Detailed Characterization of Early HIV-1 Replication Dynamics in Primary Human Macrophages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of the Matrix Proteins of the Fish Rhabdovirus, Infectious Hematopoietic Necrosis Virus
AN ABSTRACT OF THE THESIS OF Patricia A. Ormonde for the degree of Master of Science presented on April 14. 1995. Title: Characterization of the Matrix Proteins of the Fish Rhabdovinis, Infectious Hematopoietic Necrosis Virus. Redacted for Privacy Abstract approved: Jo-Ann C. ong Infectious hematopoietic necrosis virus (1HNV) is an important fish pathogen enzootic in salmon and trout populations of the Pacific Northwestern United States. Occasional epizootics in fish hatcheries can result in devastating losses of fish stocks. The complete nucleotide sequence of IHNV has not yet been determined. This knowledge is the first step towards understanding the roles viral proteins play in IHNV infection, and is necessary for determining the relatedness of IHNV to other rhabdoviruses. The glycoprotein, nucleocapsid and non-virion genes of IHNV have been described previously; however, at the initiation of this study, very little was known about the matrix protein genes. Rhabdoviral matrix proteins have been found to be important in viral transcription and virion assembly. This thesis describes the preliminary characterization of the M1 and M2 matrix proteins of IHNV. In addition, the trout humoral immune response to M1 and M2 proteins expressed from plasmid DNA injected into the fish was investigated. This work may prove useful in designing future vaccines against IHN. The sequences of M1 phosphoprotein and M2 matrix protein genes of IHNV were determined from both genomic and mRNA clones. Analysis of the sequences indicated that the predicted open reading frame of M1 gene encoded a 230 amino acid protein with a estimated molecular weight of 25.6 kDa. Further analysis revealed a second open reading frame encoding a 42 amino acid protein with a calculated molecular weight of 4.8 kDa. -
Datasheet: VMA00139 Product Details
Datasheet: VMA00139 Description: MOUSE ANTI SAMHD1 Specificity: SAMHD1 Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: OTI1F6 Isotype: IgG1 Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody purified by affinity chromatography from ascites. Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Full length recombinant human SAMHD1 (NP_056289) produced in HEK293T cells External Database Links UniProt: Q9Y3Z3 Related reagents Entrez Gene: 25939 SAMHD1 Related reagents Synonyms MOP5 Page 1 of 2 Specificity Mouse anti Human SAMHD1 antibody recognizes the deoxynucleoside triphosphate triphosphohydrolase SAMHD1, also known as SAM domain and HD domain-containing protein 1, dNTPase, dendritic cell-derived IFNG-induced protein, deoxynucleoside triphosphate triphosphohydrolase SAMHD1 and monocyte protein 5. SAMHD1 may play a role in regulation of the innate immune response. The encoded protein is upregulated in response to viral infection and may be involved in mediation of tumor necrosis factor-alpha proinflammatory responses. -
SAMHD1 and the Innate Immune Response to Cytosolic DNA During
Available online at www.sciencedirect.com ScienceDirect SAMHD1 and the innate immune response to cytosolic DNA during DNA replication Flavie Coquel, Christoph Neumayer, Yea-Lih Lin and Philippe Pasero Cytosolic DNA of endogenous or exogenous origin is sensed by double-stranded DNA (dsDNA) in a sequence-indepen- the cGAS-STING pathway to activate innate immune dent manner and produces cyclic-GMP-AMP. This sec- responses. Besides microbial DNA, this pathway detects self- ond messenger binds STING and induces TBK1 activa- DNA in the cytoplasm of damaged or abnormal cells and plays tion, IRF3 phosphorylation and induction of type I IFNs a central role in antitumor immunity. The mechanism by which and other cytokine genes [1,2]. cytosolic DNA accumulates under genotoxic stress conditions is currently unclear, but recent studies on factors mutated in the Besides pathogens, the innate immune system also Aicardi-Goutie` res syndrome cells, such as SAMHD1, RNase responds to tissue damage by sensing damage-associated H2 and TREX1, are shedding new light on this key process. In molecular patterns, including cytosolic DNA of endoge- particular, these studies indicate that the rupture of micronuclei nous origin. The cGAS-STING pathway is activated by and the release of ssDNA fragments during the processing of cytosolic DNA accumulating after ionizing radiation [3] stalled replication forks and chromosome breaks represent or exposure to a variety of chemotherapeutic agents potent inducers of the cGAS-STING pathway. targeting DNA replication forks [4–6]. -
SAMHD1 Is Recurrently Mutated in T-Cell Prolymphocytic Leukemia
SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia Patricia Johansson, University of Duisburg-Essen Ludger Klein-Hitpass, University of Duisburg-Essen Axel Choidas, Lead Discovery Center GmbH Peter Habenberger, Lead Discovery Center GmbH Bijan Mahboubi, Emory University Baek Kim, Emory University Anke Bergmann, Christian-Albrechts-University Kiel Rene Scholtysik, University of Duisburg-Essen Martina Brauser, University of Duisburg-Essen Anna Lollies, University of Duisburg-Essen Only first 10 authors above; see publication for full author list. Journal Title: Blood Cancer Journal Volume: Volume 8, Number 1 Publisher: Nature Publishing Group | 2018-01-19, Pages 11-11 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1038/s41408-017-0036-5 Permanent URL: https://pid.emory.edu/ark:/25593/s8785 Final published version: http://dx.doi.org/10.1038/s41408-017-0036-5 Copyright information: © 2018 The Author(s). This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). Accessed September 29, 2021 6:39 AM EDT Johansson et al. Blood Cancer Journal (2018) 8:11 DOI 10.1038/s41408-017-0036-5 Blood Cancer Journal ARTICLE Open Access SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia Patricia Johansson1,2, Ludger Klein-Hitpass2,AxelChoidas3, Peter Habenberger3, Bijan Mahboubi4,BaekKim4, Anke Bergmann5,RenéScholtysik2, Martina Brauser2, Anna Lollies2,ReinerSiebert5,6, Thorsten Zenz7,8, Ulrich Dührsen1, Ralf Küppers2,8 and Jan Dürig1,8 Abstract T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy with a median survival of the patients of less than two years. -
Everything You Always Wanted to Know About Rabies Virus ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ (But Were Afraid to Ask) Benjamin M
ANNUAL REVIEWS Further Click here to view this article's online features: t%PXOMPBEmHVSFTBT115TMJEFT t/BWJHBUFMJOLFESFGFSFODFT t%PXOMPBEDJUBUJPOT Everything You Always Wanted t&YQMPSFSFMBUFEBSUJDMFT t4FBSDILFZXPSET to Know About Rabies Virus (But Were Afraid to Ask) Benjamin M. Davis,1 Glenn F. Rall,2 and Matthias J. Schnell1,2,3 1Department of Microbiology and Immunology and 3Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; email: [email protected] 2Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Annu. Rev. Virol. 2015. 2:451–71 Keywords First published online as a Review in Advance on rabies virus, lyssaviruses, neurotropic virus, neuroinvasive virus, viral June 24, 2015 transport The Annual Review of Virology is online at virology.annualreviews.org Abstract This article’s doi: The cultural impact of rabies, the fatal neurological disease caused by in- 10.1146/annurev-virology-100114-055157 fection with rabies virus, registers throughout recorded history. Although Copyright c 2015 by Annual Reviews. ⃝ rabies has been the subject of large-scale public health interventions, chiefly All rights reserved through vaccination efforts, the disease continues to take the lives of about 40,000–70,000 people per year, roughly 40% of whom are children. Most of Access provided by Thomas Jefferson University on 11/13/15. For personal use only. Annual Review of Virology 2015.2:451-471. Downloaded from www.annualreviews.org these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, al- though the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is cur- rently no effective treatment that will save the life of a symptomatic rabies patient. -
SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human
SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human Skin Fibroblasts Sineewanlaya Wichit, Rodolphe Hamel, Andreas Zanzoni, Fode Diop, Alexandra Cribier, Loïc Talignani, Abibatou Diack, Pauline Ferraris, Florian Liegeois, Serge Urbach, et al. To cite this version: Sineewanlaya Wichit, Rodolphe Hamel, Andreas Zanzoni, Fode Diop, Alexandra Cribier, et al.. SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human Skin Fibroblasts. Inter- national Journal of Molecular Sciences, MDPI, 2019, 20 (7), pp.1695. 10.3390/ijms20071695. hal- 02094916 HAL Id: hal-02094916 https://hal-amu.archives-ouvertes.fr/hal-02094916 Submitted on 13 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Molecular Sciences Article SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human Skin Fibroblasts Sineewanlaya Wichit 1,* , Rodolphe Hamel 2,†, Andreas Zanzoni 3,† , Fodé Diop 2, Alexandra Cribier 4, Loïc Talignani 2, Abibatou Diack 2, Pauline Ferraris -
Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses
International Journal of Molecular Sciences Review Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses Tanja Becker, Vu Thuy Khanh Le-Trilling and Mirko Trilling * Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; [email protected] (T.B.); [email protected] (V.T.K.L.-T.) * Correspondence: [email protected]; Tel.: +49-(0)201-723-83830 Received: 15 March 2019; Accepted: 28 March 2019; Published: 2 April 2019 Abstract: Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. -
Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1
Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1 Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jenna Marie Antonucci Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee Li Wu, Ph.D., Advisor Irina Artsimovitch, Ph.D. Jesse Kwiek, Ph.D. Karin Musier-Forsyth, Ph.D. Copyrighted by Jenna Marie Antonucci 2018 Abstract Human immunodeficiency virus type 1 (HIV-1) is a human retrovirus that replicates in cells via a well-characterized viral lifecycle. Inhibition at any step in the viral lifecycle results in downstream effects that can impair HIV-1 replication and restrict infection. For decades, researchers have been unable to determine the cause of myeloid-cell specific block in HIV-1 infection. In 2011, the discovery of the first mammalian deoxynucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) sterile alpha motif and HD domain containing protein 1 (SAMHD1) answered that question and introduced an entirely novel field of study focused on determining the mechanism and control of SAMHD1-mediated restriction of HIV-1 replication. Since then, the research on SAMHD1 has become a timely and imperative topic of virology. The following body of work includes studies furthering the field by confirming the established model and introducing a novel mechanism of SAMHD1-mediated suppression of HIV-1 replication. SAMHD1 was originally identified as a dGTP-dependent dNTPase that restricts HIV-1 infection by hydrolyzing intracellular dNTPs to a level that inhibits efficient reverse transcription of HIV-1 genomic RNA into complementary DNA (cDNA). -
Multifaceted Roles of SAMHD1 in Cancer
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.03.451003; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Multifaceted roles of SAMHD1 in cancer 2 Katie-May McLaughlin1, Jindrich Cinatl jr.2*, Mark N. Wass1*, Martin Michaelis1* 3 1 School of Biosciences, University of Kent, Canterbury, UK 4 2 Institute of Medical Virology, Goethe-University, Frankfurt am Main, Germany 5 6 * Correspondence to: Jindrich Cinatl jr. ([email protected]), Mark N. Wass 7 ([email protected]), Martin Michaelis ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.03.451003; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 8 Abstract 9 SAMHD1 is discussed as a tumour suppressor protein, but its potential role in cancer has only been 10 investigated in very few cancer types. Here, we performed a systematic analysis of the TCGA (adult 11 cancer) and TARGET (paediatric cancer) databases, the results of which did not suggest that SAMHD1 12 should be regarded as a bona fide tumour suppressor. SAMHD1 mutations that interfere with SAMHD1 13 function were not associated with poor outcome, which would be expected for a tumour suppressor. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function. -
SAMHD1 Suppresses Innate Immune Responses to Viral Infections and Inflammatory Stimuli by Inhibiting the NF-Κb and Interferon Pathways
SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways Shuliang Chena,b,1, Serena Bonifatia,1, Zhihua Qina, Corine St. Gelaisa, Karthik M. Kodigepallia, Bradley S. Barrettc, Sun Hee Kima, Jenna M. Antonuccia, Katherine J. Ladnerd,e, Olga Buzovetskyf, Kirsten M. Knechtf, Yong Xiongf, Jacob S. Yountg, Denis C. Guttridged,e, Mario L. Santiagoc, and Li Wua,e,g,2 aCenter for Retrovirus Research, Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210; bSchool of Basic Medical Sciences, Wuhan University, 430071 Wuhan, People’s Republic of China; cDepartment of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; dDepartment of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210; eComprehensive Cancer Center, Ohio State University, Columbus, OH 43210; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; and gDepartment of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210 Edited by Robert F. Siliciano, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 16, 2018 (received for review January 25, 2018) Sterile alpha motif and HD-domain–containing protein 1 (SAMHD1) have reported spontaneous induction of ISG transcripts in blocks replication of retroviruses and certain DNA viruses by reduc- SAMHD1-deficient mouse cells (17–19) and hyperactivity of the ing the intracellular dNTP pool. SAMHD1 has been suggested to IFN-I pathway in mouse macrophages with SAMHD1 knock- down-regulate IFN and inflammatory responses to viral infections, down (20). Although SAMHD1 has been implicated in nega- although the functions and mechanisms of SAMHD1 in modulating tively regulating IFN-I and inflammation responses (15, 17, 19), innate immunity remain unclear.