Introduction There are three results which allow to deduce properties of the category of motives for numerical equivalence: Deligne’s proof of the Weil conjectures, Jannsen’s semi- simplicity theorem, and the existence of the Frobenius automorphism πM for motives M. If one further assumes Tate’s conjecture, one can give a very precise description of this category (Milne [10]). For example, simple motives are determined by their Frobenius endomorphism, and one can recover the endomorphism algebra with the Frobenius. -
Arxiv:2012.03076V1 [Math.NT]
ODONI’S CONJECTURE ON ARBOREAL GALOIS REPRESENTATIONS IS FALSE PHILIP DITTMANN AND BORYS KADETS Abstract. Suppose f K[x] is a polynomial. The absolute Galois group of K acts on the ∈ preimage tree T of 0 under f. The resulting homomorphism ρf : GalK Aut T is called the arboreal Galois representation. Odoni conjectured that for all Hilbertian→ fields K there exists a polynomial f for which ρf is surjective. We show that this conjecture is false. 1. Introduction Suppose that K is a field and f K[x] is a polynomial of degree d. Suppose additionally that f and all of its iterates f ◦k(x)∈:= f f f are separable. To f we can associate the arboreal Galois representation – a natural◦ ◦···◦ dynamical analogue of the Tate module – as − ◦k 1 follows. Define a graph structure on the set of vertices V := Fk>0 f (0) by drawing an edge from α to β whenever f(α) = β. The resulting graph is a complete rooted d-ary ◦k tree T∞(d). The Galois group GalK acts on the roots of the polynomials f and preserves the tree structure; this defines a morphism φf : GalK Aut T∞(d) known as the arboreal representation attached to f. → ❚ ✐✐✐✐ 0 ❚❚❚ ✐✐✐✐ ❚❚❚❚ ✐✐✐✐ ❚❚❚❚ ✐✐✐✐ ❚❚❚ ✐✐✐✐ ❚❚❚❚ ✐✐✐✐ ❚❚❚ √3 √3 ❏ t ❑❑ ✈ ❏❏ tt − ❑❑ ✈✈ ❏❏ tt ❑❑ ✈✈ ❏❏ tt ❑❑❑ ✈✈ ❏❏ tt ❑ ✈✈ ❏ p3 √3 p3 √3 p3+ √3 p3+ √3 − − − − Figure 1. First two levels of the tree T∞(2) associated with the polynomial arXiv:2012.03076v1 [math.NT] 5 Dec 2020 f = x2 3 − This definition is analogous to that of the Tate module of an elliptic curve, where the polynomial f is replaced by the multiplication-by-p morphism. -
Modular Galois Represemtations
Modular Galois Represemtations Manal Alzahrani November 9, 2015 Contents 1 Introduction: Last Formulation of QA 1 1.1 Absolute Galois Group of Q :..................2 1.2 Absolute Frobenius Element over p 2 Q :...........2 1.3 Galois Representations : . .4 2 Modular Galois Representation 5 3 Modular Galois Representations and FLT: 6 4 Modular Artin Representations 8 1 Introduction: Last Formulation of QA Recall that the goal of Weinstein's paper was to find the solution to the following simple equation: QA: Let f(x) 2 Z[x] irreducible. Is there a "rule" which determine whether f(x) split modulo p, for any prime p 2 Z? This question can be reformulated using algebraic number theory, since ∼ there is a relation between the splitting of fp(x) = f(x)(mod p) and the splitting of p in L = Q(α), where α is a root of f(x). Therefore, we can ask the following question instead: QB: Let L=Q a number field. Is there a "rule" determining when a prime in Q split in L? 1 0 Let L =Q be a Galois closure of L=Q. Since a prime in Q split in L if 0 and only if it splits in L , then to answer QB we can assume that L=Q is Galois. Recall that if p 2 Z is a prime, and P is a maximal ideal of OL, then a Frobenius element of Gal(L=Q) is any element of FrobP satisfying the following condition, FrobP p x ≡ x (mod P); 8x 2 OL: If p is unramifed in L, then FrobP element is unique. -
A Theorem on Equidistribution on Compact Groups
