View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter http://dx.doi.org/10.1090/surv/036 MATHEMATICAL SURVEYS AND MONOGRAPHS SERIES LIST Volume 1 The problem of moments, 16 Symplectic groups, J. A. Shohat and J. D. Tamarkin O. Timothy O'Meara 2 The theory of rings, 17 Approximation by polynomials N. Jacobson with integral coefficients, 3 Geometry of polynomials, Le Baron O. Ferguson M. Marden 18 Essentials of Brownian motion 4 The theory of valuations, and diffusion, Frank B. Knight O. F. G. Schilling 19 Contributions to the theory of 5 The kernel function and transcendental numbers, Gregory conformal mapping, V. Chudnovsky S. Bergman 20 Partially ordered abelian groups 6 Introduction to the theory of with interpolation, Kenneth R. algebraic functions of one Goodearl variable, C. C. Chevalley 21 The Bieberbach conjecture: 7.1 The algebraic theory of Proceedings of the symposium on semigroups, Volume I, A. H. the occasion of the proof, Albert Clifford and G. B. Preston Baernstein, David Drasin, Peter Duren, and Albert Marden, 7.2 The algebraic theory of Editors semigroups, Volume II, A. H. Clifford and G. B. Preston 22 Noncommutative harmonic analysis, Michael E. Taylor 8 Discontinuous groups and automorphic functions, 23 Introduction to various aspects of J. Lehner degree theory in Banach spaces, E. H. Rothe 9 Linear approximation, Arthur Sard 24 Noetherian rings and their applications, Lance W. Small, 10 An introduction to the analytic Editor theory of numbers, R. Ayoub 25 Asymptotic behavior of dissipative 11 Fixed points and topological systems, Jack K. Hale degree in nonlinear analysis, J. Cronin 26 Operator theory and arithmetic in H°°9 Hari Bercovici 12 Uniform spaces, J. R. Isbell 27 Basic hypergeometric series and 13 Topics in operator theory, applications, Nathan J. Fine A. Brown, R. G. Douglas, C. Pearcy, D. Sarason, A. L. 28 Direct and inverse scattering on Shields; C. Pearcy, Editor the lines, Richard Beals, Percy Deift, and Carlos Tomei 14 Geometric asymptotics, V. Guillemin and S. Sternberg 29 Amenability, Alan L. T. Paterson 15 Vector measures, J. Diestel and 30 The Markoff and Lagrange J. J. Uhl, Jr. spectra, Thomas W. Cusick and Mary E. Flahive MATHEMATICAL SURVEYS AND MONOGRAPHS SERIES LIST Volume 31 Representation theory and harmonic analysis on semisimple Lie groups, Paul J. Sally, Jr. and David A. Vogan, Jr., Editors 32 An introduction to CR structures, Howard Jacobowitz 33 Spectral theory and analytic geometry over non-Archimedean fields, Vladimir G. Berkovich 34 Inverse source problems, Victor Isakov 35 Algebraic geometry for scientists and engineers, Shreeram S. Abhyankar The Theory of Subnormal Operators MATHEMATICAL Surveys and Monographs Volume 36 The Theory of Subnormal Operators John B. Conway £ff |^^H \& American Mathematical Society ^v.. *[f[llT]lD ijB Providence, Rhode Island 1980 Mathematics Subject Classification (1985 Revision). Primary 47B20; Secondary 32A35. Library of Congress Cataloging-in-Publication Data Conway, John B. The theory of subnormal operators/John B. Conway. p. cm.—(Mathematical surveys and monographs, ISSN 0076-5376; no. 36) Includes bibliographical references and indexes. ISBN 0-8218-1536-9 (acid-free) 1. Subnormal operators. I. Title. II. Series. QA329.2.C667 19910 90-26659 515'.7246—dc20 CIP Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publi­ cation (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Ser­ vices, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0076-6376/91 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copyright ©1991 by the American Mathematical Society. All rights reserved. Printed in the United States of America The American Mathematical Society retains all rights except those granted to the United States Government. The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. © This publication was typeset using AMS-T^X, the American Mathematical Society's T^X macro system. 