Measuring Automated Vehicle Safety: Forging a Framework

Total Page:16

File Type:pdf, Size:1020Kb

Measuring Automated Vehicle Safety: Forging a Framework Measuring Automated Vehicle Safety Forging a Framework Laura Fraade-Blanar, Marjory S. Blumenthal, James M. Anderson, Nidhi Kalra C O R P O R A T I O N For more information on this publication, visit www.rand.org/t/RR2662 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0164-9 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2018 RAND Corporation R® is a registered trademark. Cover: Courtesy of Andrey Suslov/iStock (Getty Images). Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface The safety of automated vehicles (AVs) is intrinsic to their success both in the marketplace and as the kind of transformative innovation that their proponents anticipate. In the summer of 2017, the Uber Advanced Technologies Group approached the RAND Corporation to request help in crafting a framework for measuring AV safety that could aid in public discussion of the issues. This project builds on previous RAND research into AV trends and related public policy. Whereas prior work has addressed issues broadly and analytically, this project has looked more closely at what companies that are key to the evolution of AVs have been doing to foster and evaluate the safety of those vehicles. The report is intended for a broad public audience. In this report, we develop a framework for measuring safety in AVs that could be used broadly by companies, policymakers, and the public. We considered how to define safety for AVs, how to measure safety for AVs, and how to communicate what is learned or understood about AVs. Given AVs’ limited total on-road mileage compared with conventional vehicles, we consider options for proxy measurements—i.e., factors that might be correlated with safety. We also explore how safety measurements could be made in simulation and on closed courses. The closely held nature of AV data limits the details of what is made public or shared between companies and with the government. The report focuses on identifying key concepts and illuminating the kinds of measurements that might be made and communicated. The research reported here was conducted in two programs. The RAND Science, Technology, and Policy program focuses primarily on the role of scientific development and technological innovation in human behavior, global and regional decisionmaking as it relates to science and technology, and the concurrent effects that science and technology have on policy analysis and policy choices. The program covers such topics as space exploration, information and telecommunication technologies, and nano- and biotechnologies. The RAND Justice Policy Program spans both criminal and civil justice system issues with such topics as public safety, effective policing, police–community relations, drug policy and enforcement, corrections policy, use of technology in law enforcement, tort reform, catastrophe and mass-injury compensation, court resourcing, and insurance regulation. Research in both programs is supported by government agencies, foundations, and the private sector. RAND Justice, Infrastructure, and Environment (JIE) conducts research and analysis in civil and criminal justice, infrastructure development and financing, environmental policy, transportation planning and technology, immigration and border protection, public and occupational safety, energy policy, science and innovation policy, space, telecommunications, and trends and implications of artificial intelligence and other computational technologies. Questions or comments about this report should be sent to the project leader, Marjory S. Blumenthal ([email protected]). For more information about RAND Science, iii Technology, and Policy, see www.rand.org/jie/stp or contact the director at [email protected]. For more information about RAND Justice Policy, see www.rand.org/jie/justice-policy or contact the director at [email protected]. iv Contents Preface ........................................................................................................................................... iii Boxes, Figures, and Tables ........................................................................................................... vii Summary ...................................................................................................................................... viii Acknowledgments ....................................................................................................................... xiii Abbreviations ............................................................................................................................... xiv 1. Introduction ................................................................................................................................. 1 Context for Contrasting AV and Conventional Automotive Safety ......................................................... 1 Measurement Framework Focuses on System and Ecosystem Levels ..................................................... 2 Scope, Approach, and Limitations of This Report .................................................................................... 4 2. Safety ........................................................................................................................................... 6 Foundational Safety Concepts ................................................................................................................... 6 Safety Engineering Meets AVs ................................................................................................................. 9 Federal Motor Vehicle Safety Standards ................................................................................................ 11 Special Aspects of Level 4 AVs .............................................................................................................. 12 3. Measuring Automated Vehicle Safety ....................................................................................... 14 Frame 1. Settings ..................................................................................................................................... 14 Artificial Setting .................................................................................................................................. 15 Public Road Setting With and Without a Safety Driver ..................................................................... 17 A Discussion of the Setting Frame ...................................................................................................... 18 Frame 2. Stages ....................................................................................................................................... 21 Development ....................................................................................................................................... 22 Demonstration ..................................................................................................................................... 23 Deployment ......................................................................................................................................... 27 A Discussion of the Stage Frame ........................................................................................................ 28 Frame 3. Measures .................................................................................................................................. 28 Measure Category 1: Standards, Processes, Procedures, and Design ................................................. 29 Measure Category 2: Leading Measures ............................................................................................. 29 Measure Category 3: Lagging Measure .............................................................................................. 34 Measure Characteristics ...................................................................................................................... 34 A Discussion of the Measure Frame ................................................................................................... 35 From Frames to Framework .................................................................................................................... 36 Measures to Metrics ................................................................................................................................ 40 Numerators and Denominators ..........................................................................................................
