Study Protocol Use of Benzodiazepines and Risk of Hip/Femur Fracture a Methodological Comparison Across Data Sources and Epidemiological Design

Total Page:16

File Type:pdf, Size:1020Kb

Study Protocol Use of Benzodiazepines and Risk of Hip/Femur Fracture a Methodological Comparison Across Data Sources and Epidemiological Design WP2 Framework for pharmacoepidemiological studies WG1 Databases Study Protocol Use of benzodiazepines and risk of hip/femur fracture A methodological comparison across data sources and epidemiological design Version: Final Nov 14, 2011 with Amendment 1 – Jan 2012, approved 29 Feb 2012 Version: Final Nov 14 2011 with Amendment 2 - Jan 2013, approved 31 December 2013 Version: Final Nov 14 2011 with Amendment 3 – Jun 2013, approved 31 December 2013 Version: Final Nov 14 2011 with Amendment 4 – Oct 2013, approved 31 December 2013 PROTECT_WP2 Final Protocol_BenzoHIPfracture_14Nov2011_Amend 4_Dec 2013 Page 1 of 193 WG1 Drug AE group Name Role Francisco de Abajo 1, 2 Protocol Lead Luis Alberto García Rodríguez 3 Protocol Backup Ulrik Hesse 4 Protocol Reviewer Andrew Bate 5 Protocol Reviewer Saga Johanson 6 Protocol Reviewer Frank de Vries 7 Protocol Reviewer Marietta Rottenkolber 8 Database 1 (Bavaria) lead Joerg Hasford 8 Database 1 (Bavaria) backup Consuelo Huerta 2 Database 2 (Bifap) lead Miguel Gil 2 Database 2 (Bifap) backup Ulrik Hesse4 Database 3 (DKMA) lead Frank de Vries7 Database 3 (DKMA) backup Montserrat Miret 11 and Jeane Pimienta 12 Database 3 (CPRD) lead Arlene Gallagher/ Dan Dedman /Jenny Campbell 13 Database 3 (CPRD) backup Olaf Klungel 7 Database 4 (Mondriaan) lead Liset van Dijk 7, 9 Database 4 (Mondriaan) backup Yolanda Alvarez 10 Database 5 (THIN) lead Ana Ruigomez 3 Database 5 (THIN) backup 1 Universidad de Alcalá, Madrid, Spain 2 Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain (AEMPS) 3 Fundación Centro Español de Investigación Farmacoepidemiológica, Madrid, Spain (CEIFE) 4 Lægemiddelstyrelsen (Danish Medicines Agency), Copenhagen, Denmark (DKMA) 5 Pfizer Ltd, Walton Oaks, Dorking Road, Tadworth, UK (Pfizer) 6 AstraZeneca AB, Molndal, Sweden (AZ) 7 Universiteit Utrecht, Utrecht, The Netherlands (UU) 8 Ludwig-Maximilians-Universität-München, Munich, Germany (LMU- Muenchen) 9 Netherlands Institute for Healthcare Research, Utrecht, The Netherlands (NIVEL) 10 European Medicines Agency, London, United Kingdom (EMA) 11 Merck KGaA, Geneva, Switzerland (ME) 12 GlaxoSmithKline Research and Development LTD, UK (GSK) 13 General Practice Research Database, London, United Kingdom (CPRD) PROTECT_WP2 Final Protocol_BenzoHIPfracture_14Nov2011_Amend 4_Dec 2013 Page 2 of 193 Contents 1 Context of the studies ......................................................................................................... 6 2 Background .......................................................................................................................... 6 3 Objectives ............................................................................................................................ 7 4 Methods .............................................................................................................................. 7 4.1 Data Source ...................................................................................................................................... 7 4.1.1 Bavarian Claims Database (Germany) .............................................................................................. 7 4.1.2 BIFAP (Spain) .................................................................................................................................... 7 4.1.3 National Databases (Denmark) ........................................................................................................ 7 4.1.4 Clinical Practice Research Datalink (formerly General Practice Research Database) (UK) .............. 8 4.1.5 Mondriaan (The Netherlands) .......................................................................................................... 9 4.1.6 The Health Improvement Network (UK) .......................................................................................... 9 4.2 Period of valid data collection .......................................................................................................... 9 5 Study Designs .................................................................................................................... 10 5.1 Descriptive study ............................................................................................................................ 10 5.1.1 Study Population ............................................................................................................................ 10 5.1.2 Exposure description ...................................................................................................................... 11 5.1.2.1 Prevalence of benzodiazepine use by sex and age ........................................................................................ 11 5.1.2.2 Prevalence of benzodiazepine use stratified by indication............................................................................ 13 5.1.2.3 Prevalence of benzodiazepine use stratified by number of prescriptions ...................................................... 14 5.1.3 Outcome description ...................................................................................................................... 15 5.1.3.1 Prevalence of the (lifetime) hip/femur fractures by sex and age over the first year ...................................... 15 5.1.3.2 (Cumulative) Incidence of hip/femur fractures by sex and age per year ...................................................... 