109 8765432 1 95 94 93 92 91 For Ann, my favorite collaborator, and Bligh, our best theorem. Contents Preface xiii Chapter I. Preliminaries 1 § 1 Trace class and Hilbert-Schmidt operators 1 §2 Some topologies on 3B(&) 10 §3 Isometries 13 §4 The unilateral shift of multiplicity 1 18 §5 Direct sums 24 §6 Shifts of higher multiplicity 26 Chapter II. Subnormal Operators: The Elementary Theory 27 § 1 Definition and examples 27 §2 Pure operators and the minimal normal extension 37 §3 Quasinormal operators 43 §4 Hyponormal operators 46 §5 Cyclic subnormal operators 50 §6 Weighted shifts 53 §7 Bounded point evaluations 61 §8 Bergman operators 66 §9 Spectral sets 75 §10 The commutant of a subnormal operator 79 §11 The restriction algebra and the functional calculus 85 §12 The C*-algebra generated by a subnormal operator 88 §13 Unitary equivalence, similarity, and quasisimilarity 93 Chapter III. Function Theory On The Unit Circle 99 § 1 Cesaro sums 99 §2 Convolution on the circle 103 §3 Harmonic functions on the disk 105 §4 Fatou's Theorem 108 §5 Subharmonic functions 114 §6 Hardy spaces 117 §7 The Nevanlinna class 120 §8 Factorization of functions in Nevanlinna class 125 x CONTENTS §9 The disk algebra 132 §10 The invariant subspace lattice of the unilateral shift 135 §11 Weak-star closed ideals in H°° 140 §12 Szego's Theorem 141 § 13 Analytic Toeplitz operators 145 Chapter IV. Hyponormal Operators 149 § 1 The real part of a hyponormal operator 150 §2 The Berger-Shaw Theorem 152 §3 The area of the spectrum of a hyponormal operator 156 §4 The self-commutator of the Bergman operator 156 §5 The decomposition of essentially normal operators 158 Chapter V. Uniform Rational Approximation 163 §1 Function algebras: examples and elementary properties 163 §2 Distributions and some results from analysis 166 §3 The Cauchy transform 173 §4 Invariant subspaces for subnormal operators 181 §5 Vitushkin localization operators 184 §6 T-invariant algebras 187 §7 The Shilov boundary 190 §8 Representing measures 193 §9 Harmonic measure 196 §10 Hardy spaces for an arbitrary region 203 §11 Peak points 211 §12 Capacity 216 § 13 Some applications of analytic capacity 222 § 14 Dirichlet algebras 226 § 15 Gleason parts 234 §16 The Wermer Embedding Theorem 239 § 17 Bands of measures 244 § 18 Annihilating measures 250 § 19 Mergelyan's Theorem 253 §20 The double dual of a T-invariant algebra 254 §21 The Lautzenheiser-Mlak Theorem 260 §22 Davie's Theorem 266 Chapter VI. Weak-Star Rational Approximation 277 §1 Weak-star closed subalgebras of L°°(^) 277 §2 The envelope 282 §3 Chaumat's Theorem 287 §4 H°°(dK) for a Dirichlet algebra 291 §5 Dirichlet algebras revisited 296 §6 The weak-star closure of a Dirichlet algebra 298 §7 The weak-star closure of the polynomials 301 CONTENTS xi Chapter VII. Some Structure Theory For Subnormal Operators 309 § 1 A decomposition of subnormal operators 309 §2 The minimal normal extension problem for subnormal operators 315 §3 Spectral mapping theorems 324 §4 Spectral mapping theorems for the essential spectrum 333 §5 A factorization theorem 341 §6 An infinite factorization theorem 352 §7 Full analytic subspaces 357 §8 Reflexivity for subnormal operators 361 §9 Filling in the holes of the spectrum of a normal operator 365 § 10 Quasisimilarity revisited 368 Chapter VIII. Bounded Point Evaluations 375 §1 A coloring scheme 375 §2 A sufficient condition for the existence of bounded point evaluations 384 §3 Heavy barriers exist 389 §4 Bounded point evaluations exist 397 §5 Thomson's Theorem 399 §6 Some applications of Thomson's Theorem 407 Epilogue 409 Bibliography 411 Index 431 List of symbols 435 Preface This book is a successor to Conway [1981a]. In addition to reflecting the great strides in the development of subnormal operator theory since that first set of notes, the present work is oriented toward rational functions rather than polynomials. This necessitates additional function theory and a knowledge of analytic capacity, both of which are developed here. There are, however, some crucial estimates and applications of capacity to which I have only made references. I began the preface of Conway [1981a] by asking the question, "What is mathematics?" I went on to explain that my definition of mathematics is that it is a collection of examples as opposed to a body of theorems. This definition remains and is still reflected in the nature of this book. I believe mathematics is a collection of examples irrespective of the particular area and that the good theorems are those that explain, classify, and interpret large classes of examples. Paul R. Halmos introduced the concept of a subnormal operator at the same time that he defined hyponormal operators. He was led to do so by a study of the properties of the unilateral shift, the most understood non- normal operator. In a certain sense, subnormal operators were introduced too soon because the theory of function algebras and rational approximation was also in its infancy and could not be properly used to examine this class of operators.