Recommended publications
  • Result Build a Self-Driving Network
    SELF-DRIVING NETWORKS “LOOK, MA: NO HANDS” Kireeti Kompella CTO, Engineering Juniper Networks ITU FG Net2030 Geneva, Oct 2019 © 2019 Juniper Networks 1 Juniper Public VISION © 2019 Juniper Networks Juniper Public THE DARPA GRAND CHALLENGE BUILD A FULLY AUTONOMOUS GROUND VEHICLE IMPACT • Programmers, not drivers • No cops, lawyers, witnesses GOAL • Quadruple highway capacity Drive a pre-defined 240km course in the Mojave Desert along freeway I-15 • Glitches, insurance? • Ethical Self-Driving Cars? PRIZE POSSIBILITIES $1 Million RESULT 2004: Fail (best was less than 12km!) 2005: 5/23 completed it 2007: “URBAN CHALLENGE” Drive a 96km urban course following traffic regulations & dealing with other cars 6 cars completed this © 2019 Juniper Networks 3 Juniper Public GRAND RESULT: THE SELF-DRIVING CAR: (2009, 2014) No steering wheel, no pedals— a completely autonomous car Not just an incremental improvement This is a DISRUPTIVE change in automotive technology! © 2019 Juniper Networks 4 Juniper Public THE NETWORKING GRAND CHALLENGE BUILD A SELF-DRIVING NETWORK IMPACT • New skill sets required GOAL • New focus • BGP/IGP policies AI policy Self-Discover—Self-Configure—Self-Monitor—Self-Correct—Auto-Detect • Service config service design Customers—Auto-Provision—Self-Diagnose—Self-Optimize—Self-Report • Reactive proactive • Firewall rules anomaly detection RESULT Free up people to work at a higher-level: new service design and “mash-ups” POSSIBILITIES Agile, even anticipatory service creation Fast, intelligent response to security breaches CHALLENGE
    [Show full text]
  • An Off-Road Autonomous Vehicle for DARPA's Grand Challenge
    2005 Journal of Field Robotics Special Issue on the DARPA Grand Challenge MITRE Meteor: An Off-Road Autonomous Vehicle for DARPA’s Grand Challenge Robert Grabowski, Richard Weatherly, Robert Bolling, David Seidel, Michael Shadid, and Ann Jones. The MITRE Corporation 7525 Colshire Drive McLean VA, 22102 [email protected] Abstract The MITRE Meteor team fielded an autonomous vehicle that competed in DARPA’s 2005 Grand Challenge race. This paper describes the team’s approach to building its robotic vehicle, the vehicle and components that let the vehicle see and act, and the computer software that made the vehicle autonomous. It presents how the team prepared for the race and how their vehicle performed. 1 Introduction In 2004, the Defense Advanced Research Projects Agency (DARPA) challenged developers of autonomous ground vehicles to build machines that could complete a 132-mile, off-road course. Figure 1: The MITRE Meteor starting the finals of the 2005 DARPA Grand Challenge. 2005 Journal of Field Robotics Special Issue on the DARPA Grand Challenge 195 teams applied – only 23 qualified to compete. Qualification included demonstrations to DARPA and a ten-day National Qualifying Event (NQE) in California. The race took place on October 8 and 9, 2005 in the Mojave Desert over a course containing gravel roads, dirt paths, switchbacks, open desert, dry lakebeds, mountain passes, and tunnels. The MITRE Corporation decided to compete in the Grand Challenge in September 2004 by sponsoring the Meteor team. They believed that MITRE’s work programs and military sponsors would benefit from an understanding of the technologies that contribute to the DARPA Grand Challenge.