16 5.2 Analytical studies ............................................................................................................................ 16 5.2.1 Study population for the cohort and the nested case-control design ........................................... 16 5.2.2 Study population for the case only designs: case-crossover and self-controlled case series ........ 18 5.2.2 Outcome Definition ........................................................................................................................ 18 5.2.3 Exposure definition ........................................................................................................................ 19 5.2.4 Potential confounders .................................................................................................................... 22 5.2.5 Analysis ........................................................................................................................................... 22 5.3 Cohort study ................................................................................................................................... 23 5.3.1 Follow-up ........................................................................................................................................ 23 5.3.2 Analysis ........................................................................................................................................... 23 5.4 Nested case-control study .............................................................................................................. 24 5.4.1 Case definition ................................................................................................................................ 24 5.4.2 Selection of controls ....................................................................................................................... 24 5.4.3 Exposure definition ........................................................................................................................ 25 5.4.4 Analysis ........................................................................................................................................... 26 5.5 Case-crossover analysis .................................................................................................................. 27 5.5.1 Study population ............................................................................................................................ 27 5.5.2 Cases and control dates ................................................................................................................. 27 5.5.3 Exposure definition ........................................................................................................................ 27 5.5.4 Analysis ........................................................................................................................................... 28 5.6 Self-controlled case series analysis ................................................................................................ 29 5.6.1 Study population ............................................................................................................................ 29 5.6.2 Exposure definition ........................................................................................................................ 30 5.6.3 Statistical analysis ........................................................................................................................... 32 6 Instrumental variable analysis .......................................................................................... 33 7 Limitations ......................................................................................................................... 33 8 References ......................................................................................................................... 35 9 Annexes ............................................................................................................................. 38 PROTECT_WP2 Final Protocol_BenzoHIPfracture_14Nov2011_Amend
Recommended publications
  • Drug & Alcohol Testing Program
    Pottawattmie County Drug & Alcohol Testing Program Appendix A Table of Contents POLICY STATEMENT ...................................................................................................................................... 3 SCOPE ............................................................................................................................................................ 4 EDUCATION AND TRAINING .......................................................................................................................... 4 DESIGNATED EMPLOYER REPRESENTATIVE (DER): ....................................................................................... 5 DUTY TO COOPERATE ................................................................................................................................... 5 EMPLOYEE ADMISSION OF ALCOHOL AND CONTROLLED SUBSTANCE USE: (49 CFR Part 382.121) ... 6 PROHIBITED DRUGS AND ILLEGALLY USED CONTROLLED SUBSTANCES: ..................................................... 7 PROHIBITED BEHAVIOR AND CONDUCT: ...................................................................................................... 8 DRUG & ALCOHOL TESTING REQUIREMENTS (49 CFR, Part 40 & 382) ............................................... 10 DRUG & ALCOHOL TESTING CIRCUMSTANCES (49 CFR Part 40 & 382) .............................................. 12 A. Pre-Employment Testing: .................................................................................................... 12 B. Reasonable Suspicion Testing: .........................................................................................
