Register Allocation by Graph Coloring Under Full Live-Range Splitting Sandrine Blazy, Benoît Robillard

Total Page:16

File Type:pdf, Size:1020Kb

Register Allocation by Graph Coloring Under Full Live-Range Splitting Sandrine Blazy, Benoît Robillard Register allocation by graph coloring under full live-range splitting Sandrine Blazy, Benoît Robillard To cite this version: Sandrine Blazy, Benoît Robillard. Register allocation by graph coloring under full live-range splitting. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded systems (LCTES’2009), ACM, Jun 2009, Dublin, Ireland. inria-00387749 HAL Id: inria-00387749 https://hal.inria.fr/inria-00387749 Submitted on 2 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Live-Range Unsplitting for Faster Optimal Coalescing Sandrine Blazy Benoit Robillard ENSIIE, CEDRIC {blazy,robillard}@ensiie.fr Abstract be stored in registers. Coalescing allocates unspilled variables to Register allocation is often a two-phase approach: spilling of regis- registers in a way that leaves as few as possible move statements ters to memory, followed by coalescing of registers. Extreme live- (i.e. register copies). Both spilling and coalescing are known to be range splitting (i.e. live-range splitting after each statement) en- NP-complete [24, 6]. ables optimal solutions based on ILP, for both spilling and coa- Classically, register allocation is modeled as a graph coloring lescing. However, while the solutions are easily found for spilling, problem, where each register is represented by a color, and each for coalescing they are more elusive. This difficulty stems from the variable is represented by a vertex in an interference graph. Given huge size of interference graphs resulting from live-range splitting. a number k of available registers, register allocation consists in This paper focuses on coalescing in the context of extreme live- finding (if any) a k-coloring of the interference graph. When there range splitting. It presents some theoretical properties that give rise is no k-coloring, some variables are spilled to memory. When there to an algorithm for reducing interference graphs. This reduction is a k-coloring, coalescing consists in choosing a k-coloring that consists mainly in finding and removing useless splitting points. It removes most of the move statements. is followed by a graph decomposition based on clique separators. ILP-based approaches have been applied to register allocation The reduction and decomposition are general enough, so that any in order to provide optimal solutions. Register allocation is one of coalescing algorithm can be applied afterwards. the most important passes of a compiler. A compiler performing an Our strategy for reducing and decomposing interference graphs optimal register allocation can thus generate efficient code. Having preserves the optimality of coalescing. When used together with such a code is often of primary concern for embedded software, an optimal coalescing algorithm (e.g. ILP), optimal solutions are even if the price to pay is to use an external ILP-solver. Appel and much more easily found. The strategy has been tested on a standard George formulate spilling as an integer linear program (ILP) and benchmark, the optimal coalescing challenge. For this benchmark, provide optimal and efficient solutions [3]. Their process to find the cutting-plane algorithm for optimal coalescing (the only opti- optimal solutions for spilling requires live-range splitting, an opti- mal algorithm for coalescing) runs 300 times faster when combined mization that leaves more flexibility to the register allocation (i.e. with our strategy. Moreover, we provide all the optimal solutions of avoids to spill a variable everywhere). While the solutions are easily the optimal coalescing challenge, including the three instances that found for spilling in this context, for coalescing they are more elu- were previously unsolved. sive. Indeed, live-range splitting generates huge interference graphs (due to many move statements) that make the coalescing harder to Categories and Subject Descriptors D.3.4 [Programming lan- solve. guages]: Processors - compilers, optimization; G.2.2 [Graph the- Splitting the live-range of a variable v consists in renaming v ory]: Graph algorithms to different variables having shorter live-ranges than v and adding move statements connecting the variables originating from v. Re- General Terms algorithms, languages cent spilling heuristics benefit from live-range splitting: when a Keywords register allocation, coalescing, graph reduction variable is spilled because it has a long live-range, splitting this live-range into smaller pieces may avoid to spill v. If the live-range of v is short, it is easier to store v in a register, as the register needs 1. Introduction