    [Show full text]
  • A Survey of Autonomous Driving: Common Practices and Emerging Technologies
    Accepted March 22, 2020 Digital Object Identifier 10.1109/ACCESS.2020.2983149 A Survey of Autonomous Driving: Common Practices and Emerging Technologies EKIM YURTSEVER1, (Member, IEEE), JACOB LAMBERT 1, ALEXANDER CARBALLO 1, (Member, IEEE), AND KAZUYA TAKEDA 1, 2, (Senior Member, IEEE) 1Nagoya University, Furo-cho, Nagoya, 464-8603, Japan 2Tier4 Inc. Nagoya, Japan Corresponding author: Ekim Yurtsever (e-mail: [email protected]). ABSTRACT Automated driving systems (ADSs) promise a safe, comfortable and efficient driving experience. However, fatalities involving vehicles equipped with ADSs are on the rise. The full potential of ADSs cannot be realized unless the robustness of state-of-the-art is improved further. This paper discusses unsolved problems and surveys the technical aspect of automated driving. Studies regarding present challenges, high- level system architectures, emerging methodologies and core functions including localization, mapping, perception, planning, and human machine interfaces, were thoroughly reviewed. Furthermore, many state- of-the-art algorithms were implemented and compared on our own platform in a real-world driving setting. The paper concludes with an overview of available datasets and tools for ADS development. INDEX TERMS Autonomous Vehicles, Control, Robotics, Automation, Intelligent Vehicles, Intelligent Transportation Systems I. INTRODUCTION necessary here. CCORDING to a recent technical report by the Eureka Project PROMETHEUS [11] was carried out in A National Highway Traffic Safety Administration Europe between 1987-1995, and it was one of the earliest (NHTSA), 94% of road accidents are caused by human major automated driving studies. The project led to the errors [1]. Against this backdrop, Automated Driving Sys- development of VITA II by Daimler-Benz, which succeeded tems (ADSs) are being developed with the promise of in automatically driving on highways [12].
    [Show full text]
  • A Hierarchical Control System for Autonomous Driving Towards Urban Challenges
    applied sciences Article A Hierarchical Control System for Autonomous Driving towards Urban Challenges Nam Dinh Van , Muhammad Sualeh , Dohyeong Kim and Gon-Woo Kim *,† Intelligent Robotics Laboratory, Department of Control and Robot Engineering, Chungbuk National University, Cheongju-si 28644, Korea; [email protected] (N.D.V.); [email protected] (M.S.); [email protected] (D.K.) * Correspondence: [email protected] † Current Address: Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea. Received: 23 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: In recent years, the self-driving car technologies have been developed with many successful stories in both academia and industry. The challenge for autonomous vehicles is the requirement of operating accurately and robustly in the urban environment. This paper focuses on how to efficiently solve the hierarchical control system of a self-driving car into practice. This technique is composed of decision making, local path planning and control. An ego vehicle is navigated by global path planning with the aid of a High Definition map. Firstly, we propose the decision making for motion planning by applying a two-stage Finite State Machine to manipulate mission planning and control states. Furthermore, we implement a real-time hybrid A* algorithm with an occupancy grid map to find an efficient route for obstacle avoidance. Secondly, the local path planning is conducted to generate a safe and comfortable trajectory in unstructured scenarios. Herein, we solve an optimization problem with nonlinear constraints to optimize the sum of jerks for a smooth drive. In addition, controllers are designed by using the pure pursuit algorithm and the scheduled feedforward PI controller for lateral and longitudinal direction, respectively.
