<<

NBS MONOGRAPH 69

Shielding Against Rays, ,

And From Nuclear Weapons

A Review and Bibliography

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March

3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical prob- lems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publi- cations or in the journals of professional and scientific societies. The Bureau publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News

Bulletin presents summary and preliminary reports on work in progress ; and the Central Propagation Laboratory Ionospheric Predictions provides data for determining the best frequen- cies to use for radio communications throughout the world. There are also five series of non- periodical publications : Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes. A complete listing of the Bureau's publications can be found in National Bureau of Stand- ards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers

Published in Outside Journals 1950 to 1959) ($2.25) ; available from the Superintendent of Documents, Government Printing Office, Washington, D.C., 20402. UNITED STATES DEPARTMENT OF COMMERCE • Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Shielding Against Gamma Rays,

Neutrons, and Electrons From Nuclear Weapons

A Review and Bibliography

J. H. Hubbell and L. V. Spencer

National Bureau of Standards Monograph 69

Issued February 24, 1964

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price 30 cents Library of Congress Catalog Card Number: 63-60082 Contents

Page

I. Preliminary statement 1

II. Comparison of different approaches. 1 III. Types of information 2 IV. Basic spectral components 2 A. Initial 2 B. Delayed radiations 3 C. Effects which modify initial and delayed intensities and spectra 5 V. penetration in the absence of boundaries 6 VI. Elementary configurations with boundaries 6 VII. Experiments and calculation for structures 8 VIII. Final comments 8

Tables

1. Gamma-ray penetration theory (GT) 8 2 Gamma-ray penetration experiments (GE) 10 3. penetration theory (NT) 12 4. Neutron penetration experiments (NE) 13

5. penetration theory (ET) 14

6. Electron penetration experiments (EE) 15

7. Elementary geometries, theory (EGT) 15

8. Elementary geometries, experiments (EGE) 17

9. Ducting (D) 18 10. Realistic structures (RS) 19 Glossary to tables 20

Bibliography G General references 22 SD Spectral data 23 GT Gamma -ray penetration theory (table 1) 24 GE Gamma -ray penetration experiments (table 2) 25 NT Neutron penetration theory (table 3) 27 NE Neutron penetration experiments (table 4) 28 ET Electron penetration theory (table 5) 29 EE Electron penetration experiments (table 6) 29 EGT Elementary geometries, theory (table 7) 30 EGE Elementary geometries, experiments (table 8) 31 D Ducting (table 9) 31 RS Realistic structures (table 10) 32 Author index 33 in

Shielding Against Gamma Rays, Neutrons, and Electrons From Nuclear Weapons. A Review and Bibliography

J. H. Hubbell and L. V. Spencer

The problem of predicting dose rates and of estimating the effectiveness of shielding from radiations resulting from nuclear explosions is discussed. A number of existing calcu- lations and supporting experiments regarding the penetration and diffusion of gamma rays, neutrons, and electrons through air and bulk materials are summarized. Indications are given of gaps in such input information. A selection of 485 references from the unclassified literature is presented, of which 388 are cataloged as to source geometry and , absorber material and configuration, type of data presented, and method of calculation or experi- mental technique. These cataloged references include radiation field studies ranging from the point-source infinite-medium situation up through such complicated geometries as fox- holes, shelters, and conventional structures. The other references are of a general or review nature or contain input spectral data.

I. Preliminary Statement

The problem of shielding against radiation due relating to simple configurations, including the to nuclear weapons involves estimation of the infinite, homogeneous medium. It extends the radiation dose in an arbitrary configuration of documentation of [Gl] and indicates the avail- radiation sources and shielding materials. In ability of data, calculations, and corroborative making such estimates, data for simple structure experiments for neutrons as well as gamma rays. types have been very useful. This is because a The next few sections of this introduction are complicated structure can often be schematized designed to introduce the configurations con- as a combination of simple structures. From our sidered "elementary," the types of data which point of view, the infinite, homogeneous medium, have been the object of research efforts, and some i.e., the total lack of structure, may be considered types of data which have been omitted or only the simplest case, as well as the most useful. partially included here. The gamma-ray re- In NBS Monograph 42 [Gl],* gamma-ray data ports constitute the largest single group listed, generated for infinite, homogeneous media are pre- with neutron reports second. For complete- sented in engineering-type graphs; and the use of ness, reports on electron penetration have also these data in analyzing many elementary structure been included. types is discussed. A more complete engineering We have tried to include all unclassified re- methodology, for analyzing complicated as well ports and publications which have seemed di- as simple structures, is given in a parallel series rectly pertinent to the basic problems of weapons of OCD reports [G46, G47]. shielding, and which involve elementary con- This Monograph is primarily a catalog and figurations. At the same time, we are quite bibliography of experiments and calculations certain that we have missed reports, some very important; and we would greatly appreciate

References on pages 22-33. having our attention called to such oversights.

II. Comparison of Different Approaches

The use of data for elementary configurations nuclear devices. But the number of variables is only one approach to the study of radiation even in relatively simple cases is very large; shielding problems. A second approach utilizes and the approach is therefore not naturally ex- mockups of interesting configurations in the tensible to new situations. vicinity of test explosions. This "field test" A complementary procedure is that of attempt- type of experiment provides a direct answer to ing to study small-scale mockups exposed to a specific shielding question even in very compli- radiation resembling that from weapons. Ex- cated cases. By performing a large variety of periments of this type may be performed in a field test experiments it is possible to arrive at a "feeling" for the propagation of radiation from laboratory relatively cheaply and easily. Beyond

1 these advantages, such model studies can give All of these methods reinforce and complement information on effects due to changes in a structure one another in different ways, since each is or radiation source. With models, it is much appropriate to specific types of shielding questions. more nearly possible to arrive at an understanding But, it has been advantageous to turn even field of radiation effects through a single type of tests and model studies to the investigation of experimentation. It is unfortunate that the particularly important examples of elementary model approach has seemed to be unsuited to the configurations; and a number of research papers study of shielding against neutrons. describing such work are given.

III. Types of Information 3

Figure 1 gives a block diagram of the types of Both initial and delayed radiations penetrate information required for the interpretation of air, earth, and other materials. This penetration radiation effects from nuclear weapons. In brief, is affected by the geometry of the source and by the top row of blocks identifies the radiations the configuration of the absorbers. The third generated in the elementary nuclear reactions. and fourth rows on the diagram of figure 1 stand In the second row of blocks, these different types for information of this type. of radiation are divided into two groups, initial Lastly, the detector determines the radiation! and delayed radiations. It should be noted at characteristics which are measured. The detector this point that the spectra which correspond to response can be viewed as a parameter charac-i; the elementary reactions (top row) will be modified terizing the spectrum. It is usually convenient by weapon design and its location at detonation. to agree on standard types of detector response' Thus, the spectra of "initial" and "delayed" and in this way subordinate the discussion of the radiations will not be a simple superposition of radiation spectrum to other features of the spectra for the elementary reactions. problem. Source spectra, penetration, and geometry PROMPT PROMPT y INITIAL DELAYED DELAYED DELAYED information are all necessary for a reasonably NEUTRON FISSION (n,r) FISSION FISSION SPECTRA SPECTRUM SPECTRA SPECTRUM SPECTRA /8-RAYS complete understanding of radiation effects and an ability to make predictions for new configura- tions. Much spectral information, particularly INITIAL OELAYED (FALLOUT) that indicated by the second row in the diagram, RADIATION RADIATION is classified because one can deduce from it certain things about the design of a weapon. This doesJ not decrease its basic importance in shielding PENETRATION IN AIR, , ETC. problems, and one way or another it must be taken into account. Here we omit all such infor-

mation. The gaps which result have the nature 'SD GEOMETRIC EFFECTS' of missing multiplicative constants and do not SIMPLE OR COMPLEX necessarily result in a misleading picture of the cur- rent status. Further, it is possible to perform calculations or experiments for individual com- DETECTOR RESPONSE ponents which may appear in the spectra, and to later Figure 1. Types of information required for the analysis make a superposition at a time when data on of local radiation intensities resulting from nuclear weapons. source strengths are available.