Pacific Journal of Mathematics A THEOREM ON EQUIDISTRIBUTION ON COMPACT GROUPS GILBERT HELMBERG Vol. 8, No. 2 April 1958 A THEOREM ON EQUIDISTRIBUTION IN COMPACT GROUPS GILBERT HELMBERG 1. Preliminaries. Throughout the discussions in the following sec- tions, we shall assume that G is a compact topological group whose space is I\ with an identity element e and with Haar-measure μ normal- ized in such a way that μ(G) = l. G has a complete system of inequivalent irreducible unitary representations1 R(λ)(λeA) where β(1) is the identity- (λ) Cλ) representation and rλ is the degree of iϋ . i? (β) will then denote the identity matrix of degree rλ. The concept of equidistribution of a sequence of points was introduced first by H. Weyl [6] for the direct product of circle groups. It has been transferred to compact groups by B. Eckmann [1] and highly generalized by E. Hlawka [4]\ We shall use it in the following from : 1 DEFINITION 1. Let {xv:veω} be a sequence of elements in G and let, for any closed subset M of G, N(M) be the number of elements in the set {xv: xv e M9 v^N}. The sequence {a?v: v e ω] is said to be equidίstributed in G if (1) for all closed subsets M of G, whose boundaries have measured 0. It is easy to see that a sequence which is equidistributed in G is also dense in G. As Eckmann has shown for compact groups with a countable base, and E. Hlawka for compact groups in general, the equidistribution of a sequence in G can be stated by means of the system {R^ΆeΛ} of representations of G. -
Bernoulli Decompositions and Applications
Equidistributed sequences Bernoulli systems Sinai's factor theorem Bernoulli decompositions and applications Han Yu University of St Andrews A day in October Equidistributed sequences Bernoulli systems Sinai's factor theorem Outline Equidistributed sequences Bernoulli systems Sinai's factor theorem It is enough to check the above result for each interval with rational end points. It is also enough to replace the indicator function with a countable dense family of continuous functions in C([0; 1]): Equidistributed sequences Bernoulli systems Sinai's factor theorem A reminder Let fxngn≥1 be a sequence in [0; 1]: It is equidistributed with respect to the Lebesgue measure λ if for each (open or close or whatever) interval I ⊂ [0; 1] we have the following result, N 1 X lim 1I (xn) = λ(I ): N!1 N n=1 It is also enough to replace the indicator function with a countable dense family of continuous functions in C([0; 1]): Equidistributed sequences Bernoulli systems Sinai's factor theorem A reminder Let fxngn≥1 be a sequence in [0; 1]: It is equidistributed with respect to the Lebesgue measure λ if for each (open or close or whatever) interval I ⊂ [0; 1] we have the following result, N 1 X lim 1I (xn) = λ(I ): N!1 N n=1 It is enough to check the above result for each interval with rational end points. Equidistributed sequences Bernoulli systems Sinai's factor theorem A reminder Let fxngn≥1 be a sequence in [0; 1]: It is equidistributed with respect to the Lebesgue measure λ if for each (open or close or whatever) interval I ⊂ [0; 1] we have the following result, N 1 X lim 1I (xn) = λ(I ): N!1 N n=1 It is enough to check the above result for each interval with rational end points. -
Monodromy and the Tate Conjecture-1
Monodromy and the Tate conjecture-1 Monodromy and ttthe Tattte conjjjecttture::: Piiicard numbers and Mordellllll-Weiiilll ranks iiin famiiillliiies A. Johan de Jong and Nicholas M. Katz Intttroductttiiion We use results of Deligne on …-adic monodromy and equidistribution, combined with elementary facts about the eigenvalues of elements in the orthogonal group, to give upper bounds for the average "middle Picard number" in various equicharacteristic families of even dimensional hypersurfaces, cf. 6.11, 6.12, 6.14, 7.6, 8.12. We also give upper bounds for the average Mordell- Weil rank of the Jacobian of the generic fibre in various equicharacteristic families of surfaces fibred over @1, cf. 9.7, 9.8. If the relevant Tate Conjecture holds, each upper bound we find for an average is in fact equal to that average The paper is organized as follows: 1.0 Review of the Tate Conjecture 2.0 The Tate Conjecture over a finite field 3.0 Middle-dimensional cohomology 4.0 Hypersurface sections of a fixed ambient variety 5.0 Smooth hypersurfaces in projective space 6.0 Families of smooth hypersurfaces in projective space 7.0 Families of smooth hypersurfaces in products of projective spaces 8.0 Hypersurfaces in @1≠@n as families over @1 9.0 Mordell-Weil rank in families of Jacobians References 1...0 Reviiiew of ttthe Tattte Conjjjecttture 1.1 Let us begin by recalling the general Tate Conjectures about algebraic cycles on varieties over finitely generated ground fields, cf. Tate's articles [Tate-Alg] and [Tate-Conj]. We start with a field k, a separable closure äk of k, and Gal(äk/k) its absolute galois group. -