    [Show full text]
  • Self-Driving Car Using Artificial Intelligence Prof
    International Journal of Future Generation Communication and Networking Vol. 13, No. 3s, (2020), pp. 612–615 Self-Driving Car Using Artificial Intelligence Prof. S.R. Wategaonkar #1, Sujoy Bhattacharya*2, Shubham Bhitre*3 Prem Kumar Singh *4, Khushboo Bedse *5 #Professor and Project Faculty member, Department of Electronic and Telecommunication, Bharati Vidyapeeth’s College of Engineering, Navi Mumbai, Maharashtra, India. *Project Student, Department of Electronic and Telecommunication, Bharati Vidyapeeth’s College of Engineering, Navi Mumbai, Maharashtra, India. [email protected] [email protected] [email protected] [email protected] [email protected] Abstract Self-driving cars have the prospective to transform urban mobility by providing safe, convenient and congestion free transportability. This autonomous vehicle as an application of Artificial Intelligence (AI) have several difficulties like traffic light detection, lane end detection, pedestrian, signs etc. This problem can be overcome by using technologies such as Machine Learning (ML), Deep Learning (DL) and Image Processing. In this paper, author’s propose deep neural network for lane and traffic light detection. The model is trained and assessed using the dataset, which contains the front view image frames and the steering angle data captured when driving on the road. Keeping cars inside the lane is a very important feature of self-driving cars. It learns how to keep the vehicle in lane from human driving data. The paper presents Artificial Intelligence based autonomous navigation and obstacle avoidance of self-driving cars, applied with Deep Learning to a simulated cars in an urban environment. Keywords—Self-Driving car, Autonomous driving, Object Detection, Lane End Detection, Deep Learning, Traffic light Detection.
    [Show full text]
  • Stanley: the Robot That Won the DARPA Grand Challenge
    Stanley: The Robot that Won the DARPA Grand Challenge ••••••••••••••••• •••••••••••••• Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, and Pascal Stang Stanford Artificial Intelligence Laboratory Stanford University Stanford, California 94305 Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, and Philippe Alessandrini Volkswagen of America, Inc. Electronics Research Laboratory 4009 Miranda Avenue, Suite 100 Palo Alto, California 94304 Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, and Ara Nefian Intel Research 2200 Mission College Boulevard Santa Clara, California 95052 Pamela Mahoney Mohr Davidow Ventures 3000 Sand Hill Road, Bldg. 3, Suite 290 Menlo Park, California 94025 Received 13 April 2006; accepted 27 June 2006 Journal of Field Robotics 23(9), 661–692 (2006) © 2006 Wiley Periodicals, Inc. Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20147 662 • Journal of Field Robotics—2006 This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without manual intervention. The robot’s software system relied predominately on state-of-the-art artificial intelligence technologies, such as machine learning and probabilistic reasoning. This paper describes the major components of this architecture, and discusses the results of the Grand Chal- lenge race. © 2006 Wiley Periodicals, Inc. 1. INTRODUCTION sult of an intense development effort led by Stanford University, and involving experts from Volkswagen The Grand Challenge was launched by the Defense of America, Mohr Davidow Ventures, Intel Research, ͑ ͒ Advanced Research Projects Agency DARPA in and a number of other entities.
    [Show full text]
  • Introducing Driverless Cars to UK Roads
    Introducing Driverless Cars to UK Roads WORK PACKAGE 5.1 Deliverable D1 Understanding the Socioeconomic Adoption Scenarios for Autonomous Vehicles: A Literature Review Ben Clark Graham Parkhurst Miriam Ricci June 2016 Preferred Citation: Clark, B., Parkhurst, G. and Ricci, M. (2016) Understanding the Socioeconomic Adoption Scenarios for Autonomous Vehicles: A Literature Review. Project Report. University of the West of England, Bristol. Available from: http://eprints.uwe.ac.uk/29134 Centre for Transport & Society Department of Geography and Environmental Management University of the West of England Bristol BS16 1QY UK Email enquiries to [email protected] VENTURER: Introducing driverless cars to UK roads Contents 1 INTRODUCTION .............................................................................................................................................. 2 2 A HISTORY OF AUTONOMOUS VEHICLES ................................................................................................ 2 3 THEORETICAL PERSPECTIVES ON THE ADOPTION OF AVS ............................................................... 4 3.1 THE MULTI-LEVEL PERSPECTIVE AND SOCIO-TECHNICAL TRANSITIONS ............................................................ 4 3.2 THE TECHNOLOGY ACCEPTANCE MODEL ........................................................................................................ 8 3.3 SUMMARY ...................................................................................................................................................
