On the Random Character of Fundamental Constant Expansions David H. Bailey1 and Richard E. Crandall2 03 October 2000 Abstract We propose a theory to explain random behavior for the digits in the expansions of fundamental mathematical constants. At the core of our approach is a general hypothesis concerning the distribution of the iterates generated by dynamical maps. On this main hypothesis, one obtains proofs of base-2 normality—namely bit randomness in a specific technical sense—for a collection of celebrated constants, including π, log 2,ζ(3), and others. Also on the hypothesis, the number ζ(5)iseitherrationalornormaltobase 2. We indicate a research connection between our dynamical model and the theory of pseudorandom number generators. 1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,
[email protected]. Bailey’s work is supported by the Director, Office of Computational and Technology Research, Division of Math- ematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC03-76SF00098. 2Center for Advanced Computation, Reed College, Portland, OR 97202 USA,
[email protected]. 1 1. Introduction It is of course a long-standing open question whether the digits of π and various other fundamental constants are “random” in an appropriate statistical sense. Informally speaking, we say that a number α isnormaltobaseb if every sequence of k consecutive digits in the base-b expansion of α appears with limiting probability b−k. In other words, if a constant is normal to base 10, then its decimal expansion would exhibit a “7” one- tenth of the time, the string “37” one one-hundredth of the time, and so on.