ON the TATE MODULE of a NUMBER FIELD II 1. Introduction
ON THE TATE MODULE OF A NUMBER FIELD II SOOGIL SEO Abstract. We generalize a result of Kuz'min on a Tate module of a number field k. For a fixed prime p, Kuz'min described the inverse limit of the p part of the p-ideal class groups over the cyclotomic Zp-extension in terms of the global and local universal norm groups of p-units. This result plays a crucial rule in studying arithmetic of p-adic invariants especially the generalized Gross conjecture. We extend his result to the S-ideal class group for any finite set S of primes of k. We prove it in a completely different way and apply it to study the properties of various universal norm groups of the S-units. 1. Introduction S For a number field k and an odd prime p, let k1 = n kn be the cyclotomic n Zp-extension of k with kn the unique subfield of k1 of degree p over k. For m ≥ n, let Nm;n = Nkm=kn denote the norm map from km to kn and let Nn = Nn;0 denote the norm map from kn to the ground field k0 = k. H × ≥ Huniv For a subgroup n of kn ; n 0, let k be the universal norm subgroup of H k defined as follows \ Huniv H k = Nn n n≥0 univ and let (Hn ⊗Z Zp) be the universal norm subgroup of Hk ⊗Z Zp is defined as follows \ univ (Hk ⊗Z Zp) = Nn(Hn ⊗Z Zp): n≥0 The natural question whether the norm functor commutes with intersections of subgroups k× was already given in many articles and is related with algebraic and arithmetic problems including the generalized Gross conjecture and the Leopoldt conjecture. -
Arxiv:1810.06480V3 [Math.AG] 10 May 2021 1.2.1
A NOTE ON THE BEHAVIOUR OF THE TATE CONJECTURE UNDER FINITELY GENERATED FIELD EXTENSIONS EMILIANO AMBROSI ABSTRACT. We show that the `-adic Tate conjecture for divisors on smooth proper varieties over finitely generated fields of positive characteristic follows from the `-adic Tate conjecture for divisors on smooth projective surfaces over finite fields. Similar results for cycles of higher codimension are given. 1. INTRODUCTION Let k be a field of characteristic p ≥ 0 with algebraic closure k and write π1(k) for the absolute Galois group of k.A k-variety is a reduced scheme, separated and of finite type over k. For a k-variety Z i write Zk := Z ×k k and CH (Zk) for the group of algebraic cycles of codimension i modulo rational equivalence. Let ` 6= p be a prime. 1.1. Conjectures. Recall the following versions of the Grothendieck-Serre-Tate conjectures ([Tat65], [And04, Section 7.3]): Conjecture 1.1.1. If k is finitely generated and Z is a smooth proper k-variety, then: • T (Z; i; `): The `-adic cycle class map [ 0 c : CHi(Z ) ⊗ ! H2i(Z ; (i))π1(k ) Zk k Q` k Q` [k0:k]<+1 is surjective; 2i • S(Z; i; `): The action of π1(k) on H (Zk; Q`(i)) is semisimple; 2i π1(k) 2i • WS(Z; i; `): The inclusion H (Zk; Q`(i)) ⊆ H (Zk; Q`(i)) admits a π1(k)-equivariant splitting. For a field K, one says that T (K; i; `) holds if for every finite field extension K ⊆ L and every smooth proper L-variety Z, T (Z; i; `) holds. -
The Geometry of Lubin-Tate Spaces (Weinstein) Lecture 1: Formal Groups and Formal Modules
The Geometry of Lubin-Tate spaces (Weinstein) Lecture 1: Formal groups and formal modules References. Milne's notes on class field theory are an invaluable resource for the subject. The original paper of Lubin and Tate, Formal Complex Multiplication in Local Fields, is concise and beautifully written. For an overview of Dieudonn´etheory, please see Katz' paper Crystalline Cohomology, Dieudonn´eModules, and Jacobi Sums. We also recommend the notes of Brinon and Conrad on p-adic Hodge theory1. Motivation: the local Kronecker-Weber theorem. Already by 1930 a great deal was known about class field theory. By work of Kronecker, Weber, Hilbert, Takagi, Artin, Hasse, and others, one could classify the abelian extensions of a local or global field F , in terms of data which are intrinsic to F . In the case of global fields, abelian extensions correspond to subgroups of ray class groups. In the case of local