    [Show full text]
  • MARCH FRACTURE-PIED FORCE Developed Reactions to These Test Products and to Witte Peptone at Least As Severe As Those Shown by Our by Anaphylactic Case
    FEB. 24, 1940 ANAPHYLAXIS AFTER TETANUS TOXOID MERCALTSORHL 95 erythema than similar dilutions of the extracts, and that within a few minutes of injection many persons MARCH FRACTURE-PIED FORCE developed reactions to these test products and to Witte peptone at least as severe as those shown by our BY anaphylactic case. Further investigations are in progress which it is hoped will be the subject of another paper. F. A. R. STAMMERS, Ch.M., F.R.C.S. Our observations throw considerable doubt on the value Major R.A.M.C., Surgical Specialist of scratch and intradermal tests as usually interpreted on the basis of early readings. Nevertheless, our patient Army medical officers everywhere have been asked to see was the only subject who developed mild anaphylactic all sorts of foot troubles precipitated by military training. symptoms-itching of the nose and tongue, slight swelling More often than not these are due to pre-existing con- of the lower lip, smarting of the eyes, and flushing of the ditions such as hallux rigidus, hallux valgus, hammer-toe, face-soon after 1 in 1,000 dilutions of Witte peptone and or pes planus, which, though formerly symptomless, break two other beef fibrin digests had been injected intra- down under the strain of route-marching, physical train- dermally; and she alone showed areas of redness, 50 to ing, and the general extra footwork the soldier- is called 60 mm. in diameter, swelling, and induration (" like upon to do in heavy army boots. Even a seemingly those occurring after staphylococcus toxoid ") about two normal foot may develop trouble under such circum- hours later at the sites of injection of these products.
    [Show full text]
  • Pentameric Ligand-Gated Ion Channel ELIC Is Activated by GABA And
    Pentameric ligand-gated ion channel ELIC is activated PNAS PLUS by GABA and modulated by benzodiazepines Radovan Spurnya, Joachim Ramerstorferb, Kerry Pricec, Marijke Bramsa, Margot Ernstb, Hugues Nuryd, Mark Verheije, Pierre Legrandf, Daniel Bertrandg, Sonia Bertrandg, Dennis A. Doughertyh, Iwan J. P. de Esche, Pierre-Jean Corringerd, Werner Sieghartb, Sarah C. R. Lummisc, and Chris Ulensa,1 aDepartment of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Catholic University of Leuven, 3000 Leuven, Belgium; bDepartment of Biochemistry and Molecular Biology of the Nervous System, Medical University of Vienna, A-1090 Vienna, Austria; cDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; dPasteur Institute, G5 Group of Channel-Receptor, Centre National de la Recherche Scientifique, 75724 Paris, France; eDepartment of Medicinal Chemistry, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands; fSOLEIL Synchrotron, 91192 Gif sur Yvette, France; gHiQScreen, CH-1211 Geneva, Switzerland; and hCalifornia Institute of Technology, Pasadena, CA 91125 Edited* by Jean-Pierre Changeux, Institut Pasteur, Paris Cedex 15, France, and approved September 10, 2012 (received for review May 24, 2012) GABAA receptors are pentameric ligand-gated ion channels in- marized in SI Appendix, Table S1). In addition, it has been volved in fast inhibitory neurotransmission and are allosterically suggested that the GABA carboxylate group is stabilized through modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic electrostatic interactions with Arg residues on the principal and benzodiazepines. Here we show that the prokaryotic homolog ELIC complementary faces of the binding site (4, 7–9). For benzo- also is activated by GABA and is modulated by benzodiazepines diazepines, the individual contributions of residues in loops A–F with effects comparable to those at GABAA receptors.
    [Show full text]
  • Clinical Trial of the Neuroprotectant Clomethiazole in Coronary Artery Bypass Graft Surgery a Randomized Controlled Trial Robert S
    Anesthesiology 2002; 97:585–91 © 2002 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Clinical Trial of the Neuroprotectant Clomethiazole in Coronary Artery Bypass Graft Surgery A Randomized Controlled Trial Robert S. Kong, F.R.C.A.,* John Butterworth, M.D.,† Wynne Aveling, F.R.C.A.,‡ David A. Stump, M.D.,† Michael J. G. Harrison, F.R.C.P.,§ John Hammon, M.D.,ʈ Jan Stygall, M.Sc.,# Kashemi D. Rorie, Ph.D.,** Stanton P. Newman, D.Phil.†† Background: The neuroprotective property of clomethiazole THE efficacy of coronary artery bypass surgery in the has been demonstrated in several animal models of global and relief of angina and in some circumstances in enhancing Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/97/3/585/335909/0000542-200209000-00011.pdf by guest on 29 September 2021 focal brain ischemia. In this study the authors investigated the life expectation is now accepted. It is a tribute to the low effect of clomethiazole on cerebral outcome in patients under- mortality of the procedure that interest is now focused going coronary artery bypass surgery. Methods: Two hundred forty-five patients scheduled for on the neurologic and neuropsychological complica- 1–3 coronary artery bypass surgery were recruited at two centers tions. Adverse neurologic outcomes have been found and prospectively randomized to clomethiazole edisilate to occur in 2–6% of patients and neuropsychological (0.8%), 225 ml (1.8 mg) loading dose followed by a maintenance deficits in 10–30%.4–6 These complications are consid- dose of 100 ml/h (0.8 mg/h) during surgery, or 0.9% NaCl ered to be ischemic in nature, being a consequence of (placebo) in a double-blind trial.