IV. Basic Spectral Components

While we do not attempt to catalog the large 2 [SD22]. The spectrum from individual fusion body of reports dealing with the spectra of specific reactions is known although one does not know source components, a few comments about the relative strengths. The dashed lines in figure 2 state of information on the main components represent several fusion neutron spectral follow. [G20]. In general, fusion neutrons are higher in energy and correspondingly tend to be more pene- trating than fission neutrons. A. Initial Radiations The prompt fission gamma spectrum is reason- ably well known. The curve in figure 3 is from Proceeding from left to right along the top an experiment by Francis and Gamble [SDlO] in row of figure 1, we consider first the initial radia- which gamma were detected in coin-j tions. Neutrons are produced in great abundance, cidence with fission fragments in a fission chamber. two or more from a fissioning nucleus. Neutrons The penetration of initial gamma rays is likely also result from fusion reactions. The spec- to be influenced by in trum from fast neutron fission has been deter- of the air, since this reaction produces very high mined, and is given by the solid curve in figure energy gamma rays [SD12], as indicated by the

2 .

dashed lines in figure 3. These capture gamma rays are not only more penetrating than the fission gamma rays, but they also start from locations determined by the penetration of neu- trons. Thus, they "ride piggy-back on the neu- trons" for part of their way. Other (n, y) reactions must contribute to the initial radiation, but those of figure 3 may well be the most im- portant because of their penetrability and also because of a substantial for the capture process. 1

B. Delayed Radiations

Next we turn to the delayed radiations. The fallout spectrum is produced by superposition of spectra from reactions having many differing half- lives. Correspondingly, the spectrum may change drastically as a function of time after the detona- tion, and it is necessary to determine spectra either for time intervals or for particular times of interest. Since the spectrum from a pile corresponds to a very long time interval, whereas the times and time intervals for shielding against fallout radia-

tion are relatively short, pile research makes only Figure 3. Fission prompt gamma spectrum SD 10 {curve) a limited contribution to our information about and nitrogen neutron-capture gamma-ray energies SD 12 this component. (dashed lines). The ordinates relate the gamma counts to the fission fragment increasing of counts There has been an body data on gating the photon detector. The dashed nitrogen lines have been drawn delayed gamma rays from fission. Most of this at arbitrary heights roughly indicating relative intensities. information comes from calculations of the yield of different nuclear species as a function time after

> fission. In figure 4, spectra obtained by Bjorner- stedt [SD2] in this way is given. Experimental

i i i 1 information is available on spectra corresponding [ both to short and long times after fission, and an example of this type of data is given in figure 5 [SD25].

i F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27, 77 (1955). mJU

i-nnf.

1 HOUR

10 DAYS

NEUTRON ENERGY, Mev

1 . Figure 2. Watt fission neutron spectrum SD 22 {curve) "' and principal fusion neutron energies G 20 (dashed lines) , Me k Mev, 11-fc Mev dashed lines represent the neutron pair from the fusion 4 •, reaction: HH-H3=He +2n+ll Mev, in reality a continuum with a maxi- Figure 4. Calculated gamma-ray spectra of fission products mum energy of 11 Mev. The other dashed lines represent maximum neu- at various times following resulting tron energies from the reactions H2+H»=HS+7i+ 3.2 Mev and H3+HJ = fission from U—2S5 e 4+n+17.6 Mev. slow-neutron capture, based on data in reference [SD 2].

3 UNCLASSIFIED 2-01-058-0-410 5x10

Figure 5. Fission-product gamma-ray spectra measured at short times after U—235 sample , using Compton and pair spectrometers [SD 25]. It should be remembered that spectra from two different fissioning will differ from one another, and also that spectra from slow-neutron fission will differ from spectra corresponding to fast-neutron fission. But to date, the evidence suggests that penetration differences which result from differing spectra are minor [Gl]. Several types of (n, y) reactions have importance for delayed (fallout) spectra. Figure 6 gives some of the gamma-ray energies which result from neutron capture in uranium or . Note that they are mostly rather low in energy. Mather [SD15] has published sample pulse-height distri- butions for fallout which clearly show the 2.8 Mev component of Na 24 produced by neutron capture in the ground, the 1.6 Mev gamma rays 0.8 1.2 from 140 the longer-lived 0.75 Mev activ- La , and PHOTON ENERGY, Mev ities of the Zr 95-Nb 95 . The possi- bility introducing other contaminant materials Figure 6. Gamma-ray energies from neutron capture in of U-287, Np-2S9 and Np-240. into the detonation has been given some publicity. .

t

N BETA-SPECTRUM OF RADIOACTIVE ASH MARCH 19 - 20, 1954

.' »' \

' 20 4 + 3.0 4.0->j-( arnp) 5.0

°-' 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.0->Mev

Figure 7. Fission-product beta-spectrum (about 20 days following the detonation)

The skewered-dot curve, N, is the number spectrum, or beta particles per unit energy Interval. The dashed-connected curve, N/J, has been divided by momentum for Fermi-plot analysis.

but there is very little unclassified information and gamma-ray spectra are often rather insensi- available on the subject. tive to penetration. Because of this, the con- Next, we consider the delayed beta rays from tinuous nature of the spectra, and the greater fission. While these particles are not very pene- penetrability of high energy components, such trating (see fig. 9), they have produced serious spectral modifications are not likely to dominate burns in the case of the Marshallese Islanders ; and the penetration through air and shield. The main they represent a hazard also through ingestion effect of the weapon geometry is thus the intro- into the body with food, water, or air. Figure 7 duction of unknown multiplicative constants. gives some of the (rare) data on the gross fission Subsequent phenomena include the removal of beta spectrum. It was measured by the Japanese the air from an enormous volume about the initial several weeks after contamination of the Lucky detonation, with corresponding high compression Dragon.2 of the air at the air-vacuum interface. This modi- fication of absorber geometry does not change C. Effects Which Modify Initial and Delayed spectra or angular distributions very much; but Intensities and Spectra it may affect the air attenuation considerably while this "shell" configuration persists. Note It is possible to describe qualitatively some of that prior to the passage of the compression the spectral characteristics which are determined the number of mean free paths of air protecting by the detonation geometry; but quantitative a detector location decreases due to concentration information is, of course, classified. in the shell, while after passage of the compres- For example, a bomb cannot fly apart with sion wave there may be a decrease due to removal anything like the speed of because of equi- of air to positions beyond the detector. partition of energy and the considerable atomic The fallout spectra produced by fission products mass of the constituent elements. 3 But the prompt should be similar to the theoretical gamma-ray and high energy prompt neutrons travel and beta-ray spectra from fission. But one hardly essentially with the speed of light. They must expects to see contributions from volatile ma- therefore penetrate the outer layer of bomb mate- terials, such as the rare gases, which may occur rial and subsequently the air prior to other dis- among the fission products. These materials turbances. The intensity of the prompt radiation should remain in the atmosphere. Other modifi- emerging into the air will therefore be lowered cations may result from differences with time in and the spectrum of both gammas and neutrons the chemical and physical behavior of fission will be altered. Fortunately, however, neutron product elements; and the magnitude and nature of these modifications are extraordinarily difficult to estimate. The generic term "fractionation" is used for these effects. Finally, we might simply note that the source strengths of both prompt and delayed (n, y) radi- 1 Y. Nishiwaki, T. Azuma, et al., Research in the effects and influence ations from air, earth, or bomb constituent of the nuclear bomb test explosions, Vol. 1, p. 464; Publ. by Jap. Soc. for Promotion of Sci., Ueno, Tokyo (1956). materials are a function of the type of detonation 8 For an unclassified description of the kinetics of an atomic explosion, see ref. [G20]. and its location.

697-763—64 2 5 '

V. Radiation Penetration in the Absence of Boundaries

Particular interest attaches to the study of presents more of a problem. The number of ele- penetration in the absence of boundaries, as ments whose cross sections are known completely already mentioned, this being the case most enough to permit a fairly reliable theoretical amenable to detailed theoretical study. For a analysis is still small. Further, measurement of given source strength S(r,E) of gamma rays, neutron intensities is far easier than measurement neutrons, or beta rays, emitting energy E at loca- of spectra or directional distributions. These tion r, in a medium without boundaries, a variety things contribute to the generally less satisfactory of data types can be determined, some of which status of neutron penetration data. are indicated in figure 8. Proceeding from left to The study of beta-ray penetration from fission right, we may wish to know simply an products is still in its infancy, partly because the which can be generically termed the "dose." We shielding problem appears to be easily soluble. may wish to know how different spectral com- Nevertheless, information of this type has its ap- ponents contribute to the "dose." Or, we may plications. Figure 9 gives results from the one wish to know from which directions the "dose" theoretical fallout beta study available at the is delivered. (Directional information may be moment [ET5]. Tables 5 and 6 summarize the put in integral form, and may be referred to as literature. "geometry factor" data. Similarly, "barrier factor" data refer to "dose.") PENETRATION FEET OF AIR 10 20 The last item in figure 8 refers to the amount and kind of radiation reflected from a surface, and this implies a boundary. Extensive investigations of these quantities have been made. Tables 1 to 4 outline much of the available literature for gamma rays and neu- trons. Note that although our comments pertain mostly to point isotropic (PTI) sources, other source configurations are also important. For example, data on plane isotropic (PLI), plane slant (PLS), and other source geometries have proved useful and have been determined experi- mentally or theoretically. In general, the study of neutron penetration is more difficult than the study of gamma-ray pene- tration because the cross sections are less well known and more irregular, and because detection

PENETRATION, g/cm f (or z) SOURCES Figure 9. Energy dissipation in a differential slab at PROMPT' NEUTRONS, y - RAYS AND /9-RAYS distance z from a point beta-ray source {curves 1 and 2) DELAYED' 7 -RAYS AND /9-RAYS and in a differential spherical shell at radius p from the source {curves S and 4)- Figure 8. Types of information describing the radiation These curves, based on beta spectra 1.12 hr and 23.8 hr after U-235 slow field. neutron fission, are from reference [ET 5].