Recommended publications
  • On Unbounded Subnormal Operators
    Proc. Indian Acad. Sci. (Math. Sci.), Vol. 99, No. 1, Aprd 1989, pp. 85-92. Printed in India. On unbounded subnormal operators ARVIND B PATEL and SUBHASH J BHATT Department of Mathematics Sardar Patel University, Vallabh Vidyanagar 388 120 India MS received 28 May 1987; revised to April 1988 Abstract. A minimal normal extension of unbounded subnormal operators is established and characterized and spectral inclusion theorem is proved. An inverse Cayley transform is constructed to obtain a closed unbounded subnormal operator from a bounded one. Two classes of unbounded subnormals VlZ analytic Toeplitz operators and Bergman operators are exhibited. Keywords. Unbounded subnormal operator; Cayley transform; Toephtz and Bergman operators; minimal normal extension. 1. Introduction Recently there has been some interest in unbounded operators that admit normal extensions viz unbounded subnormal operators defined as follows: DEFINITION 1.1 Let S be a linear operator (not necessarily bounded) defined in D(S), a dense subspace of a Hilbert space H. S is called a subnormal operator if it admits a normal extension (N, D(N), K) in the sense that there exists a Hilbert space K, containing H as a closed subspace (the norm induced by K on H is the given norm on /4) and a normal operator N with domain D(N) in K such that Sh = Nh for all h~D(S). These operators appear to have been introduced in [12] following Foias [4]. An operator could be subnormal internally admitting a normal extension in H; or it could admit a normal extension in a larger space. As is well known, a symmetric operator always admits a self-adjoint extension in a larger space, contrarily a formally normal operator may fail to be subnormal ([2], [ 11 ]).
    [Show full text]
  • On Subnormal Operators
    Proc. Indian Acad. Sci. (Math. Sci.). Vol. 95, No. l, September 1986, pp. 41-44. 9 Printed in India, On subnormal operators B C GUPTA Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India MS received 10 September 1985 Abstract. Let S be a pure subnormal operator such that C*(S), the C*-algebra generated by S, is generated by a unilateral shift U of multiplicity 1. We obtain conditions under which S is unitarily equivalent to o~+/3U, o~ and /3 being scalars or S has C*-spectral inclusion property. It is also proved that if in addition. S has C*-spectral inclusion property, then so does its dual T and C*(T) is generated by a unilateral shift of multiplicity 1. Finally, a characterization of quasinormal operators among pure subnormal operators is obtained. Keywords. Subnormal operators; self-dual subnormal operators: quasinormal operators: unilateral shifts; C*-algebra; C*-spectral inclusion property. By an operator we mean a bounded linear operator on a fixed separable infinite dimensional Hilbert space H. For an operator A, let o-s(A), o'a(A) and o'(A) denote respectively the essential spectrum, the approximate point spectrum and the spectrum of A and let C*(A) denote the C*-algebra generated by A. Let S be a subnormal operator on H and N ..... (,) o T* be its minimal normal extension on 3f = H 9 H~. The subnormal operator T appearing in the representation (,) is called the dual of S and has been studied by Conway [5]. Dual of S is unique up to unitary equivalence; and ifS is pure, then N* is the minimal normal extension of T.