    [Show full text]
  • Listen to the Associated Podcast Episodes: MSK: Fractures for the ABR Core Exam Parts 1-3, Available at Theradiologyreview.Com O
    MSK: Fractures for Radiology Board Study, Matt Covington, MD Listen to the associated podcast episodes: MSK: Fractures for the ABR Core Exam Parts 1-3, available Listen to associated Podcast episodes: ABR Core Exam, Multisystemic Diseases Parts 1-3, available at at theradiologyreview.com or on your favorite podcast directory. Copyrighted. theradiologyreview.com or on your favorite podcast direcry. Fracture resulting From abnormal stress on normal bone = stress Fracture Fracture From normal stress on abnormal bone = insuFFiciency Fracture Scaphoid Fracture site with highest risk for avascular necrosis (proximal or distal)? Proximal pole scaphoid Fractures are at highest risk For AVN Comminuted Fracture at the base oF the First metacarpal = Rolando Fracture Non-comminuted Fracture at base oF the First metacarpal = Bennett Fracture The pull oF which tendon causes the dorsolateral dislocation in a Bennett fracture? The abductor pollicus longus tendon. Avulsion Fracture at the base oF the proximal phalanx with ulnar collateral ligament disruption = Gamekeeper’s thumb. Same Fracture but adductor tendon becomes caught in torn edge oF the ulnar collateral ligament? Stener’s lesion. IF Stener’s lesion is present this won’t heal on its own so you need surgery. You shouldn’t image a Gamekeeper’s thumb with stress views because you can convert it to a Stener’s lesion. Image with MRI instead. Distal radial Fracture with dorsal angulation = Colle’s Fracture (C to D= Colle’s is Dorsal) Distal radial Fracture with volar angulation = Smith’s Fracture (S
    [Show full text]
  • A Retrospective Comparison of Inappropriate Prescribing Of
    Schjøtt and Aßmus BMC Medical Informatics and Decision Making (2019) 19:102 https://doi.org/10.1186/s12911-019-0821-0 RESEARCHARTICLE Open Access A retrospective comparison of inappropriate prescribing of psychotropics in three Norwegian nursing homes in 2000 and 2016 with prescribing quality indicators Jan Schjøtt1,2* and Jörg Aßmus3 Abstract Background: Inappropriate prescribing of psychotropics is a persistent and prevalent problem in nursing homes. The present study compared inappropriate prescribing of psychotropics in nursing homes 16 years apart with prescribing quality indicators. The purpose was to identify any change in inappropriate prescribing of relevance for medical informatics. Methods: Three Norwegian nursing homes were audited in 2000 and 2016 with regard to prescribing quality. Psychotropics among 386 patients in 2000, and 416 patients in 2016, included combinations of antidepressants, antipsychotics, anxiolytics-hypnotics, and antiepileptics. Prescribing quality indicators included psychotropic polypharmacy (defined as concurrent use of three or more psychotropics) and potential inappropriate psychotropic substances or combinations. Furthermore, potential clinically relevant psychotropic interactions were classified as pharmacodynamic or pharmacokinetic using an interaction database. The first ranked (most important) interaction in each patient was selected with the following importance of categories in the database; recommended action > documentation > severity. Three levels (from low to high) within each category were used for ranking. Results: From 2000 to 2016, psychotropic polypharmacy increased from 6.2 to 29.6%, potential inappropriate psychotropic substances was reduced from 17.9 to 11.3% and potential inappropriate psychotropic combinations increased from 7.8 to 27.9%. Changes in polypharmacy and combinations were predominantly associated with prescribing of anxiolytics-hypnotics.