    [Show full text]
  • Safety of Autonomous Vehicles
    Hindawi Journal of Advanced Transportation Volume 2020, Article ID 8867757, 13 pages https://doi.org/10.1155/2020/8867757 Review Article Safety of Autonomous Vehicles Jun Wang,1 Li Zhang,1 Yanjun Huang,2 and Jian Zhao 2 1Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS 39762, USA 2Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada Correspondence should be addressed to Jian Zhao; [email protected] Received 1 June 2020; Revised 3 August 2020; Accepted 1 September 2020; Published 6 October 2020 Academic Editor: Francesco Bella Copyright © 2020 Jun Wang et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autonomous vehicle (AV) is regarded as the ultimate solution to future automotive engineering; however, safety still remains the key challenge for the development and commercialization of the AVs. *erefore, a comprehensive understanding of the de- velopment status of AVs and reported accidents is becoming urgent. In this article, the levels of automation are reviewed according to the role of the automated system in the autonomous driving process, which will affect the frequency of the disengagements and accidents when driving in autonomous modes. Additionally, the public on-road AV accident reports are statistically analyzed. *e results show that over 3.7 million miles have been tested for AVs by various manufacturers from 2014 to 2018. *e AVs are frequently taken over by drivers if they deem necessary, and the disengagement frequency varies significantly from 2 ×10−4 to 3 disengagements per mile for different manufacturers.
    [Show full text]
  • Aptiv Application to Test Automated Driving Systems (ADS)
    Charles D. Baker. Governor Karyn E Polito. lJeutenant Governor massDOT Stephanie Pollack. MassDOT Secretary & CEO Massachusetts Department of Transportation Application to Test Automated Driving Systems on Public Ways in Massachusetts CONTACT INFORMA T/ON: Name of Organization: Aptiv Services US LLC and its affiliate nuTonomy, Inc. Primary Contact Person: Abe Ghabra Title: Managing Director, Las Vegas Technical Center Street Address of Company's Headquarters Office: 100 Northern Ave. Suite 200. City, Town of Headquarters Office: Boston State: MA Zip Code: 02210 Country: USA Website: https:ll www.aptlv.com/autonomous-mobllfty CERT/FICA TION: The Applicant certifies that all information contained within this application is true, accurate and complete to the best ofIts knowledge. /i~L /t:h-- Abe Ghabra 01 January 2020 Srgnature ofApplicant's Representative Printed Name Date of Signing Managing Director, Las Vegas Technical Center Position and Title Ten Park Plaza, Suite 4160, Boston, MA 0211 6 Tel. 857-368-4636, TTY: 857-368-0655 www.rnass.gov/massdot Application to Test Automated Driving Systems on Public Ways in Massachusetts Detailed Information Detail # 1: Experience with Automated Driving Systems (ADS) Detail # 2: Operational Design Domain Detail # 3: Summary of Training and Operations Protocol Detail # 4: First Responders Interaction Plan Detail # 5: Applicant’s Voluntary Safety Self-Assessment Detail # 6: Motor Vehicles in Testing Program Detail # 7: Drivers in Testing Program Detail # 8: Insurance Requirements Detail # 9: Additional Questions Note: Applicants should not disclose any confidential information or other material considered to be trade secrets, as the applications are considered to be public records. The Massachusetts Public Records Law applies to records created by or in the custody of a state or local agency, board or other government entity.