    [Show full text]
  • Mathematical Work of Franciszek Hugon Szafraniec and Its Impacts
    Tusi Advances in Operator Theory (2020) 5:1297–1313 Mathematical Research https://doi.org/10.1007/s43036-020-00089-z(0123456789().,-volV)(0123456789().,-volV) Group ORIGINAL PAPER Mathematical work of Franciszek Hugon Szafraniec and its impacts 1 2 3 Rau´ l E. Curto • Jean-Pierre Gazeau • Andrzej Horzela • 4 5,6 7 Mohammad Sal Moslehian • Mihai Putinar • Konrad Schmu¨ dgen • 8 9 Henk de Snoo • Jan Stochel Received: 15 May 2020 / Accepted: 19 May 2020 / Published online: 8 June 2020 Ó The Author(s) 2020 Abstract In this essay, we present an overview of some important mathematical works of Professor Franciszek Hugon Szafraniec and a survey of his achievements and influence. Keywords Szafraniec Á Mathematical work Á Biography Mathematics Subject Classification 01A60 Á 01A61 Á 46-03 Á 47-03 1 Biography Professor Franciszek Hugon Szafraniec’s mathematical career began in 1957 when he left his homeland Upper Silesia for Krako´w to enter the Jagiellonian University. At that time he was 17 years old and, surprisingly, mathematics was his last-minute choice. However random this decision may have been, it was a fortunate one: he succeeded in achieving all the academic degrees up to the scientific title of professor in 1980. It turned out his choice to join the university shaped the Krako´w mathematical community. Communicated by Qingxiang Xu. & Jan Stochel [email protected] Extended author information available on the last page of the article 1298 R. E. Curto et al. Professor Franciszek H. Szafraniec Krako´w beyond Warsaw and Lwo´w belonged to the famous Polish School of Mathematics in the prewar period.
    [Show full text]
  • L(N)-HYPONORMALITY: a MISSING BRIDGE BETWEEN SUBNORMALITY and PARANORMALITY
    J. Aust. Math. Soc. 88 (2010), 193–203 doi:10.1017/S1446788710000091 L.n/-HYPONORMALITY: A MISSING BRIDGE BETWEEN SUBNORMALITY AND PARANORMALITY IL BONG JUNG ˛, SUN HYUN PARK and JAN STOCHEL (Received 13 March 2009; accepted 17 January 2010) Communicated by J. J. Koliha Abstract A new notion of L.n/-hyponormality is introduced in order to provide a bridge between subnormality and paranormality, two concepts which have received considerable attention from operator theorists since the 1950s. Criteria for L.n/-hyponormality are given. Relationships to other notions of hyponormality are discussed in the context of weighted shift and composition operators. 2000 Mathematics subject classification: primary 47B20; secondary 47B33, 47B37. Keywords and phrases: subnormal operator, paranormal operator, L.n/-hyponormal operator, weighted shift operator, composition operator. 1. Towards L.n/-hyponormality Let H be a complex Hilbert space and let B.H/ be the set of all bounded linear operators on H. Denote by I the identity operator on H. We write N .T / and R.T / for the kernel and the range of T 2 B.H/. Given two operators A; B 2 B.H/, we denote by TA; BU their commutator, that is, TA; BU VD AB − BA. Recall that an operator T 2 B.H/ is said to be subnormal if there exists a complex Hilbert space K and a normal operator N 2 B.K/ such that H ⊆ K (isometric embedding) and Th D Nh for all h 2 H. The celebrated Halmos–Bram characterization of subnormality (see T5, 19U) states that an operator T 2 B.H/ is subnormal if and only if n X i j hT f j ; T fi i ≥ 0 (1.1) i; jD0 The work of the first author was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (No.