to hold the value of v only during the live-range of v. Register allocation determines at compile time where each variable There exists several ways of splitting live-ranges (e.g. region will be stored at execution time: either in a register or in memory. spilling, zero cost range splitting, load/store range analysis) [10, 7, Register allocation is often a two-phase approach: spilling of reg- 18, 19, 4, 11, 20]. Splitting live-ranges often reduces the interfer- isters to memory, followed by coalescing of registers [3, 8, 16, 5]. ences with other live-ranges. Thus, most of the splitting heuristics Spilling generates loads and stores for live variables1 that cannot have been successful in improving the spilling phase. The differ- ences between these heuristics stem from the number of splitting 1 A variable that may be potentially read before its next write is called a live points (i.e. program points where live-ranges are split) as well as variable. the sizes of the split live-ranges. These heuristics are sometimes difficult to implement. The most aggressive live-range splitting is extreme live-range splitting, where live-ranges are split after each statement. Its main Permission to make digital or hard copies of all or part of this work for personal or advantage is the accuracy of the generated interference graph. In- classroom use is granted without fee provided that copies are not made or distributed deed, a variable is spilled only at the program points where there is for profit or commercial advantage and that copies bear this notice and the full citation no available register for that variable. As in a SSA form, each vari- on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. able is defined only once. Furthermore, contrary to other splitting LCTES’09, June 19–20, 2009, Dublin, Ireland. heuristics, extreme live-range splitting is easy to implement. Copyright c 2009 ACM 978-1-60558-356-3/09/06. $5.00. Extreme live-range splitting helps in finding optimal and ef- An affinity edge between two variables represents a move statement ficient solutions for spilling [3]. However, it generates programs between these variables (that should be stored in a same register or with huge interference graphs. Each renaming of a variable v to at the same memory location). Weights are associated to affinity v1 results in adding a vertex in the interference graph for v1 and, edges, taking into account the frequency of execution of the move consequently, some edges incident to that vertex. Thus, interfer- statements. ence graphs become so huge that coalescing heuristics often fail. Given a number k of registers, register allocation consists in The need for a better algorithm for the optimal coalescing problem satisfying all interference edges as well as maximizing the sum of gave rise to a benchmark of interference graphs called the optimal weights of affinity edges such that the same color is assigned to coalescing challenge (written OCC in the sequel of this paper) [2]. both endpoints. Satisfying most of the affinity edges is the goal of Recently, Grund and Hack have formulated coalescing as an register coalescing. ILP [16]. They introduce a cutting-plane algorithm that reduces Interference graphs are built after a liveness analysis [9]. In an the search space (i.e. the space of potential solutions). Thus, their interference graph, a variable is described by a unique live-range. ILP formulation needs less time to compute optimal solutions. As Consequently, spilling a variable means spilling it everywhere in a result, they provide the first optimal and efficient solutions of the the program, even if it could have been spilled on a shorter live- OCC. These solutions are 50% better than the solutions computed range. Figure 1 illustrates this problem on a small program consist- by the best coalescing heuristics. ing of a switch statement with 3 branches (see [21] for more de- Grund and Hack conclude in [16] that their cutting-plane al- tails). The program has 3 variables but only 2 variables are updated gorithm fails when applied to the largest graphs of the OCC. Be- in each branch of the switch statement. Thus, its corresponding cause of extreme live-range splitting (that was required for opti- interference graph is a 3-clique, that is not 2-colorable, although mal spilling), optimal solutions for coalescing cannot be efficiently only 2 registers are needed. computed on these graphs. Owing to the extreme amount of copies, coalescing is hard to solve optimally. In this paper, we study the switch(. ){ impact of extreme live-range splitting on coalescing and provide case 0: case 1: case 2: a strategy for reducing interference graphs before coalescing. ILP l1 : a := . l4 : a := . l7 : b:= . is commonly composed with algorithms in order to let the solver, l2 : b := .