VI. Elementary Configurations With Boundaries

Most of the studies in tables 1 to 4 are either termined by measurements on one of the test shots theoretical analyses or descriptions of laboratory in Nevada [GE54]. The experiment is diagramed experiments, but the field tests have made contri- in figure 10. Unfortunately, lack of unclassified butions also. In figure 1 1 are data on the penetra- information about the device limits our possibility tion of fallout gamma rays into concrete, as de- of analyzing this data theoretically. publications by the OCDM and by the USAEC, Civil Effects Test Operations. In figure 12 a number of elementary absorber configurations are sketched. Note that more complicated structures contain different combina- tions of those pictured. For example, an under- ground shelter can be considered as a combination of shielded foxhole with a maze entrance and possi- bly a maze ventilation system. Correspondingly, an above-ground shelter might be a blockhouse.* FALLOUT This combines a vertical v;all, possibly vents in the walls, and an overhead slab which shields in the same manner as in the case of the shielded base- «/////^V////,EARTH ment or foxhole. The foxhole (unshielded) is self- 7/ CONCRETE explanatory. Most frame houses are simple light SLABS, superstructures. A large apartment building would EACH ~ 3-1/4 in. THICK perhaps combine a blockhouse, with vertical walls, compartmentation, vents, and in-and-down con- figurations. To complete our fist in figure 12, o — DETECTORS we might note that the air-ground density inter- Figure 10. Schema of the layout used for measuring pene- face plays an important role in structure shielding. tration and time-decay of actual test- fallout material Tables 7 to 9 give studies of these elementary (see 11). fig. geometries. The special topic of mazes, or ducts, The shield prevents fallout material from settling directly on detector has been treated "A," while at the same time shielding against the intercepted material separately because of the atten- (ref. [GE 54]). tion which it has received. Note that neutron penetration data for ele- mentary configurations are still scarce, that many of the papers on these topics are recent, and that some configurations have as yet received little attention. These configurations may not be as well chosen for neutrons as for gamma rays.

* The term "blockhouse" is used generically, as are all these designations. We do not imply a limitation to a particular shape.

DETECTOR 7 DENSITY INTERFACE

/777/ MAZE SHIELDED BASEMENT

mm, V. FOXHOLE Y7777777777777 COMPARTMENTATION

/777~///// LIGHT SUPERSTRUCTURE 12 13 V7777777777777 Figure 11. Dose rates from test-shot "Shasta" as a function VERTICAL WALL of time, measured by detectors located as indicated in figure 10. '///////, BLOCKHOUSE Intensities at T <1 hr exceeded the ranges of the detectors, and should be disregarded (ref. [GE 54]). >4

The best summary of field test penetration data is still contained in the Effects of Nuclear Weapons 0 [G20]. This summary, unfortunately, is not docu- VENT mented with references to specific sources of data, IN AND DOWN but references to several other summaries are in- cluded in the 1962 revision, as well as lists of Figure 12. Simple geometries. VII. Experiments and Calculations for Structures

A table of experiments and calculations for ex- of the experimental data on mazes is most ex- isting buildings and other structures has been tensive. included (table 10). Here the elementary con- Another reservoir of structure data is the Federal figuration data are applied and tested. There exist Shelter Survey [G47]. Presumably, analyses of measurements and calculations for light structures, these data will be made in the future. Results below-ground shelters, and large, fairly regular of the Survey calculations can be obtained; but structures. It should be noted that the analysis these calculations were not very sophisticated. VIII. Final Comments

We might note that more than one source con- figuration of potential importance had been very little explored. For example, only a few papers exist which deal with the enveloping cloud of fallout; and hardly any work has been done for a uniform distribution of fallout over all exposed surfaces. Both cases, and others which might be relevant at different times in different weather conditions, are illustrated in the sketches of figure 13. The most concentrated effort of the near future

1 . -J is likely to be in the area of neutron penetration. Both calculations and experiments for a number of elementary configurations are in progress. There is apt to be more on electron penetration in the future, not because of shielding against nuclear explosions, but because of space vehicle shielding problems which have recently come to attention.

Figure 13. Fallout source types. The authors thank C. S. Cook, H. J. Tiller, and a Uniform surface distribution on exposed horizontal projections, D. K. Trubey for reviews and comments on the b' Volume source, describing a descending cloud of radioactive particles manuscript, and J. Berger for a number of c All surfaces uniformly contaminated, M. d Fallout material entering structures. suggestions as to organization and presentation e Accumulation of fallout material in particular areas as a result of rain run- off, drifting, etc. of the cataloged reference material.

Table 1. Gamma-ray penetration theory {GT)*

Eef. Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method [place] Mev configuration information

GT1 Akkerman, [USSR] 0. 66 PLN Al FS T, R, BF MC. Kaipov

GT2 Auslender ORNL 1,3,6 PLN, PLS Pb, H 2 0 FS, Lay Kr),BF MC. rf (60 ) GT3 Berger NBS 1.0 PLI H 2 0 IM 7(E, r, 0) MM. OT4 Berger NBS 0.66 PLN, PLS H2O IM, SIM, FS T, R MC: CD, AA. GT5 Berger NBS 0.66 PLS H2O IM ICr) MM. GT6 Berger NBS 1.28 PTI H2O, Air 2 media with I{r, h) MC: CD, AA. interface

GT7 Berger, Doggett NBS 0.66, 1.0, 4, 10 PLN H 2 0, Fe, Sn, Pb IM, SIM T,R MC: AA, analyt. calc. of dis- placements. GT8 Berger, Easo NBS; TOI 0.02-2.0 PLS, PLI HLH20, Concrete, SIM R{E, 6) MC. Fe, Sn, Pb GT9 Berger, Spencer NBS 1 28 PTI, PMD H2O SIM, Sph m MC: CD, AA. GT10 Berger, Spencer NBS o!o341-10.22 PTI, PLI Al, Concrete IM I(r), BF MM. GT11 Bruce, Johns [Toronto] 0.05,0.1,0.2, 0.5, PLN Compt. Scatterer, SIM HE, r) MC. 1.25 H2O, Al GT12 Burrell, Cribbs [Lockheed] 0.5, 1, 2, 5, 9 PLS Fe FS I{E, r, 0) MC—extensive tabulation.

GT13 Capo APEX 0.4-9.5 PTI H 2 0, Al, Fe, Sn, IM BF as cubic Least-squares fit Pb, W, U polynomial to NYO-3075 data (GT 20). GT14 Chilton, Holo- NCEL 0.5-10 PTI Al IM 2-parameter Least-squares fit viak, Donovan BF to NYO-3075 data (GT20). GT15 Chilton, NCEL 0.2-10 PLS Concrete SIM 2-parameter R Semi-empirical Huddleston fit to GT29. GT16 Dawson et al. WADC 1.17, 1.33 PTI Air IM I(E, r, 0) MC. GT17 Donovan, Chilton NCEL Fallout spectrum PLI Concrete FS I(t) vs time Useof SD18 spectral after fission data, GT10 BF. GT18 Faust, Anderson 62 NRL Unspecif. mono- PMD Unspecif. IM I(r, e,

Table 1. Gamma-ray penetration theory (GT) —Continued

Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method [place] Mev configuration information

Hayward, NBS 1.0 H2O, Al, Cu, Sn, SIM R MC: AA. Hubbell Pb Kalos NDA 1-6 PLN Pb-H 2 0 Lay T MC: IS.

