Combinatorial Games on Graphs Gabriel Renault

Total Page:16

File Type:pdf, Size:1020Kb

Combinatorial Games on Graphs Gabriel Renault Combinatorial games on graphs Gabriel Renault To cite this version: Gabriel Renault. Combinatorial games on graphs. Other [cs.OH]. Université Sciences et Technologies - Bordeaux I, 2013. English. NNT : 2013BOR14937. tel-00919998 HAL Id: tel-00919998 https://tel.archives-ouvertes.fr/tel-00919998 Submitted on 17 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N◦ d’ordre: 4937 THÈSE présentée à L’UNIVERSITÉ BORDEAUX 1 École Doctorale de Mathématiques et Informatique de Bordeaux par Gabriel Renault pour obtenir le grade de DOCTEUR SPÉCIALITÉ : INFORMATIQUE Jeux combinatoires dans les graphes Soutenue le 29 novembre 2013 au Laboratoire Bordelais de Recherche en Informatique (LaBRI) Après avis des rapporteurs : Michael Albert Professeur Sylvain Gravier Directeur de recherche Brett Stevens Professeur Devant la commission d’examen composée de : Examinateurs Tristan Cazenave Professeur Éric Duchêne Maître de conférence Rapporteurs Sylvain Gravier Directeur de recherche Brett Stevens Professeur Directeurs de thèse Paul Dorbec Maître de conférence Éric Sopena Professeur ii Remerciements iii Remerciements Je voudrais d’abord remercier les rapporteurs et membres de mon jury de s’être intéressés à mes travaux, d’avoir lu ma thèse, assisté à ma soutenance et posé des questions évoquant de futurs axes de recherche sur le sujet. Merci beaucoup à Michael Albert, Sylvain Gravier et Brett Stevens d’avoir pris le temps de lire ma thèse en détail et exprimé des remarques pertinentes et constructives sur leurs rapports. Merci beaucoup à Tristan Cazenave d’avoir accepté de présider mon jury. Merci beaucoup à Éric Duchêne d’être venu de Lyon pour ma soutenance. Je tiens à remercier plus particulièrement mes directeurs de thèse Paul Dorbec et Éric Sopena. Travailler avec eux a toujours été un plaisir, ils ont un don pour déterminer quels problèmes m’intéresseraient particulièrement. Ils m’ont fait confiance en acceptant de m’encadrer pour mon stage de M2, puis pour ma thèse. Je les remercie aussi pour toutes les opportunités qu’ils m’ont apportées, que ce soit des expériences d’enseignement un peu différentes au sein de Math en Jeans et Maths à Modeler, des séjours de recherche ou des conférences. L’échange avec eux a aussi été très agréable sur le plan humain, c’était sympathique de pouvoir aussi parler en dehors d’un contexte de travail. Je voudrais également remercier les personnes avec lesquelles j’ai eu l’occasion de travailler, en particulier Boštjan, Éric, Gašper, Julien, Re- becca, Richard, Sandi et Simon. C’est toujours intéressant de se pencher sur un problème avec quelqu’un qui peut avoir une vision un peu différente et d’arriver à une solution grâce à ces deux points de vue. J’ai aussi eu la chance de participer aux séminaires du groupe de tra- vail Graphes et Applications. Je remercie ses membres et plus particulière- ment ceux qui ont été doctorants en même temps que moi, avec lesquels j’ai eu le plus d’échange, Adrien, Clément, Émilie Florent, Hervé, Noël Petru, Pierre, Quentin, Romaric, Sagnik, Thomas et Tom. C’était aussi un plaisir de cotoyer les membres permanents, André, Arnaud, Cyril, David, Frantisek, Frédéric, Mickael, Nicolas, Nicolas, Olivier, Olivier, Philippe et Ralf. Je remercie aussi les chercheurs en graphes et jeux que j’ai eu la chance de rencontrer en conférence ou séjour de recherche, parmi lesquels Aline, An- dré, Ararat, Benjamin, Guillem, Guillaume, Jean-Florent, Julien, Laetitia, Laurent, Louis, Marthe, Neil, Nicolas, Paul, Reza, Théophile et Urban. J’ai eu la chance d’enseigner à l’Université Bordeaux 1, et je voudrais re- mercier les enseignants qui m’ont accompagné pour ce parcours, notamment