Recommended publications
  • Finding Articulation Points and Bridges Articulation Points Articulation Point
    Finding Articulation Points and Bridges Articulation Points Articulation Point Articulation Point A vertex v is an articulation point (also called cut vertex) if removing v increases the number of connected components. A graph with two articulation points. 3 / 1 Articulation Points Given I An undirected, connected graph G = (V; E) I A DFS-tree T with the root r Lemma A DFS on an undirected graph does not produce any cross edges. Conclusion I If a descendant u of a vertex v is adjacent to a vertex w, then w is a descendant or ancestor of v. 4 / 1 Removing a Vertex v Assume, we remove a vertex v 6= r from the graph. Case 1: v is an articulation point. I There is a descendant u of v which is no longer reachable from r. I Thus, there is no edge from the tree containing u to the tree containing r. Case 2: v is not an articulation point. I All descendants of v are still reachable from r. I Thus, for each descendant u, there is an edge connecting the tree containing u with the tree containing r. 5 / 1 Removing a Vertex v Problem I v might have multiple subtrees, some adjacent to ancestors of v, and some not adjacent. Observation I A subtree is not split further (we only remove v). Theorem A vertex v is articulation point if and only if v has a child u such that neither u nor any of u's descendants are adjacent to an ancestor of v. Question I How do we determine this efficiently for all vertices? 6 / 1 Detecting Descendant-Ancestor Adjacency Lowpoint The lowpoint low(v) of a vertex v is the lowest depth of a vertex which is adjacent to v or a descendant of v.
    [Show full text]
  • Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses
    Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/55 What we’ll do 1 THE BASICS. 2 PERFECT GRAPHS. 3 COGRAPHS. 4 CHORDAL GRAPHS. 5 SPLIT GRAPHS. 6 THRESHOLD GRAPHS. 7 INTERVAL GRAPHS. 2/55 THE BASICS. 2/55 Induced Subgraphs Recall: Definition Given two graphs G = (V , E) and G′ = (V ′, E ′), we say that G is an induced subgraph of G′ if V ⊆ V ′ and E = {uv ∈ E ′ : u, v ∈ V }. Equivalently: G can be obtained from G′ by deleting vertices. Notation: G < G′ 3/55 Hereditary Graph Properties Hereditary graph property (hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Formally: a set of graphs X such that G ∈ X and H < G ⇒ H ∈ X . 4/55 Hereditary Graph Properties Hereditary graph property (Hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Examples: forests complete graphs line graphs bipartite graphs planar graphs graphs of degree at most ∆ triangle-free graphs perfect graphs 5/55 Hereditary Graph Properties Why hereditary graph classes? Vertex deletions are very useful for developing algorithms for various graph optimization problems. Every hereditary graph property can be described in terms of forbidden induced subgraphs. 6/55 Hereditary Graph Properties H-free graph = a graph that does not contain H as an induced subgraph Free(H) = the class of H-free graphs Free(M) := H∈M Free(H) M-free graphT = a graph in Free(M) Proposition X hereditary ⇐⇒ X = Free(M) for some M M = {all (minimal) graphs not in X} The set M is the set of forbidden induced subgraphs for X.
    [Show full text]
  • Partitioning a Graph Into Disjoint Cliques and a Triangle-Free
    Partitioning a Graph into Disjoint Cliques and a Triangle-free Graph Faisal N. Abu-Khzam, Carl Feghali, Haiko M¨uller January 6, 2015 Abstract A graph G =(V,E) is partitionable if there exists a partition {A, B} of V such that A induces a disjoint union of cliques and B induces a triangle- free graph. In this paper we investigate the computational complexity of deciding whether a graph is partitionable. The problem is known to be NP-complete on arbitrary graphs. Here it is proved that if a graph G is bull-free, planar, perfect, K4-free or does not contain certain holes then deciding whether G is partitionable is NP-complete. This answers an open question posed by Thomass´e, Trotignon and Vuˇskovi´c. In contrast a finite list of forbidden induced subgraphs is given for partitionable cographs. 1 Introduction A graph G = (V, E) is monopolar if there exists a partition {A, B} of V such that A induces a disjoint union of cliques and B forms an independent set. The class of monopolar graphs has been extensively studied in recent years. It is known that deciding whether a graph is monopolar is NP-complete [18], even when restricted to triangle-free graphs [6] and planar graphs [20]. In contrast the problem is tractable on several graph classes: a non-exhaustive list includes cographs [17], polar permutation graphs [15], chordal graphs [16], line graphs [7] and several others [8]. A graph is (k,l)-partitionable if it can be partitioned arXiv:1403.5961v6 [cs.CC] 4 Jan 2015 in up to k cliques and l independent sets with k + l ≥ 1.