Leshchinskii [USSR] Co«», Cs'" PTI, line Air, H 2 0, Al, Fe, IM 7(r), BF BF fitted as Co N e+'^atf' !=0 Lynch et al. ORNL 0. 6-12 PMD Air IM HE, r. 6) MC. O'Reilly WAPD 1, 3, 6 PLN H2O, Fe, Pb FS MM. Peebles RAND 0.511-10.22 PLN, PTI Compt. scattercr, FS Integral recursion. Fe, Pb. Perkins NARF 0.66-6.0 PLN, PLS Al, Concrete SIM R MC: AA, CD. Pullman NDA Au'»', Csi", Co«°, PLS Al, Fe, Pb,concr., FS, Lay T Extensive collec- Na*«. rubber, lucite, tion of calc. and paraffin, poly- experimental ethylene. data; graphical comparisons. Easo 61 TOI 0.35,0.66, 1.25; PLS Concrete, Fe FS T; D(t, e) MC. 1.12- & 23.8-hr Ht, E); fission products. l(r,0). Easo TOI 0.02-10 PLS Concrete SIM, FS T.R MC. Serduke, Scofield, NRDL 0.66 PLN Al FS I(E, r, 0) MC. Kreger.

Shure 62 WAPD 1.28 PMD H 2 0 FS I(r,p): MC. radial spread. Spencer NBS 5.11, 10.22 PLI, PLS Pb, Fe IM HE, r) Fourier transform. Spencer, Fano NBS 1.0-10.2 PLI, PLS, Pb IM HE, r) MM. PTI, PMD. Spencer, Jenkins NBS 5.1 PTI Pb, Al IM UE, 0) MM. Spencer, Lamkin NBS 0.034-10.22 PLS H2O IM 1(f) MM. Spencer, Lamkin NBS 0.66, 1.17, 1.33; PLS H 2 0 IM Hx) MM. fallout spectra; Nra-capture 7's. Spencer, Lamkin NBS 0.043-10.22 PLS Concrete IM HD MM. Spencer, Stinson NBS 1.33 PLS, PTI, H2O IM HE, r) MM. PMD. RE, t 6).

Spencer, Wolfi NBS 1.0-10.22 PTI H 2 0 IM I(E, r) , incl. MM. polarization. Steinberg, Aron- TRG Bremss., Emox=8, PTI. PLN, Al, Fe, Pb FS HE, T) MC. son. 10. PLS. Taylor WAPD 0.5-10 PTI Pb, H2O, Fe IM 3-parameter 2-exponential fit BF. to GT20. Theus, Beach NRL 6.13 PLN, PLS Fe SIM R MC: AA, annihil. . incl.

Theus et al. NRL 0.66-6.0 PLN, PLS H 2 0, Pb FS, SIM T, R MC: AA, IS. Trubey ORNL 0. 6-12 PMD Air IM Hr.B) Single scatt. approx. Wells NARF PTI Air, Concrete SIM HE,0) MC. Wilson [Cornell] 20-500 PLN Pb IM Ht) MC: electrons and fol- lowed as well as photons. Zerby ORNL 1.3 PLN Pb, Lay T MC. PLS Anderson WAPD 6.0 PLI; Line H2O, Fe, Pb IM BF Use ofGT42 source. data. Anderson WAPD 1.28, 5.11 PLS, PLI Fe, Pb IM, FS BF; I(t) Peeble's "orders- of-scattering" approach.

Bowman, Trubey ORNL 1, 3, 6, 10 PLS, PLN Pb, H 2 0 Lay; FS BF; HE,r,( MC Coppinger HW 0. 5-3. 0 PTI Concr., ordinary FS T Approx. formulas; and magnetite; graphs; BF incl. Pb, Fe, H 2 0, Pb-glass Ermakov, 62 [USSR] 0.5, 1.25, 7.0 PLS Polyethylene FS HE, r, B) MC. Zolotukhin, Kom'shin Flew, James 55 AERE Fission products: PLN TJ, Pb, Fe, Al IM m Use of G17 data. 1, 16, 63 days. Leimdorfer AE 1. 0-10. PLN Concrete FS R(E, r) MC. Leimdbrfer AE 1.0 PTI Concrete Sph. wall R(E) vs MC radius of curvature. Marcum RAND 0.66, 1.28 PTI Air, ground 2 media with Ht, h) MC; comp. with interface NDL exp. data. Oberhofer, [Munich, 0. 2-5. PMD C, Fe, Zr, W, Pb, FS Yi- and Mo- Approx. formulas. Springer Ger.] TJ, H2O, baryte value layers. concr. O'Brien, Lowder, NYO-HS 0. 28-10. PTI, UVD H2O, Fe, Pb IM; Sph BF Appl. to UVD Solon distrib.; BF rep. as (l+aOf. Penny 58 ORNL TJnspecif. PTI, PMD Unspecif. IM m MC. monoenergetlc Plesch [Karlsruhe, 0. 5-4. PTI Fe, Pb FS Hr) Approx. formulas Ger.] Strobel 61 WAPD 0. 5-10. PTI Al, Sn, Pb, U IM BF 2-exponential fit to GT20. Trubey, Penny, ORNL Unspecif. PLI, PLS, Input data tapes Lay m MC. Emmett. monoenergetic PLC for 32 elements from H to U. Vernon NAA 1.0-10.0 PTI Magnetite LM Ht), BF Quadratic BFrep. concrete Baumgardt, APEX 12.0 PMD Air LM Hr, p) MC. Trampus, MacDonald Table 2. Gamma-ray penetration experiments (GE)

Ref. Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method [place] Mev configuration information

GE1 Beach et al. 53 NRL Cs'3' (0.66) PLN, PTI H 2 0 IM ICE, r) Nal GE2 Beach, Faust 55 NRL Na" (2.76) PTI H 2 0, Hg IM •f(r) Anthr. GE3 Broder, Kayurin, 62 [USSR] Co«° (1.17, 1.33) PTI Al, Fe, Pb, Poly- Lay Plastic scint. Kutuzov. ethylene. 37 GE4 Bulatov 69 [USSR] Co8», Cs' , Cr" PTI C, Al, Fe, Pb SIM R(fi) . (0.32) GE5 Bulatov, Garusov 58 [USSR] Co»°, Au"8 (0.41) PMD C, Al, Fe, Cd, FS, SIM i?(0), SIM Film; ion Pb, Mg, Cu, R{r), FS Hg, Bi, U, H 2 0, i?(Z), SIM brass, wood, brick, plexiglass

GE6 Burton 57, NARF Co«» PTI Air, ground 2 media with I(E, r, 6, h) Nal 59 interface. 24 198 GE7 Clarke, Richards 57 TOI Na Co8», Au PTI Air, 2 0 2 media with Nal , H m interface. GE8 Clifford et al. 60 DRCL Cs"» PTI Air-clay, poly- 2 media with Iir), 1(0) Nal styrene-con cr; interface. polystyrene- lead. GE9 Dahlstrom, 62 NRDL Co«°, Cs'« PLS Al, Fe FS I(r, 9) Nal Thompson. GE10 Davis, Rein hard t 57 Co»°, Cs'37 Au'»s, Air-ground I(t) ORNL , PTI, PLI 2 media with Nal Ra, Fallout interface. spectr. GE11 Ebert 61 [Gottingen] Co«», Cs'", PTI, PLN Pb, baryte concr. FS I(r) Nal bremss.: jBmai =0.15 to 0.26. GE12 Elliot et al. 52 NRL Co»» PTI Pb IM I(t); BF Film GE13 Faust 50 NRL Co«° PTI, PLI H 2 0 IM HE, r) Geig.; estim. of spectra by Pb filtration

GE14 Faust, Johnson 49 NRL Co«° UVD H 2 0 IM 1(E) Geig. GE15 Garrett, Whyte 54 NRC Co«° PTI Pb, Fe IM 7(r) Ion. [Ottawa]. GE16 Gol'bek, Mat- 60 [USSR] Zn« (1.12), Ra, PTI Sand-air 2 media with I(E, r) Nal veev, Sokolov. MsTh. interface. 24 GE17 Gorshkov, 68 [USSR] Na , Au« PTI, UVD HaO IM I(T) Ion. Kodyukov.