Aurélien, Christian, David, Frédéric, Frédérique, Jean-Paul, Pascal, Pierre, Pierre et Vincent. Je tiens également à remercier Marie-Line avec laquelle j’ai pu encadrer l’activité Math en Jeans à l’université. Je remercie aussi toute l’équipe administrative du LaBRI pour leur effi- cacité, leur amabilité et leur bonne humeur, en particulier ceux avec lesquels iv Remerciements j’ai eu le plus d’occasions de discuter, Brigitte, Cathy, Isabelle, Lebna, Maïté et Philippe. Je voudrais remercier les doctorants qui ont participé à faire vivre le bureau 123 via des débats et discussions, en particulier Amal, Benjamin, Christian, Christopher, Edon, Eve, Florian, Jaime, Jérôme, Lorijn, Lucas, Matthieu, Nesrine, Omar, Oualid, Pierre, Sinda, Tom, Tung, Van-Cuong, Wafa et Yi. La vie au labo aurait été différente sans les activités organisées par l’AFoDIB, et les sorties entre doctorants. Je remercie leurs participants les plus fréquents, parmi ceux qui n’ont pas encore été cités, Abbas, Adrien, Allyx, Anaïs, Anna, Carlos, Cedric, Cyril, David, Dominik, Etienne, Fouzi, Jérôme, Lorenzo, Martin, Matthieu, Noémie-Fleur, Razanne, Rémi, Simon, Srivathsan, Thomas, Vincent et Xavier. J’ai aussi eu des contacts en dehors de la sphère de l’université. Je voudrais remercier mes amis avec lesquels mes sujets de discussions variaient un peu en comparaison, ou qui m’ont permis de vulgariser mes travaux, en particulier Alexandre, Amélie, Benjamin, Cécile, Clément, Emeric, Ena, Guilhem, Irène, Jonas, Kévin, Laure, Nolwenn, Ophélia, Pierre, Rémi et Ro- main. Je citerai aussi les emails du RatonLaveur qui pouvaient participer à me mettre de bonne humeur. Je voudrais aussi remercier ma famille pour des raisons similaires, ainsi que pour m’avoir fait confiance et encouragé dans la voie que je voulais suivre. Je remercie mes parents, mes frères et sœur, mes grands-parents, oncles, tantes, cousins et cousines. Un remerciement spécial à Xiaohan qui a donné une autre dimension à la vulgarisation en me poussant à la réaliser en anglais. Résumé v Jeux combinatoires dans les graphes Résumé : Dans cette thèse, nous étudions les jeux combinatoires sous différentes contraintes. Un jeu combinatoire est un jeu à deux joueurs, sans hasard, avec information complète et fini acyclique. D’abord, nous regardons les jeux impartiaux en version normale, en particulier les jeux VertexNim et Timber. Puis nous considérons les jeux partisans en version normale, où nous prouvons des résultats sur les jeux Timbush, Toppling Dominoes et Col. Ensuite, nous examinons ces jeux en version misère, et étudions les jeux misères modulo l’univers des jeux dicots et modulo l’univers des jeux dead-endings. Enfin, nous parlons du jeu de domination qui, s’il n’est pas combinatoire, peut être étudié en utilisant des outils de théorie des jeux combinatoires. Mots-clés : jeux combinatoires, graphes, jeux impartiaux, jeux partisans, version normale, version misère, jeu de domi- nation vi Abstract Combinatorial games on graphs Abstract: In this thesis, we study combinatorial games under different conventions. A combinatorial game is a finite acyclic two-player game with complete information and no chance. First, we look at impartial games in normal play and in particular at the games VertexNim and Timber. Then, we consider partizan games in normal play, with results on the games Timbush, Toppling Dominoes and Col. Next, we look at all these games in misère play, and study misère games modulo the dicot universe and modulo the dead-ending universe. Finally, we talk about the domination game which, despite not being a combinatorial game, may be studied with combinatorial games theory tools. Keywords: combinatorial games, graphs, impartial games, partizan games, normal convention, misère convention, dom- ination game Contents vii Contents 1 Introduction 1 1.1 Definitions............................. 