    [Show full text]
  • Absolute Retracts of Split Graphs
    DISCRETE MATHEMATICS ELSEIVIER Discrete Mathematics 134 (1994) 75-84 Absolute retracts of split graphs Sandi Klaviar ’ University of’ Maribor, PF, KoroSka cesta 160, 62000 Maribor, Slosenia Received 20 February 1992; revised 20 July 1992 Abstract It is proved that a split graph is an absolute retract of split graphs if and only if a partition of its vertex set into a stable set and a complete set is unique or it is a complete split graph. Three equivalent conditions for a split graph to be an absolute retract of the class of all graphs are given. It is finally shown that a reflexive split graph G is an absolute retract of reflexive split graphs if and only if G has no retract isomorphic to some J,, n B 3. Here J, is the reflexive graph with vertex set {?c~,x*, . , x,,y,, y,, , y,} in which the vertices x1, x2, , x, are mutually adjacent and thevertexy,isadjacent to x~,x~,...,x~_~,x~+~,...,x,. 1. Introduction The main motivation for this paper is the investigation [l] by Bandelt et al. in which the internal structure of the absolute retracts of bipartite graphs is clarified. They proved several nice characterizations of bipartite absolute retracts and applied these graphs to the competitive location theory. However, the investigation of the absolute retracts of bipartite graphs started as early as in 1972 with the Ph.D. Thesis of Hell [S], who gave, among others, two characterizations of the absolute retracts of bipartite graphs. Split graphs are ‘half-way’ between bipartite graphs and their complements.
    [Show full text]
  • Solutions to Exercises 7
    Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 7 (1) The complete bipartite graph Km;n is defined by taking two disjoint sets, V1 of size m and V2 of size n, and putting an edge between u and v whenever u 2 V1 and v 2 V2. (a) How many edges does Km;n have? Solution. Every vertex of V1 is adjacent to every vertex of V2, hence the number of edges is mn. (b) What is the degree sequence of Km;n? Solution. Every vertex of V1 has degree n because it is adjacent to every vertex of V2. Similarly, every vertex of V2 has degree m because it is adjacent to every vertex of V2. So the degree sequence of Km;n consists of m n’s and n m’s listed in non-increasing order. If m ≥ n, then the degree sequence is (m; : : : ; m; n; : : : ; n): | {z } | {z } n m If m < n, then the degree sequence is (n; : : : ; n; m; : : : ; m): | {z } | {z } m n (c) Which complete bipartite graphs Km;n are connected? Solution. Take any m; n ≥ 1. For any vertex x 2 V1, y 2 V2, the pair xy is an edge, so x; y is a walk from x to y. For vertices x; y 2 V1, x 6= y, take any w 2 V2. The pairs xw; wy are edges, so x; w; y is a walk from x to y. For vertices x; y 2 V2, x 6= y, take any w 2 V1. The pairs xw; wy are edges, so x; w; y is a walk from x to y.
    [Show full text]
  • Lecture 3 Bipartite Graphs
    Topics in Discrete Mathematics Bipartite graphs arise naturally when we have two different types of vertices. For Part 2: Introduction to Graph Theory example, let X be the set of lecture classes set for 3pm on a Thursday, let Y be the set of lecture rooms, with an edge xy if class x will fit into room y. This is clearly bipartite. Lecture 3 A useful graph to work with is the complete bipartite graph. Example 3.2. The complete bipartite graph Ka;b with a vertices on the left and b Bipartite Graphs vertices on the right is defined by X = [a] Y = [b] E = fxy : x 2 [a]; y 2 [b]g: • Definition of bipartite graphs • Complete bipartite graphs • Matchings and Hall's marriage theorem 3.1 Basics K2,2 K3,4 Consider the following graph: the vertices will be the people in the Bristol maths (Technically we've given some vertices on the left and right the same label, but department, and there will be an edge between two people if one has lectured the using the `isomorphism trick' again, we won't let this bother us.) other this year. Note that Ka;b is isomorphic to Kb;a. Other examples of bipartite graphs include the even cycles, Cn for odd n, and the Bober paths Pn. Topics in Discrete Matt Maths 3.2 Matchings Karen A common toy example of a bipartite graph is this: Let X be a set of girls, let Y be Ganesh a set of boys, and let xy be an edge if girl x knows boy y.