    [Show full text]
  • Towards a Viable Autonomous Driving Research Platform
    Towards a Viable Autonomous Driving Research Platform Junqing Wei, Jarrod M. Snider, Junsung Kim, John M. Dolan, Raj Rajkumar and Bakhtiar Litkouhi Abstract— We present an autonomous driving research vehi- cle with minimal appearance modifications that is capable of a wide range of autonomous and intelligent behaviors, including smooth and comfortable trajectory generation and following; lane keeping and lane changing; intersection handling with or without V2I and V2V; and pedestrian, bicyclist, and workzone detection. Safety and reliability features include a fault-tolerant computing system; smooth and intuitive autonomous-manual switching; and the ability to fully disengage and power down the drive-by-wire and computing system upon E-stop. The vehicle has been tested extensively on both a closed test field and public roads. I. INTRODUCTION Fig. 1: The CMU autonomous vehicle research platform in Imagining autonomous passenger cars in mass production road test has been difficult for many years. Reliability, safety, cost, appearance and social acceptance are only a few of the legitimate concerns. Advances in state-of-the-art software with simple driving scenarios, including distance keeping, and sensing have afforded great improvements in reliability lane changing and intersection handling [14], [6], [3], [12]. and safe operation of autonomous vehicles in real-world The NAVLAB project at Carnegie Mellon University conditions. As autonomous driving technologies make the (CMU) has built a series of experimental platforms since transition from laboratories to the real world, so must the the 1990s which are able to run autonomously on freeways vehicle platforms used to test and develop them. The next [13], but they can only drive within a single lane.
    [Show full text]
  • Perception, Planning, Control, and Coordination for Autonomous Vehicles
    machines Article Perception, Planning, Control, and Coordination for Autonomous Vehicles Scott Drew Pendleton 1,*, Hans Andersen 1, Xinxin Du 2, Xiaotong Shen 2, Malika Meghjani 2, You Hong Eng 2, Daniela Rus 3 and Marcelo H. Ang Jr. 1 1 Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore; [email protected] (H.A.); [email protected] (M.H.A.J.) 2 Future Urban Mobility, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; [email protected] (X.D.); [email protected] (X.S.); [email protected] (M.M.); [email protected] (Y.H.E.) 3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected] * Correspondence: [email protected] Academic Editor: Robert Parkin Received: 3 January 2017; Accepted: 13 February 2017; Published: 17 February 2017 Abstract: Autonomous vehicles are expected to play a key role in the future of urban transportation systems, as they offer potential for additional safety, increased productivity, greater accessibility, better road efficiency, and positive impact on the environment. Research in autonomous systems has seen dramatic advances in recent years, due to the increases in available computing power and reduced cost in sensing and computing technologies, resulting in maturing technological readiness level of fully autonomous vehicles. The objective of this paper is to provide a general overview of the recent developments in the realm of autonomous vehicle software systems. Fundamental components of autonomous vehicle software are reviewed, and recent developments in each area are discussed.
    [Show full text]
  • The Imminent Challenges of Autonomous Vehicles and How to Ethically Address Them
    The Imminent Challenges of Autonomous Vehicles and How To Ethically Address Them Luis Pimentel INTA 2030 Dr. Vicki Birchfield Part I Part II Part III What are autonomous vehicles? Problems in driver-vehicle Finding ethical solutions to these What is the history of autonomous relationships. problems. vehicles and state of the art? Problems regarding infrastructure. Current regulatory bodies Problems regarding the job market. Introduction • Autonomous technology • technology that has the capability to drive a vehicle without the active physical control or monitoring by a human operator (State of California DMV) • Examples: Cruise control, emergency braking, lane centering • Diverse industry applications • Safety incentive • 1.25 million death/year; 3,287 deaths/day related to car crashes • 20-50 million are injured or disabled • Economic incentive • $518 billion in costs annually related to car crashes SAE Levels of Autonomy (Level 0 – 2) SAE Level 0 – No Driving Automation •Vehicle control is dependent entirely on the human driver; •Lane departure warnings and emergency braking SAE Level 1 – Driver Assistance •A vehicle provides driver assistance in either lateral or longitudinal control •Lateral: steering •Longitudinal: acceleration and braking •lane centering or adaptive cruise control SAE Level 2 – Partial Driving Automation •Both lateral and longitudinal control Each of the levels require driver to be present and constantly monitoring these systems SAE Levels 3- 4 SAE Level 3 – Conditional Driving Automation • Complete control steering,
    [Show full text]