GE18 Hayward 52 NBS Co'0 PTI H 2 0 IM I(E, r) Anthr. GE19 Hayward, 54 NBS Co 60 PMD Wood, Fe SIM R(E,6) Nal. Hubbell GE20 Hettinger, 59 [Lund, Filtered bremss.: PLN H 2 0 SIM I(E,r,8) Nal. Starfelt Sweden] .Emaz = 0.10, 0.17, 0.25 GE21 Hubbell, 57 NBS Bremss.: PLN Pb FS I(E,r,8) Nal. Hayward, .Ema, = 8, 10 Titus GE22 Hyodo 62 [Japan] Co«°, Cs"' PTI Paraffin, Al, SIM R(E,B) Nal. Fe, Sn, Pb

GE23 Ishimatsu 62 [Japan] Cow PTI H 2 0 IM I(E,r) Nal. GE24 Jones, A.R. 61 [Chalk Iisi (0.36) PTI Air-ground 2 media with I(r) Nal; PLI by River, C S 137, Co«° PLI interface integration 0 Can] PTI. GE25 Jones, B.L., 55 NARF Co«° PTI Air-ground 2 media with I(r,h) Anthr. Harris, interface Kunkel

GE26 Kazanskii 60 [USSR] Co«° PTI H 2 0, Fe SIM I(E,r,6) Csl. GE27 Kazanskii 58 [USSR] Co6», Au™ PTI Fe, Pb SIM I(E,r,e) Csl. Belov, Matusevich GE28 Keller, 57 NARF CO60 PTI Air IM I(E,r,6) Nal; comp. with Gonzalez single-scatt. approx. GE29 Kimel 61 [USSR] CO'" PLN Pb-Al, Al-Pb, Lay BF; effect Geig. Pb-Fe, Fe-Pb, of high or Fe-Al, Al-Fe low Z abs. nearest source GE30 Kiinel, 62 [USSR] CS"? PMD H 2 0 IM I(T,p) Anthr. Leipunskii GE31 Kirn, 54 NBS Co'", Csi" PLS Pb, concrete, FS I(r) Ion. Kennedy, Aui»8 PLN polyethylene Wyckoff 8 GE32 Kodyukov 59 [USSR] Au" , Csi" PTI H 2 0 FS, SIM I(r) Ion. Znes, Na 24 GE33 Kukhtevich, 62 [USSR] Aui»s Co «», PMD HjO IM I(r,e) Anthr. Shemetenko Na24 GE34 Kukhtevich, 60 [USSR] Co«° PTI Med. I: H 2 0 2 media with I(r) meas. Anthr. Shemetenko, Med. II: Air, interface I(t) inf. med. Synitsyn Pb, Ni, Al

GE35 Kukhtevich, 58 [USSR] Co«° PTI H 2 0 IM Anthr. Tsypin, Shemetenko GE36 Kusik et al. 57 MIT Co»» PTI Pb, Fe, Pb-Fe FS, Lay m Ion. sandwich QE37 Larichev 61 [USSR] Co»» PLN Fe FS KE,r,0) Nal. GF38 Leipunskii, 59 [USSR] Cos" PTI, PLI Air-ground 2 media with I(r) Ion.; PLI disk Sakharo v disk interface by integration oi PTI.

GE39 Mahmoud 57 [Egypt] Au" 8 Cs»', PTI C, Fe, Pb, H a O, FS I(E, T) Nal. , Co6», Na 24 Concrete GE40 Matveev, 56 [USSR] Crsi, Zn" PTI Sand IM I(E, r) Csl. Sokolov, ShlvaDnikov

10 , , , 111D

Table 2. Gamma-ray penetration experiments (GE) —Continued

Ret Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method [place] Mev configuration information

TAT Q0 GE41 IVLclllUUI II cl ill. 62 X Ul OO PLb FS J(r); solid Ion. angle de- pendence T)TT IVlIlLIlGll, . IjI.i 11 GE42 58 APEX Co" r 11 H 2 0-air 2 media with Iff) Nal; comp. with interferface MC calc. GT 7. f\ p XTT Tx.rk TA/r GE43 Peelle OD U XV i\ L; ir 1 11 2^ I(E, r, 0) Nal: 2-crystal Maienschein spectrometer.

GE44 xvcaiT? a vrnQuauH lvTT*T DT T a -a , bO IS ULi Co»», Cs>" Air-ground 2 media with Kr) Ion. o L 111 ill 'Kc interface _ _ GE45 Ritz 05 NBS Iri«J(0.32, 0.47, PT 1ST Fe Pb FS Ion. _ _ concrete GE46 Rizzo, Galanter oxfii UN Lj Co 60 rU H2O bIM I(r) Ion. null,, DTT GE47 xvuyb, 54 W Air JJ N» (6.2) h 2 o IM Anthr. Taylor _ T - , TMT T-\ GE48 Sakharov A n 1H01 03 Oi-ifiOou XT.-» 9 A T"\ It C TTV /T _ V. 0/ AU O0 , JNa^* ir L L U V D XM, ion.; uvu by , t bIM integration of PTI. DT XT- "DT O. oconeiQ, Xjyim, 58 N KD L Al, Fe FS /(£, r, 9) Nal: pulse-nt. KIreger ooov i?e, i diatrib.j Ion. , (dose; T> T T . j^i --, Art fl(dose) 1,1 TD T XT DT C. Ci sLoO OOU IlclU, 00 ' 60 N R JD Ju L/O , OS Al, Fe FS J(E, r, 8) Nal: photon TTn pfrvn 5i rlr wu v^o , i? e number flux. vrpT n fin PTT GE51 Soole 00 IN Jr J_< r 11 Air 1M J(r) Ion. 2 media with interface XT T GE52 otoices, ijiirton 57 NAKr Co60 p 1 Air IM /(E, 0) Nal. flP CO T/_\ . TJ ^T LrHiOo Xitus 58 NBS Co 60 PTI Steel—steel wool 2 media with /(r), iJnary. Anthr.; pulse ___ _ interface eff. integrator. Titus 57 Nob Plumbob 1 LI Concrete FS, IM J(r) Geig. 58 iaiiout • O T7>ee TIT T> «- LrHiOO Weiss, uernstein 60 Hg2W 53 BNL Co , (0.27) P 1 H2O IM 7(£7,r) Nal. GE56 White OU Co"*' ill XX2UTT„A liViTTV/f Ion.; geig. GE57 Whyte 55 NRC Cow PTI Concrete IM I(,E,r,6) Nal. [Ottawa] T_r„ri GE58 ^Sendie et al. 00 IN X>o Bremss.r r IjIN £±2\J faliVL m Anthr.; ion. -Em ax = 11 to 37 P ±V I XT T * 1 GE59 xsjarngaro., 62 LXjUnci,fT Bremss.: PMD XX2*J r 0 7 (xt,r,0) Nal . Hettinger Sweden] -Smai = 0.05 — 0.25. /~\ 137 XT TT Czii-60 Bruce, Pearson 62 L l orontoj Cs PLN EI20 SIM 7(£7,r) Nal telescope; Integr. over angle. GiliDl Dixon 58 NKO Cs 137 P 1 Concrete SIM; Source Nal telescope. Ottawa embedded. outside medium PM"n T71Q XT T U"Hjo2 i? uttermenger, 62 [Hanover, i? ission spectrum r 1V1 IJ Pbj ordinary, r 0 7(x?,r) Ion.; Nal Glubrecht, flar 1 niterea oy 40 baryte concrete bCnUlEZ and 90 cm paraffin. 203 10 1 (jr.h,6o Hash mi 63 [Munich, Hg t Au ^, P 1 H2O IM i(r) , ifr Ion. OerJ Cue* (0.51), 60 42 Co , K (1.53) bc 4D U-0 av.j ivin00 (i.yo av.j,

_ . Na24. DU pair Pnrnffin AT T?a C3TT\/T PQ XT (J"Lo4 xxyocio, bhmnzu 61 [Japan) OS 1 **', O0 lr 1 jraranin, ai, re, Nal telescope. Qn PK GiliQO Manmoud, 60 [Egypt] U.uD— 1.20 "DT "NT Concrete ollVlQTTl/T Nal. "EM XTh/Iti Jiii Nauy prpT A "P T? V W \_/0 DU j-J-T "MoT GE66 lvxitcneii Ol Air EjJL V>S f i 1 1 nju, 011, a 0 in ai. 1? b(re) _ 60 TT.n Po PK T? Q T OTT Mochizuki et al. 62 [J apanj Co H2U, r c, x d x 0, x>ay X5i* , enecc 01 Ion. high or low Z abs. nearest source. XTnT Gil, 68 Sybesma 63 [Leiden, U V u T-TnA oyi Nai. L_ _ Neth.] _ 1M ov 1-' TT-A Pn Pl-» UL69 Isypm, 56 [USSR] AU , l^0 ( X 11, r 1V1 xivx, ro, l\X) ion. Kukhtevich, Na24 Lay Kazanskii (Pb-Fe) 137 60 GE70 Vasilev, 58 [USSR] Cs , Co PTI Al FS R{t) Nal. Shishkina 7 Coflo GE71 Leipunski, 63 [USSR] Csi3 , PMD Fe IM BF, I(T,P ) Geig. Kimel, Panchenko