    [Show full text]
  • Pharmacological Treatments in Insomnia
    Pharmacological treatments in insomnia Sue Wilson Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College, London Drugs used in insomnia Licensed for insomnia •GABA-A positive allosteric modulators •melatonin (modified release) •promethazine •diphenhydramine •doxepin (USA) Unlicensed prescribed frequently •antihistamines (and OTC) •antidepressants Sometimes prescribed drugs for psychosis Some GABA-A positive allosteric modulators Drugs acting at the GABA-A benzodiazepine receptor zopiclone zolpidem zaleplon benzodiazepines eg temazepam, lorazepam (safe in overdose, as long as no other drug involved) Drugs acting at the barbiturate/alcohol receptor chloral hydrate/chloral betaine clomethiazole (dangerous in overdose) GABA calms the brain Gamma aminobutyic acid (GABA) is the main inhibitory transmitter in the mammalian central nervous system. It plays the principal role in reducing neuronal excitability and its receptors are prolific throughout the brain, in cortex, limbic system, thalamus and cerebellum sedative Increase anticonvulsant GABA anxiolytic function ataxia, memory effects Effects of GABA-A positive allosteric modulators •These drugs enhance the effect of GABA, the main inhibitory neurotransmitter in the brain •They all produce sedation, sleep promotion, ataxia, muscle relaxation, effects on memory, anticonvulsant effects •Therefore for insomnia the duration of action of the drug is important – these effects are unwanted during the day Effects of these GABA-ergic drugs on sleep EEG/PSG • Appearance of
    [Show full text]
  • Boendedok 2020 Manual För Intervjuformulären
    BoendeDOK 2020 Manual för intervjuformulären Mikael Dahlberg Mats Anderberg Helen Falck Innehållsförteckning Introduktion ___________________________________________________ 4 BoendeDOK __________________________________________________ 6 Inskrivningsintervju __________________________________________ 6 Avstämningsintervju __________________________________________ 7 Utskrivningsintervju __________________________________________ 7 Frågeområden i BoendeDOK ___________________________________ 7 Hantering och förvaring av DOK-material _________________________ 8 Kontaktpersonens roll _________________________________________ 8 Kodning i BoendeDOK ________________________________________ 9 Tidsintervaller ______________________________________________ 10 Frågor om förändring ________________________________________ 10 Att i efterhand ändra intervjusvar _______________________________ 11 Inför intervjun - Klientens samtycke ____________________________ 11 Under intervjun _____________________________________________ 12 Återkoppling av Inskrivningsintervjun ___________________________ 12 BoendeDOK Inskrivningsformulär ________________________________ 16 Intervjuinformation __________________________________________ 16 A. Administrativa uppgifter ___________________________________ 16 B. Bakgrundsinformation _____________________________________ 17 C. Boende _________________________________________________ 17 D. Relationer _______________________________________________ 20 E. Myndighets- och vårdkontakter ______________________________ 21
    [Show full text]
  • WHO Manual of Diagnostic Imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System
    The WHO manual of diagnostic imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System Editors Harald Ostensen M.D. Holger Pettersson M.D. Authors A. Mark Davies M.D. Holger Pettersson M.D. In collaboration with F. Arredondo M.D., M.R. El Meligi M.D., R. Guenther M.D., G.K. Ikundu M.D., L. Leong M.D., P. Palmer M.D., P. Scally M.D. Published by the World Health Organization in collaboration with the International Society of Radiology WHO Library Cataloguing-in-Publication Data Davies, A. Mark Radiography of the musculoskeletal system / authors : A. Mark Davies, Holger Pettersson; in collaboration with F. Arredondo . [et al.] WHO manuals of diagnostic imaging / editors : Harald Ostensen, Holger Pettersson; vol. 2 Published by the World Health Organization in collaboration with the International Society of Radiology 1.Musculoskeletal system – radiography 2.Musculoskeletal diseases – radiography 3.Musculoskeletal abnormalities – radiography 4.Manuals I.Pettersson, Holger II.Arredondo, F. III.Series editor: Ostensen, Harald ISBN 92 4 154555 0 (NLM Classification: WE 141) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, CH-1211 Geneva 27, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © World Health Organization 2002 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved.