    [Show full text]
  • Normals, Subnormals and an Open Question
    Normals, subnormals and an open question Franciszek Hugon Szafraniec To Zolt´an Sebesty´en for his 65th birthday anniversary Abstract. An acute look at basic facts concerning unbounded subnormal operators is taken here. These operators have the richest structure and are the most exciting among the whole family of beneficiaries of the normal ones. Therefore, the latter must necessarily be taken into account as the reference point for any exposition of subnormality. So as to make the presentation more appealing a kind of comparative survey of the bounded and unbounded case has been set forth. This piece of writing serves rather as a practical guide to this largely impene- trable territory than an exhausting report. We begin with bounded operators pointing out those well known properties of normal and subnormal operators, which in unbounded case become much more complex. Then we are going to show how the situation looks like for their un- bounded counterparts. The distinguished example of the creation operator coming from the quantum harmonic oscillator crowns the theory. Finally we discuss an open question, one of those which seem to be pretty much intriguing and hopefully inspiring. By an unbounded operator we mean a not necessarily bounded one, nevertheless it is always considered to be densely defined, always in a complex Hilbert space. If we want to emphasis an operator to be everywhere defined we say it is on, otherwise we say it is in. Unconventionally though suggestively, B( ) denotes all the bounded H arXiv:0906.5412v1 [math.FA] 30 Jun 2009 operators on . If A is an operator, then (A), (A) and (A) stands for its domain, kernel(nullH space) and range respectively;D N if A is closable,R its closure is denoted by A.
    [Show full text]
  • ESSENTIALLY SUBNORMAL OPERATORS 1. Introduction Let H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 4, April 1999, Pages 1171{1181 S 0002-9939(99)05053-4 ESSENTIALLY SUBNORMAL OPERATORS NATHAN S. FELDMAN (Communicated by David R. Larson) Abstract. An operator is essentially subnormal if its image in the Calkin al- gebra is subnormal. We shall characterize the essentially subnormal operators as those operators with an essentially normal extension. In fact, it is shown that an essentially subnormal operator has an extension of the form “normal plus compact”. The essential normal spectrum is defined and is used to characterize the essential isometries. It is shown that every essentially subnormal operator may be decomposed as the direct sum of a subnormal operator and some irreducible essentially subnormal operators. An essential version of Putnam’s Inequality is proven for these operators. Also, it is shown that essential normality is a similarity invariant within the class of essentially subnormal operators. The class of essentially hyponormal operators is also briefly discussed and several examples of essentially subnormal operators are given. 1. Introduction Let denote a separable Hilbert space, let ( ) denote the algebra of all boundedH linear operators on and let ( ) denoteB H the ideal of compact op- H B0 H erators. Also, let = 0 denote the Calkin algebra and let π: ( ) = 0 denote the natural quotientB B map. B H →B B It is well known that subnormality is a C∗-property. That is, one may define, in terms of positivity conditions, what it means for any element of a C∗-algebra to be subnormal. Furthermore, subnormal elements of C∗-algebras are preserved under *-homomorphisms.
    [Show full text]
  • Binormal, Complex Symmetric Operators T Such That T 2 Is Not Even Binormal, Let Alone Normal
    Binormal, Complex Symmetric Operators Caleb Holleman, Thaddeus McClatchey, Derek Thompson May 16, 2017 Abstract In this paper, we describe necessary and sufficient conditions for a bi- normal or complex symmetric operator to have the other property. Along the way, we find connections to the Duggal and Aluthge transforms, and give further properties of binormal, complex symmetric operators. 1 Introduction An operator T on a Hilbert space is said to be a complex symmetric operator if there exists a conjugation C (an isometric, antilinear involution) such that CT C = T ∗. An operator is said to be binormal if T ∗T and TT ∗ commute. Garcia initiated the study of complex symmetric operators [9]; researchers have made much progress in the last decade. The study of binormal operators was initiated by Campbell [3] in 1972. A normal operator is both binormal and complex symmetric. As we will see below, there are many classes of operators for which normal operators are a subclass, several of which are equivalent to normality in finite dimensions. However, both binormality and complex symmetry are meaningful for matrices. Both are properties that automatically transfer to the adjoint of an operator. Furthermore, both have a joint connection to square roots of normal operators. For these reasons, we investigate the possible connections between binormality and complex symmetry. In the rest of Section 1, we give necessary preliminaries. In Section 2, we arXiv:1705.04882v1 [math.FA] 13 May 2017 give exact conditions for when a complex symmetric operator is binormal. In Section 3, we give conditions for when a binormal operator is complex symmet- ric in terms of the Duggal and Aluthge transforms.