11 1 j 1 n

Table 3. Neutron penetration theory (NT)

pnfirPT7 TIT 4--U Ref. -1UI IH.I! Yr JjoiU. or Rnnrpp ouuitc type IVlCUlUlil -A UbUl Del 1 ypc UI ivLetiioa [place] Mev configuration information

IN 1 1 AiDert, weiton ou W Air JJ r ission ill 112^, J~x2\J—sru 1IV1 Assumed: first H2U-J: c scatter by H is absorption. fiO A A ir TAT IN X Z Antnony, umoda oz ArPQWPo W L/ r ission (detona- X 1 1 AIT J(E, r) MC. tion) NT3 Berger, Cooper 59 NBS 0.3, 1, 3, 6, 9, 14 PLS H 2 0 SIM, FS R(E, B) MC. NT4 Bethe, Tonks, 50 KAPL Unspecified mono- PTI A=9 (Be), ^4=oo IM Slowing down CECS; Fourier Hurwitz energetic _ ... density transform. A • A IN 10 Bitrizers, , oufin LA Fission (detona- ill Air-grounci 2 media witn T) MC. Eohr tion) interface _ , -i sn TT ] i PT Q N I 6 Burrell, Cribbs OU L-LocKiieecij 5 energies X e FS T(r, 6) MC. R(r,6) "NTT1 7 KA XTTl A "PTPT TT.ri TAT IN 1 / certaine, 04 IN U 1\ x ission ill H2U I(t) at indium MM. Aronson res. IN 1 O Certaine, 57 NDA 14 0 PTI H2O IM MM. Goldstein . _ _ TT -f T7Q QTAT inXJTQi y Dru.mm.ond 54 UCPL Unspecii.m mono* PLN Ullbptjtjll, 111UU.CI- X O, OllYl XZ^Jljf l l^aplace TJ A j energetic ating material transform. ___ KA OX? "NTT N 1 10 J? aulkner 54 U li.I\ Jj Unspecii. mono- r 11 Air-ground 2 media witn I(P, l>) Assumed: isotro- energetic interface pic single scatt. "NT Tl TT *fl A JN 1 11 x eix, Valentin 00 L-T rancej Unspec ifie d PLN u nspecineo. X 0 m, r CECS: matrix monoenergetic soln. of difE. eq. TTT A ~D "T\ TIT T N 1 12 b oderaro, 55 0.89 JrH IM, x a 1(f), R MC; MM. Obenshain XT A "D T? TiTT N 1 13 French oz IN Axtx x1 ission ill Air IM I(t, 0) MC. TTnllnTi A KK n no^ en' n nni n 1 PT1T TJT T IN 1 14 Holland, 00 I Ul U.UZO CV, U.UUl, U.J. r 11, J 1j1 AIT 1IV1 I(E, r) MM. Richards 0.5, 1, 2, 5, 14 WLqv _ _ TTnllnTi A f^fi n nni n i n ^ 1 o N 1 15 hoi land, 00 1 \J1 U.UUl, U.l, U.o, 1, z, Jrll Air IIVL /(£., r) MM, Richards 0, 11 IN 1 10 TTr\l Ion A 58 TOI U.UUln nni PTI Air IM i(J&, r) cemi-asymptotic. n t in NT17 Holte 04 [Uppsala, 0.1, 0.5, 1,2 PTI O, H2c, w, 0.5U, H2| 1IV1 T) MM. 10, 14 several liydro-

_ _ carbons XT '"POO fin A T3 T? AT" DA 1 T~» A ir TA/T IN 1 J J MaclJonald, OU Monoenergetic i IYL JJ Air IIVL /(.&, r, 6) x irst collision an- Baumgardt, alytic, higher Trampus ______orders MC. N 12o Marcum ou KAN JJ o, 14 ill Air-grounu. 2 media witn I(E, t) MC. interface Q TA/T 77 TP m AT/"' JN I Z4 jvieni Oo OAiNA XTTiTUlAA 0. 1—b.O r 11 Air 11V1 NT25 Morgan oy INX.TAT"JJu M^onoenergetic "PT "NT H2U QTA4" R MC. tit pT T NT26 Murray 53 ORNL Fast neutrons rp 11, i 1j1 13 elements from 11V1TAT Laplace trans- H to U form. "PT M "PT <5 AT O IN 1 Z/ u ocnsnain, 57 WAPD 1 2 10 1 J-jlN , i J_/Q H2O x 0 Eddy, Kuehn iPT1j1T PT XT CTAT ...... IN 1 Jo Podgor ou UxtlN Li JtJ ast neutrons i IjIN HE) All collisions as- sumed ab- sorption. TTT A XT TT„A TTo In izy fecniti 55 W AipnJJ x ission neutrons iPTIjIN XX2VJ—x e Lay Integral network. and gammas _ . , fin TT A AT" A 1ST A ir IN 1 ou oneit-on ou Xi_A 1V1 J\. IN i.u ev—o.u iviev JTPTT1 ait 11V1TAT Combines tneor. data of NT 14, NT 24. . . _ _.. _ XTTA A — IN lol Spielberg ol IN JJ A x ission ill Air IM 1\E, r) MM. NT32 Spielberg, oo AA INKT u.uzo ev, u.o, z.o, ribPT Q Concrete; with bllVlCTAT Multigroup Duneer /.o, iu, 14 iviev varying water diffusion. content A T?T>T? TT TUT In loo bpinney 55 A Hr XV H- x1 ission 111 Concrete IM 7(r) x ransport cross _ section; AT. XT 1 9/1 O ft T > T tt r\ QTAT In T1 o4 btem 00 WitlN ±J o.O illT JrLsVJ R Isotropic scatt.; analyt. soln. t;fi TAT A HP IN 1 OO btuart 00 H. W x ast neutrons .Line source oligntly aosorDrng 11V1 A 1 . moderator _ rr t N loo 1 ait, Biram oo ALKJi Monoenergetic PLN Hydrogenous SIM Pi approx.: rnT DTI TT r~\ N i 40 Wick 49 U OKL 0.5, 1, 2 P 11, PL1 H, C IM i(r) Laplace transf. TT„n TAT IN 1 41 Wigner, Young 47 Ju Fission ill 1IV1 J(r) Assumed : energy loss but no de- flection by H collision; corn- par, with H abs.

1 : jj IN 42 Zerby 57 OKN L Monoenergetic PMD Air IM /(r) : tissue jvl 0 u , mtegr. 01 dose-rate. Boltzmann eQ. _ _ _ • IN 1 4o Zweifel, Bigelow 55 KAPL x ission Ji2U; xi2*J-metais IM Age; slowing Bi, Pi, SG approxi- down den- mations. sity. NT44 Allen, Futterer, 62 BRL 0.5, 1, 2, 3, 5, 14 PLS H20,borated poly- FS; Lay Kr) MC. Wright. ethylene, Fe, concrete, Ne- vada test site soil.

12 Table 3. Neutron penetration theory (NT) —Continued

Author Vr Lab. or Source energy, Source typo Medium Absorber Typo of Method [place] Mev configuration Information

Allen, Futterer, BRL 0.1, 0.25, 0.5, 1.0, 2, PLS Concrete FS, SIM R, T, 7(r) MC. Wright. 3, 5, 14. Allen, Futterer, BRL 0.1,0.25, 0.5,1.0, 2, PLS Nevada tost site FS, SIM R, T, 7(r) MC. Wright. 3, 5, 14. soil. Allen, Futterer, BRL 0.1, 0.25, 0.5, 1.0, 2, PLS Fe FS, SIM It, T, 7(r) MC. Wright. 3, 5, 14. Avery AEEW Fission UVD Sph. Fo-TIaO Lay m Multigroup diffu- sion. Bendall AEEW 1-18 PLN Unspeeif. IM m Mu.tigroup diffu- sion.