    [Show full text]
  • Calculating Equivalent Doses of Oral Benzodiazepines
    Calculating equivalent doses of oral benzodiazepines Background Benzodiazepines are the most commonly used anxiolytics and hypnotics (1). There are major differences in potency between different benzodiazepines and this difference in potency is important when switching from one benzodiazepine to another (2). Benzodiazepines also differ markedly in the speed in which they are metabolised and eliminated. With repeated daily dosing accumulation occurs and high concentrations can build up in the body (mainly in fatty tissues) (2). The degree of sedation that they induce also varies, making it difficult to determine exact equivalents (3). Answer Advice on benzodiazepine conversion NB: Before using Table 1, read the notes below and the Limitations statement at the end of this document. Switching benzodiazepines may be advantageous for a variety of reasons, e.g. to a drug with a different half-life pre-discontinuation (4) or in the event of non-availability of a specific benzodiazepine. With relatively short-acting benzodiazepines such as alprazolam and lorazepam, it is not possible to achieve a smooth decline in blood and tissue concentrations during benzodiazepine withdrawal. These drugs are eliminated fairly rapidly with the result that concentrations fluctuate with peaks and troughs between each dose. It is necessary to take the tablets several times a day and many people experience a "mini-withdrawal", sometimes a craving, between each dose. For people withdrawing from these potent, short-acting drugs it has been advised that they switch to an equivalent dose of a benzodiazepine with a long half life such as diazepam (5). Diazepam is available as 2mg tablets which can be halved to give 1mg doses.
    [Show full text]
  • Assessment Report
    12 October 2017 EMA/833636/2017 Committee for Medicinal Products for Human Use (CHMP) Assessment report Referral under Article 29(4) of Directive 2001/83/EC Alcover (granules in sachet) and associated names INN: Sodium oxybate Procedure number: EMEA/H/A-29(4)/1451 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background Information ......................................................................... 3 2. Scientific discussion ................................................................................ 3 2.1. Introduction ...................................................................................................... 3 2.2. Assessment of the issues raised as a potential serious risk to public health............... 4 3. Benefit-risk assessment ........................................................................ 11 3.1. 3.1 Initial benefit-risk balance assessment ......................................................... 11 3.2. 3.2 Re-examination procedure .......................................................................... 13 3.2.1. CHMP discussion on grounds for re-examination .................................................
    [Show full text]
  • Uniform Classification Guidelines for Foreign Substances and Recommended Penalties Model Rule
    DRUG TESTING STANDARDS AND PRACTICES PROGRAM. Uniform Classification Guidelines for Foreign Substances And Recommended Penalties Model Rule. January, 2018 (V.13.4) Ó ASSOCIATION OF RACING COMMISSIONERS INTERNATIONAL – 2018. Association of Racing Commissioners International 1510 Newtown Pike, Lexington, Kentucky, United States www.arci.com Page 1 of 61 Preamble to the Uniform Classification Guidelines of Foreign Substances The Preamble to the Uniform Classification Guidelines was approved by the RCI Drug Testing and Quality Assurance Program Committee (now the Drug Testing Standards and Practices Program Committee) on August 26, 1991. Minor revisions to the Preamble were made by the Drug Classification subcommittee (now the Veterinary Pharmacologists Subcommittee) on September 3, 1991. "The Uniform Classification Guidelines printed on the following pages are intended to assist stewards, hearing officers and racing commissioners in evaluating the seriousness of alleged violations of medication and prohibited substance rules in racing jurisdictions. Practicing equine veterinarians, state veterinarians, and equine pharmacologists are available and should be consulted to explain the pharmacological effects of the drugs listed in each class prior to any decisions with respect to penalities to be imposed. The ranking of drugs is based on their pharmacology, their ability to influence the outcome of a race, whether or not they have legitimate therapeutic uses in the racing horse, or other evidence that they may be used improperly. These classes of drugs are intended only as guidelines and should be employed only to assist persons adjudicating facts and opinions in understanding the seriousness of the alleged offenses. The facts of each case are always different and there may be mitigating circumstances which should always be considered.
    [Show full text]