    [Show full text]
  • Arxiv:2103.09961V2 [Math.FA] 6 Apr 2021
    On nth roots of bounded and unbounded quasinormal operators Pawe l Pietrzycki and Jan Stochel Abstract. In this paper, we prove that both class A nth roots of bounded quasinormal and subnormal nth roots of unbounded quasinormal operators are quasinormal. 1. Introduction The class of bounded quasinormal operators was introduced by A. Brown in [4]. A bounded operator A on a (complex) Hilbert space is said to be quasinormal if A(A∗A) = (A∗A)A. Two different definitions of unboundedH quasinormal operators appeared independently in [19] and in [32]. As shown in [15, Theorem 3.1], these two definitions are equivalent. Following [32, 154 pp.], we say that a closed densely defined operator A in is quasinormal if A commutes with the spectral measure E of A , i.e. E(σ)A HAE(σ) for all Borel subsets σ of the nonnegative part of the real line.| | A densely⊂ defined operator A in is called subnormal if there exists a complex Hilbert space and a normal operatorH N in such that (isometric embedding) and Sh =KNh for all h (S). TheK foundationsH of ⊆ the K theory of unbounded (i.e., not necessarily bounded)∈ D subnormal operators were developed by the second-named author and F. H. Szafraniec (cf. [31, 32, 33, 34]). It is well known that normal ( quasinormal ( subnormal ( hyponormal (1.1) { } { } { } { } The present paper is a sequel to [23], where the authors showed that the ques- arXiv:2103.09961v2 [math.FA] 6 Apr 2021 tion formulated by R. E. Curto, S. H. Lee and J. Yoon (see [7, Problem 1.1]) has the affirmative answer.
    [Show full text]
  • Hilbert Space
    ADVANCES IN MATHEMATICS 19, 106148 (1976) A Class of Subnormal Operators Related to Multiply-Connected Domains* M. B. ABRAHAMSE AND R. G. DOUGLAS’ Department of Mathematics, University of T~irginiu, Charlottesville, ICrginia 22901 and Departme?rt of Mathematics, State University of New York, Stony Brook, New Y-olbvk 11794 DEDICATED TO THE MEMORY OF PASQUALE PORCELLI INTRODUCTION A (bounded linear) operator S on a (complex) Hilbert space $j is said to be subnormal if there is a Hilbert space si containing $J and a normal operator N on R such that $ is invariant for N and the restric- tion of N to J3 is S. The normal extension N is said to be minimal if the space si is the smallest reducing subspace for N containing fi. These concepts were introduced by Halmos [29], who showed that a minimal normal extension exists and is unique. He also gave an intrinsic characterization of subnormality and showed that the spectrum of N is contained in the spectrum of S. The study of subnormal operators was continued by Bram [ll], who gave other intrinsic characterizations of subnormality, refined the spectral inclusion theorem, and gave a lifting theorem for operators that commute with a subnormal operator and its adjoint. Several years later, the invariant subspace problem for subnormals was studied by Yoshino [56] and Brennan [12]. Lifting questions have been considered for general subnormals by Douglas [21] and Mlak [39] and for analytic Toeplitz operators by Deddens and Wong [19] and Baker, Deddens, and Ullman [8]. Some progress has been made on the classification * Research supported in part by grants from the National Science Foundation.
    [Show full text]
  • Lecture Notes on Operator Theory
    1 Graduate Texts Woo Young Lee Lecture Notes on Operator Theory Spring 2008 Seoul National University Seoul, Korea Copyright c 2008 by the Seoul National University 2 . Lecture Notes on Operator Theory Woo Young Lee 3 . Preface The present lectures are based on a graduate course delivered by the author at the Seoul National University, in the spring semester of 2008. In these lectures I attempt to set forth some of the recent developments that had taken place in Operator Theory. In particular, I focus on the Fredholm and Weyl theory, hyponormal and subnormal theory, weighted shift theory, Toeplitz theory, and the invariant subspace problem. Seoul February, 2008 The author 4 Contents 1 Fredholm Theory 7 1.1 Introduction ................................. 7 1.2 Preliminaries ................................ 8 1.3 Definitions and Examples ......................... 10 1.4 Operators with Closed Ranges ...................... 11 1.5 The Product of Fredholm Operators ................... 14 1.6 Perturbation Theorems .......................... 16 1.7 The Calkin Algebra ............................ 18 1.8 The Punctured Neighborhood Theorem . 23 1.9 The Riesz-Schauder (or Browder) Theory . 26 1.10 Essential Spectra .............................. 32 1.11 Spectral Mapping Theorems ........................ 33 1.12 The Continuity of Spectra ......................... 35 1.13 Comments and Problems ......................... 38 2 Weyl Theory 39 2.1 Introduction ................................. 39 2.2 Weyl’s Theorem .............................. 41 2.3 Spectral Mapping Theorem for the Weyl spectrum . 53 2.4 Perturbation Theorems .......................... 59 2.5 Comments and Problems ......................... 66 3 Hyponormal and Subnormal Theory 69 3.1 Hyponormal Operators ........................... 69 3.2 The Berger-Shaw Theorem ........................ 73 3.3 Subnormal Operators ........................... 78 3.4 p-Hyponormal Operators ......................... 89 3.5 Comments and Problems ........................