Sleeper ORNL Fission PLN H 2 0 IM BF Conip. of ANP, NDA calcs. Fessler, Wohl NASA 6.0 PTI H2O IM MC. Jones. R. D. WADC Unspeeif. mono- PTI, UVD Unspeeif. FS, Sph, Cyl. Kr) One-group diffu-

energetic. sion ; power- series solution. Peterson, BRL Fission PTI An- IM I(t,0), dose MM; modified for Williams. fast conv. at 0=0°.

Ptitsyn [USSR] 2.5 PTI na, H 2 0 IM 7(r) MM. Roberts APEX 10.0 PTI BeO FS m Comp. of 4 solu- tions of transport eq; comp. with exp. data. Sinitsyn, Tsypin [USSR1 0.5—15 PTI H; mixture of H IM Use of removal and heavy cross section component. data.

Trubey, Penny ORNL Fission PTI H 2 0 IM I(r) thermal "Transfusion": comb, of trans- port and diffu- sion theory.

Table 4. Neutron penetration experiments (NE)

Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method [place] Mev configuration information

Babb, De Wames NARF Po-Be (fast) also PTI H 2 0-Air 2 media with I(r): fast, Hurst dosim. (fast), Co«» y's interface thermal; BF3 ctrs. gamma flux (therm.), anthr. (gammas). Baer WAPD Po-Be PTI H 2 0-Zr IM 7(r) therm. Foils. Barr, Hurst ORNL Po-Be PLN ~ Tissue FS m . Bina WADC Po-Be PTI Fe, Al, Pb Sph.; /(r) Hurst-type tissue- hemisph. equiv. det. Blizard ORNL Fission Disk HaO-Fe SIM, FS 7(r) therm., BF3 ctr., ion. 7(r) gammas. Blizard, Miller ORNL Fission: fast PLI disk H2O; Concrete FS m Hurst dosim. neutrons. Capron, [Belgium] Ra-Be PTI C60% SIM /(«) Ag foils. Crevecoeur. H8% 0 32% Caswell et al. NBS 14.1 PTI H 2 0 IM 7(r) therm., B" lined ctr., In In res., fast. foils, Hurst dosim. Chapman, Storrs ORNL Fission Disk ~ 15 elements from FS 7(r) therm., Fission chamber, PTI. H to U; 10 com- fast BF3 ctr., Hurst pounds dosim. Clifford ORNL Fission Disk H2O SIM 7(r) Ag, In foils, Bi°F 3 ctrs. Cochran, et al. ORNL Fission PLI C (graphite) FS 7(r),7(E) Fission chamber, Bi° F3 ctrs. Cure, Hurst ORNL p02io_B~2.6 PTI Concrete SIM R (dose) Proport. ctr., pulse integrator. Dacey, Paine, MIT Ra-Be PTI Air,H 2 0,Pb, Fe, Sph. 7(r) therm., Foils. Goodman W, plus 7 com- In res. pounds Delano, MIT MIT cyclotron PLN Concrete FS 7(r) fast, Foils, film. Goodman thermal Fillmore NAA Thermal, epither- Reactor Fe, Al; ordinary FS m In foils; V™, Np mal, fast pedestal and magnetite fission chambers. concrete Flynn, Chapman ORNL Fission PTI Pb Sph. 7(r) fast Hurst dosim. Grantham ORNL Fission PLI disk Barytes aggreg.; FS 7(r) : fast; Fission chmbr.; Barytes con- thermal BF 3 ctr.; Hurst crete dosim. Grimeland [Norway] Fission PMD B Cyl. 7(0 Activation of Nal. Hill, Roberts, ORNL Fission PTI H2O, H2O-AI IM 7(r) : In res. In foils. Fitch Hungerford ORNL Po-Be; Co6"(7's) PTI Air-H 2 0 2 media with R, 7(r, A) Fast neutron Air— concrete. interface dosim.; ion. Johnson, ORNL Fission PTI H2O IM 7(r) therm. In foils. McCammon, Haydon. Jones, F. R. HW Po-Be, Po-B PTI HsO, Cyl 7(r) fast, rec. ctr. (fast) paraffin slow (fast);BF 3 (slow). Kogan [USSR] 0. 025. 0. 22, 0. 83, PTI H 2 0, SIM R(E, 9) Mn foils; MnCl et al. 5; reactor beam PMD paraffin soln.; Cd, B, Na & Co filters. Langsdorf, ANL Li?(p,re)Be7 PMD 36 elements, Thin plates I{E, 6) BF3 proport. Lane, 0-1.8 2 compounds, counters. Monahan. 1 alloy

697-763—64 3 13 98

Table 4. Neutron penetration experiments (NE) —Continued

Ref. Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method P£ll | Til CI Mev configuration 111X011113,11011

NE25 Maienschein 55 ORNL Fission PTI H 2 0 IM Fission chamber, et al. BF3 ctr., In foils. NE26 Munn, 47 NRC Ra-Be PTI H 2 0-Bi IM /(r)therm., Dy, In foils. Pontecorvo [Montreal] H 2 0-Pb £1 res. H 2 0-Fe NE27 Otis 57 ORNL Fission PLI H 2 0 FS m Au foils. [Duke Univ.] NE28 Rush 48 Ra-Be PTI H 2 0 IM m In foils. NE29 Salmon 55 AERE Thermal PLI Concrete SIM I(t): In foils. diffusion length

NE30 Shure, Roys 57 WAPD N" PTI HzO IM I(E,r) BF 3 ctr. NE31 Dunn 57 WADO Fast neutrons, PTI Al, Fe, Pb Sph. Hurst dosim. Po—Be m NE32 Stiokley 56 BNL Slow neutrons PLN disk Tissue— equiv. SIM Kr, p) Au foils. plastic NE33 Tittman 53 [Schlum- Ra-Be PTI H 2 0 IM 1(f) In foils; BFs ctrs berger. Conn.]

NE34 Von Dardel 54 [Stockholm] D—D reaction PTI B, H 2 0, D 2 0, Cyl 1(E) B">F3 ctr. "Hysil" glass NE35 Western 62 NARF Fission PLN Polyethylene, FS I(E, t); Nal plain and Capture bora ted; gammas ZrHi.es; Inconel X, Be.BeO, Fe NE36 Zaitsev, 62 [USSR] 170, 250, 350, PMD 3 : FS I(r) Ci2(»,2ra)C"; Komochkov, 480, 660 (cyclotron) Fe content = (>20 mev) activity of C". Sychev 0. 4%, 41%. 75% NE37 Broder, 62 [USSR] 2, 4, 6.8, PTI H, H 2 0, O, C IM m, Fission chamber. Kutuzov, 10, 14. removal Levin cross section

NE38 Dulin 60 [USSR] Fission PLN H 2 0 SIM Kp,t); BF 3 ctrs. et al. disk data transf. to PLI disk, PTI NE39 Lence, 61 APEX Fission PTI Be, BeO, Large Kr): Foils; Liguori, LiH, Fe, Pb number of fast, Comp. with Lowery shielding Sub-Cd, hand calc. configura- epi— Cd. tions.

NE40 Tsypin 62 [USSR] 0. 5, 1, 3, PLN disk H 2 0, Fe, U SIM Kr.p) BF 3 ctrs. NE41 JWestern 62 NARF Fission PMD B orated FS I(E,T.e); BF 3 ctrs, polyethylene, R(p); foils, Nal. Pb, Fe fast, ther- mal, epi- thermal, capture gammas

Table 5. Electron penetration theory (ET)

Author Yr Lab. or Source energy, Source type Medium Absorber Type of Method [place] Mev configuration information

Archard 1AEI 0.01-0.10 PLN Si, Cr, Se, Xe SIM Diffusion; large- angle single elas- tic scattering. Berger NBS 0.125-2.0 PLN, PLS Al Foils T, R MC. Berger NBS 0.0625-2.0 PLN, PLS, Al, Au FS, SIM I(E, r), T, R MC. PLI

Blunck [Wiirzburg] 1-3000 PLN Pb, 0 2 SIM Range Integral trans- , Arbitrary Z forms. Boyd, Morris NBS 1.12-, 23.8-hr fission PLI, PTI Air IM I(E, r) MM. products

Crew NBS 0.4 PMD Air IM 7(r, P , 8) MM. Engelmann [Miinchen] paz (Alonly),T12o< PLI Al, Ag, Au FS T, R Diffusion. (Al, Ag, Au) McGinnies NBS 0.006438-10.46 UVD Al, Cu, Sn, Pb, IM 1(E) Numerical air, H 2 0, bone, integration, muscle, poly- use of ET17. ethylene Nelms NBS 0.01-10.0 PMD 28 elements from IM Energy loss, Cont. slowing- H to U; air, range down; ion. and H 2 0, 6 other excitation. substances Rohrlich, Carlson [Princeton 0.102-2.04 PMD Al, Pb IM Range, energy Continuous slow- Univ.] loss ing down. Sidei, Higashi- [Kyoto 0.514-2.0 PLN Al Foils T, R(0) MC. mura, Kinosita Univ.. Japan] Spencer NBS 0.01-10.0 PLN, PTI Be, Al, Cu, Cd, IM Stopping Continuous slow- Au, air, poly- power, ing down 1 styrene resid.m range, approx. Spencer NBS 0.025-10 PLN, PTI C, Al, Cu, Sn, IM m MM. Pb, air, poly- styrene Higasbimura [Kyoto, 2.0 PLN Al IM I(E, T) Segment modelj Japan] electron track. Linnenbom NRL 0.1-100 Al, Si, SiOj Range, energy Use of mass stop- loss ping power data, Body [Hungary] 0.01-0.10 PLN Z=4-80 SIM R(Z) Comparison of diffusion theory with single and multiple scat- tering. Spencer, Fano NBS 2.04, 40. 9 UVD Al, Pb IM KE) Continuous slowing-down.