    [Show full text]
  • Partitioning Cographs Into Cliques and Stable Sets
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Optimization 2 (2005) 145–153 www.elsevier.com/locate/disopt Partitioning cographs into cliques and stable sets Marc Demangea, Tınaz Ekimb,∗,1, Dominique de Werrab aESSEC, Département SID, France bEPFL, Recherche Opérationnelle Sud Est (ROSE), 1015Lausanne, Switzerland Received 10 May 2004; received in revised form 30 November 2004; accepted 8 March2005 Available online 5 July 2005 Abstract We consider the problem of partitioning the node set of a graph into p cliques and k stable sets, namely the (p, k)-coloring problem. Results have been obtained for general graphs [Feder et al., SIAM J. Discrete Math. 16 (3) (2003) 449–478], chordal graphs [Hell et al., Discrete Appl. Math. 141 (2004) 185–194] and cacti for the case where k = p in [Ekim and de Werra, On split-coloring problems, submitted for publication] where some upper and lower bounds on the optimal value minimizing k are also presented. We focus on cographs and devise some efficient algorithms for solving (p, k)-coloring problems and cocoloring / problems in O(n2 + nm) time and O(n3 2) time, respectively. We also give an algorithm for finding the maximum induced (p, k)-colorable subgraph. In addition to this, we present characterizations of (2, 1)- and (2, 2)-colorable cographs by forbidden configurations. © 2005 Elsevier B.V. All rights reserved. Keywords: (p, k)-coloring; Cocoloring; Split-coloring; Cographs 1. Introduction Partitioning the node set of a graph into two kinds of subsets (like for instance cliques and stable sets) is a natural extension of the classical coloring problem which has therefore been a topic of extensive research in the recent years (see [1,2,5,6,10,11]).
    [Show full text]
  • Polynomial Kernel for Distance-Hereditary Deletion
    A POLYNOMIAL KERNEL FOR DISTANCE-HEREDITARY VERTEX DELETION EUN JUNG KIM AND O-JOUNG KWON Abstract. A graph is distance-hereditary if for any pair of vertices, their distance in every connected induced subgraph containing both vertices is the same as their distance in the original graph. The Distance-Hereditary Vertex Deletion problem asks, given a graph G on n vertices and an integer k, whether there is a set S of at most k vertices in G such that G − S is distance-hereditary. This problem is important due to its connection to the graph parameter rank-width that distance-hereditary graphs are exactly graphs of rank-width at most 1. Eiben, Ganian, and Kwon (MFCS' 16) proved that Distance-Hereditary Vertex Deletion can be solved in time 2O(k)nO(1), and asked whether it admits a polynomial kernelization. We show that this problem admits a polynomial kernel, answering this question positively. For this, we use a similar idea for obtaining an approximate solution for Chordal Vertex Deletion due to Jansen and Pilipczuk (SODA' 17) to obtain an approximate solution with O(k3 log n) vertices when the problem is a Yes-instance, and we exploit the structure of split decompositions of distance-hereditary graphs to reduce the total size. 1. Introduction The graph modification problems, in which we want to transform a graph to satisfy a certain property with as few graph modifications as possible, have been extensively studied. For instance, the Vertex Cover and Feedback Vertex Set problems are graph modification problems where the target graphs are edgeless graphs and forests, respectively.
    [Show full text]
  • Prime Labeling of Split Graph of Star K1,N
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 6 Ser. I (Nov – Dec 2019), PP 04-07 www.iosrjournals.org Prime Labeling of Split Graph of Star K1,n Dr.V.Ganesan1 and S.Lavanya2 1, 2PG and Research Department of Mathematics, Thiru Kolanjiappar Government Arts College (Grade I), Vridhachalam,Tamilnadu, India Abstract: A graph G = (V, E) with p vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceed p such that the label of each pair of adjacent vertices are relatively prime. A graph which admits prime labeling is called a prime graph. In this paper, we investigate prime labeling of Spliting graph of star K1,n .We also present an algorithm which enable us to find the chromatic number of Spl(K1,n). Keywords: Star Graph, Split Graph, Graph Labeling, Prime Labeling ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 17-10-2019 Date of acceptance: 01-11-2019 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction In labeling of graphs, we consider only simple, undirected, connected and non-trivial graph G = (V, E) with the vertex set V and the edge set E. The number of elements of V, denoted as |V|, called the order of the graph while the number of elements of E, denoted as |E|, called the size of the graph. The notion of a prime labeling originated with Entringer and was introduced in a paper by Tout, Dabbouchy and Howalla [2]. Entringer conjectured that all trees have a prime labeling. Many researchers have studied prime graph.
