Arxiv:2008.04758V3 [Math.FA]
Subnormal nth roots of quasinormal operators are quasinormal Pawe l Pietrzycki and Jan Stochel Abstract. In a recent paper [11], R. E. Curto, S. H. Lee and J. Yoon asked the following question: Let A be a subnormal operator, and assume that A2 is quasinormal. Does it follow that A is quasinormal? In this paper, we answer that question in the affirmative. In fact, we prove a more general result that subnormal nth roots of quasinormal operators are quasinormal. 1. Introduction An operator1 A on a (complex) Hilbert space H is said to be subnormal if it is (unitarily equivalent to) the restriction of a normal operator to its invariant (closed vector) subspace. In turn, A is called quasinormal if A(A∗A) = (A∗A)A, or equivalently, if and only if U|A| = |A|U, where A = U|A| is the polar decomposition of A (see [40, Theorem 7.20]). The classes of subnormal and quasinormal operators were introduced by P. Halmos in [15] and by A. Brown in [5], respectively. It is well-known that quasinormal operators are subnormal but not conversely (see [16, Problem 195]). For more information on subnormal and quasinormal operators we refer the reader to [16, 7]. In a recent paper [11], R. E. Curto, S. H. Lee and J. Yoon, partially motivated by the results of their previous articles [9, 10], asked the following question Problem 1.1 ([11, Problem 1.1]). Let A be a subnormal operator, and assume that A2 is quasinormal. Does it follow that A is quasinormal? arXiv:2008.04758v3 [math.FA] 24 Sep 2020 They proved that a left invertible subnormal operator A whose square A2 is quasinormal, must be quasinormal (see [11, Theorem 2.4]).
[Show full text]