2 1.1.1 Combinatorial Games . 2 1.1.2 Graphs .......................... 6 2 Impartial games 13 2.1 VertexNim ............................ 14 2.1.1 Directed graphs . 16 2.1.2 Undirected graphs . 21 2.2 Timber .............................. 26 2.2.1 General results . 27 2.2.2 Trees............................ 32 2.2.2.1 Paths . 39 2.3 Perspectives............................ 40 3 Partizan games 43 3.1 Timbush ............................. 44 3.1.1 General results . 45 3.1.2 Paths ........................... 49 3.1.3 Black and white trees . 54 3.2 Toppling Dominoes ...................... 61 3.2.1 Preliminary results . 63 3.2.2 Proof of Theorem 3.27 . 65 3.3 Col ................................ 72 3.3.1 General results . 76 3.3.2 Known results . 80 3.3.3 Caterpillars . 93 3.3.4 Cographs ......................... 96 3.4 Perspectives............................ 98 4 Misère games 101 4.1 Specificgames........................... 104 4.1.1 Geography .......................105 4.1.2 VertexNim .......................111 4.1.3 Timber ..........................113 4.1.4 Timbush .........................116 4.1.5 Toppling Dominoes ..................117 viii Contents 4.1.6 Col ............................119 4.2 Canonical form of dicot games . 126 4.2.1 Definitions and universal properties . 127 4.2.2 Canonical form of dicot games . 130 4.2.3 Dicot misère games born by day 3 ...........136 4.2.3.1 Dicot games born by day 3 in the general universe..................... 143 4.2.4 Sums of dicots can have any outcome . 146 4.3 A peek at the dead-ending universe . 147 4.3.1 Preliminary results . 149 4.3.2 Integers and other dead ends . 151 4.3.3 Numbers.......................... 153 4.3.3.1 The misère monoid of Q2 ...........153 4.3.3.2 The partial order of numbers modulo E . 158 4.3.4 Zeros in the dead-ending universe . 160 4.4 Perspectives............................ 161 5 Domination Game 167 5.1 About no-minus graphs . 169 5.2 The domination game played on unions of graphs . 172 5.2.1 Union of no-minus graphs .
Recommended publications
  • Algorithmic Combinatorial Game Theory∗
    Playing Games with Algorithms: Algorithmic Combinatorial Game Theory∗ Erik D. Demaine† Robert A. Hearn‡ Abstract Combinatorial games lead to several interesting, clean problems in algorithms and complexity theory, many of which remain open. The purpose of this paper is to provide an overview of the area to encourage further research. In particular, we begin with general background in Combinatorial Game Theory, which analyzes ideal play in perfect-information games, and Constraint Logic, which provides a framework for showing hardness. Then we survey results about the complexity of determining ideal play in these games, and the related problems of solving puzzles, in terms of both polynomial-time algorithms and computational intractability results. Our review of background and survey of algorithmic results are by no means complete, but should serve as a useful primer. 1 Introduction Many classic games are known to be computationally intractable (assuming P 6= NP): one-player puzzles are often NP-complete (as in Minesweeper) or PSPACE-complete (as in Rush Hour), and two-player games are often PSPACE-complete (as in Othello) or EXPTIME-complete (as in Check- ers, Chess, and Go). Surprisingly, many seemingly simple puzzles and games are also hard. Other results are positive, proving that some games can be played optimally in polynomial time. In some cases, particularly with one-player puzzles, the computationally tractable games are still interesting for humans to play. We begin by reviewing some basics of Combinatorial Game Theory in Section 2, which gives tools for designing algorithms, followed by reviewing the relatively new theory of Constraint Logic in Section 3, which gives tools for proving hardness.