fields, which is the setting for most of these lectures, abelian extensions correspond to subgroups of F ×. In modern language there exists a local reciprocity map (or Artin map) × ab recF : F ! Gal(F =F ) which is continuous, has dense image, and has kernel equal to the connected component of the identity in F × (the kernel being trivial if F is nonarchimedean). Nonetheless the situation with local class field theory as of 1930 was not completely satisfying. One reason was that the construction of recF was global in nature: it required embedding F into a global field and appealing to the existence of a global Artin map. Another problem was that even though the abelian extensions of F are classified in a simple way, there wasn't any explicit construction of those extensions, save for the unramified ones. -
Construction of Normal Numbers with Respect to Generalized Lüroth Series from Equidistributed Sequences
CONSTRUCTION OF NORMAL NUMBERS WITH RESPECT TO GENERALIZED LÜROTH SERIES FROM EQUIDISTRIBUTED SEQUENCES MAX AEHLE AND MATTHIAS PAULSEN Abstract. Generalized Lüroth series generalize b-adic representations as well as Lüroth series. Almost all real numbers are normal, but it is not easy to construct one. In this paper, a new construction of normal numbers with respect to Generalized Lüroth Series (including those with an infinite digit set) is given. Our method concatenates the beginnings of the expansions of an arbitrary equidistributed sequence. 1. Introduction In 1909, Borel proved that the b-adic representations of almost all real numbers are normal for any integer base b. However, only a few simple examples for normal numbers are known, like the famous Champernowne constant [Cha33] 0 . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 .... Other constants as π or e are conjectured to be normal. The concept of normality naturally extends to more general number expansions, including Generalized√ Lüroth 1 Series [DK02, pp. 41–50]. For example, the numbers 1/e and 2 3 are not normal with respect to the classical Lüroth expansion that was introduced in [Lü83]. In his Bachelor thesis, Boks [Bok09] proposed an algorithm that yields a normal number with respect to the Lüroth expansion, but he did not complete his proof of normality. Some years later, Madritsch and Mance [MM14] transferred Champer- nowne’s construction to any invariant probability measure. However, their method is rather complicated and does not reflect that digit sequences represent numbers. Vandehey [Van14] provided a much simpler construction, but for finite digit sets only, in particular, not for the original Lüroth expansion. -
On the Structure of Galois Groups As Galois Modules
ON THE STRUCTURE OF GALOIS GROUPS AS GALOIS MODULES Uwe Jannsen Fakult~t f~r Mathematik Universit~tsstr. 31, 8400 Regensburg Bundesrepublik Deutschland Classical class field theory tells us about the structure of the Galois groups of the abelian extensions of a global or local field. One obvious next step is to take a Galois extension K/k with Galois group G (to be thought of as given and known) and then to investigate the structure of the Galois groups of abelian extensions of K as G-modules. This has been done by several authors, mainly for tame extensions or p-extensions of local fields (see [10],[12],[3] and [13] for example and further literature) and for some infinite extensions of global fields, where the group algebra has some nice structure (Iwasawa theory). The aim of these notes is to show that one can get some results for arbitrary Galois groups by using the purely algebraic concept of class formations introduced by Tate. i. Relation modules. Given a presentation 1 + R ÷ F ÷ G~ 1 m m of a finite group G by a (discrete) free group F on m free generators, m the factor commutator group Rabm = Rm/[Rm'R m] becomes a finitely generated Z[G]-module via the conjugation in F . By Lyndon [19] and m Gruenberg [8]§2 we have 1.1. PROPOSITION. a) There is an exact sequence of ~[G]-modules (I) 0 ÷ R ab + ~[G] m ÷ I(G) + 0 , m where I(G) is the augmentation ideal, defined by the exact sequence (2) 0 + I(G) ÷ Z[G] aug> ~ ÷ 0, aug( ~ aoo) = ~ a .