    [Show full text]
  • Every Pure Quasinormal Operator Has a Supercyclic Adjoint
    EVERY PURE QUASINORMAL OPERATOR HAS A SUPERCYCLIC ADJOINT Serge Phanzu Phanzu A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2020 Committee: Kit Chan, Advisor Jong Lee, Graduate Faculty Representative Jonathan Bostic So-Hsiang Chou Mihai Staic Copyright c August 2020 Serge Phanzu Phanzu All rights reserved iii ABSTRACT Kit Chan, Advisor We prove that every pure quasinormal operator T : H ! H on a separable, infinite-dimensional, complex Hilbert space H has a supercyclic adjoint (see Theorem 3.3.2 and Corollary 3.3.12). It follows that if an operator has a pure quasinormal extension then the operator has a supercyclic ad- joint. Our result improves a result of Wogen [52] who proved in 1978 that every pure quasinormal operator has a cyclic adjoint. Feldman [26] proved in 1998 that every pure subnormal operator has a cyclic adjoint. Con- tinuing with our result, it implies in particular that every pure subnormal operator having a pure quasinormal extension has a supercyclic adjoint (see Corollary 3.3.15). Hence improving Feld- man’s result in this special case. Indeed, we show that the adjoint T ∗ of every pure quasinormal operator T is unitarily equivalent 1 1 L 2 L 2 to an operator of the form Q : L (µ) ! L (µ) defined by Q(f0; f1; f2;:::) = (A1f1 ;A2f2 ; i=0 i=0 1 L 2 2 2 A3f3 ;:::) for all vectors (f0; f1; f2;:::) 2 L (µ), where each An : L (µ) ! L (µ) is a left i=0 1 multiplication operator M'n with symbol 'n 2 L (µ) satisfying 'n 6= 0 a.e.
    [Show full text]
  • ESSENTIALLY SUBNORMAL OPERATORS 1. Introduction Let H
    ESSENTIALLY SUBNORMAL OPERATORS NATHAN S. FELDMAN Abstract. An operator is essentially subnormal if its image in the Calkin al- gebra is subnormal. We shall characterize the essentially subnormal operators as those operators with an essentially normal extension. In fact, it is shown that an essentially subnormal operator has an extension of the form “Normal plus Compact”. The essential normal spectrum is dened and is used to characterize the essential isometries. It is shown that every essentially subnormal operator may be decomposed as the direct sum of a subnormal operator and some irreducible essentially subnormal operators. An essential version of Putnam’s Inequality is proven for these operators. Also, it is shown that essential normality is a similarity invariant within the class of essentially subnormal operators. The class of essentially hyponormal operators is also briey discussed and several examples of essentially subnormal operators are given. 1. Introduction Let H denote a separable Hilbert space, B(H) the algebra of all bounded linear H B H B B operators on and 0( ) the ideal of compact operators. Also, let / 0 denote B H →B B the Calkin algebra and let : ( ) / 0 denote the natural quotient map. It is well known that subnormality is a C*-property. That is, one may dene, in terms of positivity conditions, what it means for any element of a C*-algebra to be subnormal. Furthermore, subnormal elements of C*-algebras are preserved under *-homomorphisms. This was rst shown by Bram [4] in 1955. Also, see Bunce and Deddens [6] or Conway [7], p. 35. We shall give another proof of the fact the subnormality is a C*-property and even show that subnormality is preserved under certain positive linear maps.
    [Show full text]