    [Show full text]
  • COMPSCI 575/MATH 513 Combinatorics and Graph Theory
    COMPSCI 575/MATH 513 Combinatorics and Graph Theory Lecture #34: Partisan Games (from Conway, On Numbers and Games and Berlekamp, Conway, and Guy, Winning Ways) David Mix Barrington 9 December 2016 Partisan Games • Conway's Game Theory • Hackenbush and Domineering • Four Types of Games and an Order • Some Games are Numbers • Values of Numbers • Single-Stalk Hackenbush • Some Domineering Examples Conway’s Game Theory • J. H. Conway introduced his combinatorial game theory in his 1976 book On Numbers and Games or ONAG. Researchers in the area are sometimes called onagers. • Another resource is the book Winning Ways by Berlekamp, Conway, and Guy. Conway’s Game Theory • Games, like everything else in the theory, are defined recursively. A game consists of a set of left options, each a game, and a set of right options, each a game. • The base of the recursion is the zero game, with no options for either player. • Last time we saw non-partisan games, where each player had the same options from each position. Today we look at partisan games. Hackenbush • Hackenbush is a game where the position is a diagram with red and blue edges, connected in at least one place to the “ground”. • A move is to delete an edge, a blue one for Left and a red one for Right. • Edges disconnected from the ground disappear. As usual, a player who cannot move loses. Hackenbush • From this first position, Right is going to win, because Left cannot prevent him from killing both the ground supports. It doesn’t matter who moves first.
    [Show full text]
  • Blue-Red Hackenbush
    Basic rules Two players: Blue and Red. Perfect information. Players move alternately. First player unable to move loses. The game must terminate. Mathematical Games – p. 1 Outcomes (assuming perfect play) Blue wins (whoever moves first): G > 0 Red wins (whoever moves first): G < 0 Mover loses: G = 0 Mover wins: G0 Mathematical Games – p. 2 Two elegant classes of games number game: always disadvantageous to move (so never G0) impartial game: same moves always available to each player Mathematical Games – p. 3 Blue-Red Hackenbush ground prototypical number game: Blue-Red Hackenbush: A player removes one edge of his or her color. Any edges not connected to the ground are also removed. First person unable to move loses. Mathematical Games – p. 4 An example Mathematical Games – p. 5 A Hackenbush sum Let G be a Blue-Red Hackenbush position (or any game). Recall: Blue wins: G > 0 Red wins: G < 0 Mover loses: G = 0 G H G + H Mathematical Games – p. 6 A Hackenbush value value (to Blue): 3 1 3 −2 −3 sum: 2 (Blue is two moves ahead), G> 0 3 2 −2 −2 −1 sum: 0 (mover loses), G= 0 Mathematical Games – p. 7 1/2 value = ? G clearly >0: Blue wins mover loses! x + x - 1 = 0, so x = 1/2 Blue is 1/2 move ahead in G. Mathematical Games – p. 8 Another position What about ? Mathematical Games – p. 9 Another position What about ? Clearly G< 0. Mathematical Games – p. 9 −13/8 8x + 13 = 0 (mover loses!) x = -13/8 Mathematical Games – p.
    [Show full text]
  • Combinatorial Game Theory
    Combinatorial Game Theory Aaron N. Siegel Graduate Studies MR1EXLIQEXMGW Volume 146 %QIVMGER1EXLIQEXMGEP7SGMIX] Combinatorial Game Theory https://doi.org/10.1090//gsm/146 Combinatorial Game Theory Aaron N. Siegel Graduate Studies in Mathematics Volume 146 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Daniel S. Freed Rafe Mazzeo Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 91A46. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-146 Library of Congress Cataloging-in-Publication Data Siegel, Aaron N., 1977– Combinatorial game theory / Aaron N. Siegel. pages cm. — (Graduate studies in mathematics ; volume 146) Includes bibliographical references and index. ISBN 978-0-8218-5190-6 (alk. paper) 1. Game theory. 2. Combinatorial analysis. I. Title. QA269.S5735 2013 519.3—dc23 2012043675 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2013 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • Math Book from Wikipedia
    Math book From Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 25 Jul 2011 10:39:12 UTC Contents Articles 0.999... 1 1 (number) 20 Portal:Mathematics 24 Signed zero 29 Integer 32 Real number 36 References Article Sources and Contributors 44 Image Sources, Licenses and Contributors 46 Article Licenses License 48 0.999... 1 0.999... In mathematics, the repeating decimal 0.999... (which may also be written as 0.9, , 0.(9), or as 0. followed by any number of 9s in the repeating decimal) denotes a real number that can be shown to be the number one. In other words, the symbols 0.999... and 1 represent the same number. Proofs of this equality have been formulated with varying degrees of mathematical rigour, taking into account preferred development of the real numbers, background assumptions, historical context, and target audience. That certain real numbers can be represented by more than one digit string is not limited to the decimal system. The same phenomenon occurs in all integer bases, and mathematicians have also quantified the ways of writing 1 in non-integer bases. Nor is this phenomenon unique to 1: every nonzero, terminating decimal has a twin with trailing 9s, such as 8.32 and 8.31999... The terminating decimal is simpler and is almost always the preferred representation, contributing to a misconception that it is the only representation. The non-terminating form is more convenient for understanding the decimal expansions of certain fractions and, in base three, for the structure of the ternary Cantor set, a simple fractal.