    [Show full text]
  • Dynamic Distance Hereditary Graphs Using Split Decomposition
    Revisiting split decomposition Vertex modification of DH graphs Relations with other works Dynamic Distance Hereditary Graphs using Split Decomposition Emeric Gioan CNRS - LIRMM - Universit´e Montpellier II, France December 17, 2007 Joint work with C. Paul (CNRS - LIRMM) E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition Revisiting split decomposition Vertex modification of DH graphs Relations with other works Dynamic graph representation problem: Given a representation R(G) of a graph G and a edge or vertex modification of G (insertion or deletion) update the representation R(G). E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition Revisiting split decomposition Vertex modification of DH graphs Relations with other works Dynamic graph representation problem: Given a representation R(G) of a graph G and a edge or vertex modification of G (insertion or deletion) update the representation R(G). When restricted to a certain graph family F, the algorithm should: 1 check whether the modified graph still belongs to F; 2 if so, udpate the representation; 3 otherwise output a certificate (e.g. a forbidden subgraph). E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition Revisiting split decomposition Vertex modification of DH graphs Relations with other works Dynamic graph representation problem: Given a representation R(G) of a graph G and a edge or vertex modification of G (insertion or deletion) update the representation R(G). When restricted to a certain graph family F, the algorithm should: 1 check whether the modified graph still belongs to F; 2 if so, udpate the representation; 3 otherwise output a certificate (e.g. a forbidden subgraph).
    [Show full text]
  • 1. Introduction
    Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications Universiti Sains Malaysia λ-BACKBONE COLORING NUMBERS OF SPLIT GRAPHS WITH TREE BACKBONES A.N.M. Salman Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia [email protected] Abstract. In the application area of frequency assignment graphs are used to model the topology and mutual in- terference between transmitters. The problem in practice is to assign a limited number of frequency channels in an economical way to the transmitter in such a way that interference is kept at an acceptable level. This has led to various different types of coloring problem in graphs. One of them is a λ-backbone coloring. Given an integer λ ≥ 2, a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G,H) is a proper vertex coloring V → {1, 2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The λ-backbone coloring number BBCλ(G,H) of (G,H) is the smallest integer ℓ for which there exists a λ-backbone coloring f : V → {1, 2, . , ℓ}. In this paper we consider the λ-backbone coloring of split graphs. A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices) and an independent set (i.e. a set of mutually non adjacent vertices), with possibly edges in between.
    [Show full text]
  • Graph Coloring Problems
    Graph Coloring Problems Guillermo Dur´an Departamento de Ingenier´ıa Industrial Facultad de Ciencias F´ısicas y Matem´aticas Universidad de Chile, Chile XII ELAVIO, February 2007, Itaipava, Brasil Statement History The Four-Color problem First attempts The proofs The Four-Color problem Statement History The Four-Color problem First attempts The proofs The Four-Color problem The Four-Color Conjecture was settled in the XIX century: Every map can be colored using at most four colors in such a way that adjacent regions (i.e. those sharing a common boundary segment, not just a point) receive different colors. Statement History The Four-Color problem First attempts The proofs In terms of graphs... Clearly a graph can be constructed from any map, the regions being represented by the vertices of the graph and two vertices being joined by an edge if the regions corresponding to the vertices are adjacent. The resulting graph is planar, that is, it can be drawn in the plane without any edges crossing. So, the Four-Color Conjecture asks if the vertices of a planar graph can be colored with at most 4 colors so that no two adjacent vertices use the same color. Statement History The Four-Color problem First attempts The proofs Example... Statement History The Four-Color problem First attempts The proofs Example... Statement History The Four-Color problem First attempts The proofs Example... Statement History The Four-Color problem First attempts The proofs History The Four-Color Conjecture first seems to have been formulated by Francis Guthrie. He was a student at University College London where he studied under Augusts De Morgan.
    [Show full text]