    [Show full text]
  • Combinatorial Game Theory: an Introduction to Tree Topplers
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2015 Combinatorial Game Theory: An Introduction to Tree Topplers John S. Ryals Jr. Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Ryals, John S. Jr., "Combinatorial Game Theory: An Introduction to Tree Topplers" (2015). Electronic Theses and Dissertations. 1331. https://digitalcommons.georgiasouthern.edu/etd/1331 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. COMBINATORIAL GAME THEORY: AN INTRODUCTION TO TREE TOPPLERS by JOHN S. RYALS, JR. (Under the Direction of Hua Wang) ABSTRACT The purpose of this thesis is to introduce a new game, Tree Topplers, into the field of Combinatorial Game Theory. Before covering the actual material, a brief background of Combinatorial Game Theory is presented, including how to assign advantage values to combinatorial games, as well as information on another, related game known as Domineering. Please note that this document contains color images so please keep that in mind when printing. Key Words: combinatorial game theory, tree topplers, domineering, hackenbush 2009 Mathematics Subject Classification: 91A46 COMBINATORIAL GAME THEORY: AN INTRODUCTION TO TREE TOPPLERS by JOHN S. RYALS, JR. B.S. in Applied Mathematics A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial Fulfillment of the Requirement for the Degree MASTER OF SCIENCE STATESBORO, GEORGIA 2015 c 2015 JOHN S.
    [Show full text]
  • Lecture Note for Math576 Combinatorial Game Theory
    Math576: Combinatorial Game Theory Lecture note II Linyuan Lu University of South Carolina Fall, 2020 Disclaimer The slides are solely for the convenience of the students who are taking this course. The students should buy the textbook. The copyright of many figures in the slides belong to the authors of the textbook: Elwyn R. Berlekamp, John H. Con- way, and Richard K. Guy. Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 2 / 39 The Game of Nim ■ Two players: “Left” and “Right”. ■ Game board: a number of heaps of counters. ■ Rules: Two players take turns. Either player can remove any positive number of counters from any one heap. ■ Ending positions: Whoever gets stuck is the loser. Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 3 / 39 Nimbers The game value of a heap of size n is denoted by ∗n. It can defined recursively as follows: ∗ = {0 | 0}; ∗2= {0, ∗ | 0, ∗}; ∗3= {0, ∗, ∗2 | 0, ∗, ∗2}; . ∗n = {0, ∗, ∗2, · · · , ∗(n − 1) | 0, ∗, ∗2, · · · , ∗(n − 1)}. Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 4 / 39 Nimbers The game value of a heap of size n is denoted by ∗n. It can defined recursively as follows: ∗ = {0 | 0}; ∗2= {0, ∗ | 0, ∗}; ∗3= {0, ∗, ∗2 | 0, ∗, ∗2}; . ∗n = {0, ∗, ∗2, · · · , ∗(n − 1) | 0, ∗, ∗2, · · · , ∗(n − 1)}. So the previous nim game has the game value ∗5+ ∗ + ∗ + ∗ + ∗ + ∗6+ ∗4. Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 4 / 39 Identities of nimbers ∗n + ∗n =0. Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 5 / 39 Identities of nimbers ∗n + ∗n =0.
    [Show full text]
  • A Short Guide to Hackenbush
    A Short Guide to Hackenbush Padraic Bartlett – VIGRE REU 2006 August 12, 2006 1 Let’s Play A Game! Figure 1. A sample game of Red-Blue Hackenbush. Red-Blue Hackenbush is a two-person game – let’s call these two people Left and Right – best played on a chalkboard. We begin by drawing a picture like Figure 1, made of Red and Blue lines, on which to play on. After this is done, Left and Right alternate turns, each erasing a (suggestively alliterative) Blue or Red edge from the graph, as well as any edges that are no longer connected to the ground (the thick black line at the base of the picture.) The game ends when one of our two players no longer has any edges he can cut – this player is the “loser” of a game of Hackenbush, and the other is (logically) the winner. For example, in the picture below, the Right player is at a clear advantage – his shrub has 10 edges to Left’s collective 6, and if the Right player prunes his shrubbery by moving from the top down, he can ensure that there will be at least 10 − 6 = 4 edges left at the end of the game for him. Left can make sure that Right plays at least this well by being careful with how he trims his bushes as well. 1 Figure 2. A shrubbery! But what about a slightly less clear-cut picture? In Figure 3, both players have completely identical plants to prune, so who wins? Well: if Left starts, he will have to cut some edge of his picture.
    [Show full text]
  • ES.268 Theory of Impartial Games, Slides 1
    ES.268 – The Mathematics of Toys and Games 1 Class Overview Instructors: Jing Li (class of '11, course 14 and 18C) Melissa Gymrek (class of '11, course 6 and 18) Supervisor: Professor Erik Demaine (Theory of Computation group at CSAIL) Requirements: Weekly attendance is mandatory! Occasional Readings Final projects 2 Topics Theory of Impartial Games Surreal Numbers Linear Algebra and Monopoly Algorithms/Complexity of Games Dynamic Programming Artificial Intelligence Topics Rubik's Cube and Group Theory Probability Topics Games on Graphs NP-complete games Card Games Constraint Logic Theory Conway's Game of Life 3 Theory of Impartial Games Much of the game theory we will talk about will involve combinatorial games, which have the following properties: There are two players There is a finite set of positions available in the game Players alternate turns The game ends when a player can't make a move The game eventually ends (not infinite) 4 Types of Games Today's topic is impartial games: The set of allowable moves depends only on the positions of the game and not on which of the two players is moving Example impartial games: Jenga, Nim, sprouts, green hackenbush In partisan games, the available moves depend on which player is moving. (GO, checkers, chess) 5 The Game of Nim Much of the foundations for combinatorial game theory came from analyzing the game of Nim Here we use Nim to learn about types of game positions, nimbers, and to lead into an important combinatorial game theory theorem 6 Nim: How to Play The game begins with 3 (or n) piles, or nim- heaps of stones (or coins, or popsicle sticks...) Players 1 and 2 alternate taking off any number of stones from a pile until there are no stones left.
    [Show full text]
  • Impartial Games
    1 Impartial Games An impartial game is a two-player game in which players take turns to make moves, and where the moves available from a given position don't depend on whose turn it is. A player loses if they can't make a move on their turn (i.e. a player wins if they move to a position from which no move is possible). In games which are not impartial, the two players take on different roles (e.g. one controls white pieces and the other black), so the moves available in a given position depend on whose turn it is. Before we treat these more complicated games, we first consider the special case of impartial games. Any nim position is an impartial game. Write ∗n for the nim position with a single heap of size n. In particular, ∗0 is the "zero game", written 0: the player to move immedi- ately loses. We consider a position in a game as a game in itself. We can specify a game by giving the set of its options - the games to which the first player can move. e.g. 0 = ;, ∗1 = f0g, ∗n = {∗0; ∗1; ∗2; :::; ∗(n − 1)g. For impartial games G and H, G + H is the game where the two games are played side-by-side, with a player on their turn getting to decide which of the two to move in. So e.g. ∗2 + ∗2 + ∗3 is the nim position with two heaps of size 2 and one of size 3. If G = fG1; :::; Gng and H = fH1; :::; Hng, then G + H = fG1 + H; :::; Gn + H; G + H1; :::; G + Hng.
    [Show full text]
  • Surreal Numbers and Games
    Surreal Numbers and Games February 10, 2009 Introduction Last week we began looking at doing arithmetic with impartial games using their Sprague-Grundy values. Today we’ll look at an alternative way to repre- sent games as numbers that we will extend to include partisan games as well. Surreal numbers were introduced in Donald Knuth’s (fiction) book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness, and the full theory was developed by John Conway after using the numbers to analyze endgames in GO. We’ll start by using Conway’s methods to represent games, and then show how these games/numbers form a new number system. On Numbers and Games To begin, we’ll look at a partisan version of the impartial game of Green Hackenbush we saw last week. This game is called “Red-Blue Hackenbush.” It is played similarly to Green Hackenbush, but now each line segment might be colored either red or blue. There are two players who for convenience in notation will be called L and R. On L’s turn, he can only chop off blue branches, and R can only chop off red branches. As before, when a player re- moves a branch, all branches that are now disconncected from the “ground” also disappear. The player to chop off the last branch wins. The game below is an example: 1 SP.268 - The Mathematics of Toys and Games Below we’ll use this and other games to define games and surreal numbers. What is a Game A game (in combinatorial game theory) is defined as: G = {GL|GR} where GL,GR are sets of games themselves.
    [Show full text]
  • Combinatorial Games, Volume 43
    http://dx.doi.org/10.1090/psapm/043 AMS SHORT COURSE LECTURE NOTES Introductory Survey Lectures A Subseries of Proceedings of Symposia in Applied Mathematics Volume 43 COMBINATORIAL GAMES Edited by Richard K Guy [Columbus, Ohio, August 1990) Volume 42 CRYPTOLOGY AND COMPUTATIONAL NUMBER THEORY Edited by C. Pomerance {Boulder, Colorado, August 1989) Volume 41 ROBOTICS Edited by R. W. Brockett (Louisville, Kentucky, January 1990) Volume 40 MATRIX THEORY AND APPLICATIONS Edited by Charles R. Johnson (Phoenix, Arizona, January 1989) Volume 39 CHAOS AND FRACTALS: THE MATHEMATICS BEHIND THE COMPUTER GRAPHICS Edited by Robert L. Devaney and Linda Keen (Providence, Rhode Island, August 1988) Volume 38 COMPUTATIONAL COMPLEXITY THEORY Edited by Juris Hartmanis (Atlanta, Georgia, January 1988) Volume 37 MOMENTS IN MATHEMATICS Edited by Henry J. Landau (San Antonio, Texas, January 1987) Volume 36 APPROXIMATION THEORY Edited by Carl de Boor (New Orleans, Louisiana, January 1986) Volume 35 ACTUARIAL MATHEMATICS Edited by Harry H. Panjer (Laramie, Wyoming, August 1985) Volume 34 MATHEMATICS OF INFORMATION PROCESSING Edited by Michael Anshel and William Gewirtz (Louisville, Kentucky, January 1984) Volume 33 FAIR ALLOCATION Edited by H. Peyton Young (Anaheim, California, January 1985) Volume 32 ENVIRONMENTAL AND NATURAL RESOURCE MATHEMATICS Edited by R. W. McKelvey (Eugene, Oregon, August 1984) Volume 31 COMPUTER COMMUNICATIONS Edited by B. Gopinath (Denver, Colorado, January 1983) Volume 30 POPULATION BIOLOGY Edited by Simon A. Levin (Albany, New York, August 1983) Volume 29 APPLIED CRYPTOLOGY, CRYPTOGRAPHIC PROTOCOLS, AND COMPUTER SECURITY MODELS By R. A. DeMillo, G I. Davida, D. P. Dobkin, M. A. Harrison, and R. J. Lipton (San Francisco, California, January 1981) Volume 28 STATISTICAL DATA ANALYSIS Edited by R.
    [Show full text]