14 ;

Table 6. Electron penetration experiments (EE)

Author Yr Lab. or Source energy, Source typo Medium Absorber Type of Method [place] Mev configuration Information

Aglintsev, [USSR] S>» (< 0.167) PTI Al Foils HE) Not given. Kasatkin Y" (< 1.65) Agu, Burdette, [Leicester, 0.25-0.76 PMD Be, Al, Cu, Ag, Foils T(T) Ion. Matsukawa England] Au Bialobzheskii, [USSR] 0.8 PLN Al Foil stack I(t) range Elcctrometric: ; Val'kov foils serve as both absorbers and charge collectors. Buys [Gent, Belg.] P82 PTI Al Foils r, r Gelg. paz Engelmann [Munchen] (Al only) PLI Al, Ag, Au T, R iir Ctr. TP04 (Al, Ag, Au) Griin [Miinchen] 0.005-0. 054 PMD Air IM m Luminescenso of air.

Harigel, Scheer, [Munchen; 20.4 PMD Freon (CF 3 Br) Foils Range Bubble chamber. Scfiultze Wiirz- burg] Huffman ORNL 0.057, 0.080, 0.104, PMD Al Foils /(r) Ion: triple plate 0.1265 chamber. Minder [Bern, 10 PLN H a O SIM m Ion; film; chem. Switz.] dosim. (FeSO^). Oberhofer, [Munich] 19 /9-emitters PMD H 2 0, Air, Al, Cu, Foils T, max. Not given. Springer 0.053-3.55 plexiglass range. Odeblad, Agren [Stockholm] Cl»» (Al, Sn, Pt, PTI Al, Sn, Pt, Foils T Geig. cellophane) cellophane C", PS 2 (Al only) Eothenberg NYO-HS U/3's PTI Denim (cotton 1 and 2 9-oz. T Ion. cloth) layers Seliger NBS up to 0.960 Al, Ag, Sn, Pb, Foils T(T) 2tt ctr. Au, brass Trump, Wright, MIT 2, 3 PLN Al Foils J(r, 9) Ion. Clark Tsvetaeva [USSR] 0.20, 0.60; Sas, PMD Al Foils m Geig. Ca«, Co«», Sr»» Wright, Trump MIT 1.0-3.5 PLN Be, Mg, Al, Cu, SIM R{2) Biased collector. Zn, Cd, Au, Pb, U Andreen [Gothen- 0.02-0.10; Sm'M PLN Al, Cu, Ag, Pb SIM R(Z) Image P- berg, spectrometer. Sweden] Andreen, Parker, [Sweden] 0.01 (electron gun) PMD Al, Ag, Au Foils R(E, 8), Double focusing Slatis T(E, d) /S-spectrometer, geig. Chhabra ANL Sr«o-Y«°: <2.2 PLI disk Lucite SIM Kt) Plastic scint., film. Cornish STL 1.43-2.0 (Van de PLN H 2 0: liquid and SIM T, R; I(t) vs Glass coloration Graaff iee temp. dosim. generator) -195° C to +20 °C Daddi, D'Angelo 63 [Pisa, Italy] 0.167-2.25 (7 0 PTI Al, Au Foils Effective Geig. emitters) atten. coefs. Danguy [Brussels] 0.17—1.7 PTI 39 elements, Foils R(8), R(E, r) Geig. compounds, and alloys Ehrenberg, King 63 [Blrbeck 0. 01—0. 08 PMD Polystyrene, KI, SIM I(r, p); comp. Luminescence. Coll., Rbl, Csl, with calc. London] CaW0 4 ET13 CdW0 4 Mori, Taira [Japan] Sr»« PMD C, Al, Fe, Pb FS R(r, 6, Z) Geig.

Table 7. Elementary geometries, theory (EGT)

Ref. Author Yr Lab or [Place] Rad. type, Source type Medium Structure, terrain, Type of Method energy (Mev) etc. type Information

EGT1 Berger 54 NBS 7: Co«» PTI off-gnd. Air Foxhole Dose rate at Use of ang. distr. top, middle, calc. by MM; bottom assume dir. dep. det. EGT2 Berger 56 NBS y: Co«°; 0.66, 1, PTI, PLI Air, concrete Slab-covered Relative dose MM; MO. 4, 10 shelter; thick rates; bdry.

wall; dens, in- efi . corr. terf. EGT3 Berger, Doggett 63 NBS t: 1.0 PLI, UVD Alr Level gnd; inf. HE); dose rate; MM. and sph. finite BF cloud EGT4 Berger, Lamkin 68 NBS y. 1.0 PLI Air, concrete Slab-covered pit Dose rate with- MM; correction shelter, block- in structures for wall rerl. house, open hole and transm. EGT5 Blizard 59 ORNL Unspecified PLI disk, Unspecif. Circular disk Transform, of Inf. series; extra- monoenergetic PTI source PLI disk data polation of data. to PTI EGT6 Blizard 60 ORNL Unspecified PLI, PTI Unspecif. Circular disk Geometrical Inf. series; monoenergetic source transforma- simple formulas. tions , EGT7 Chilton, Saunders 57 NCEL y. Cos" PLI Concrete, Slab and earth- Dose rate 3' Not given. earth covered under- above floor ground shelters center comp. with 3' above level ground

15 H

Table 7. Elementary geometries, theory (EG T)—Continued

Author Yr Lab or [Place] Rad. type, Source type Medium Structure, terrain, Type of Method energy (Mev) etc. type Information

Duncan 59 NAA y. time- UVD Air Radioactive /(r) BF approx. as dependent cloud: vert, fission and horiz. + G"r)V7E2.4 products funnels Eisenhauer 60 NBS y. Coeo, 1.12-hr PLI Concrete Blockhouse Dose rate as fn. MM: separation fission, 0.7 of roof thick- of "barrier" and Mev ness and "geometry" depth below shielding. ceiling Foderaro, 55 WAPD Unspecified PTI, PLI Unspecif. Point, line, disk, m Exponential atten., Obenshain monoenergetic UVD slab, truncated analytic and cone, cyl., sph. series formulas. sources Fulhvood et al. 56 NDL 7: 1, 2.76 PLI Air, ground Foxhole, level Dose rate vs Use of inf. plane ground ht. above theory. gnd.; in bot- tom of foxhole Hubbell 56 NBS y: 0.255, 0.5, PLI, UVD HjO Level ground; Dose rate vs Use of MM calc. 1, 2, 3 circular slab ht. above gnd. data; BF fitted roof; body of or water; to cubic poly- water over center of nomial in imr. disk Hubbell, Bach, nil NBS 7: 1, 1.25, un- PLI; ang. H2O; un- Rectangular pri- Dose rate opp. Use of angular Lamkin specified distr. in specified mary and sec- corner of rec- harmonics calc. monoenergetic sph. har- ondary sources: tangular by MM; series monics e.g. thin or source soln. for thin thick roof roof (<~ lmfp). Hubbell, Bach, NBS 7; neutrons; PLI; ang. Unspecified Circular disk Dose rate off Use of angular Herbold unspecified distr. in primary and axis harmonics calc. monoener- sph. secondary by MM; series getic harmon- sources. soln. using BF data from GT13, EGT12. Hubbell, Bach 62 NBS 7: Co«»; 10 PLI H 2 0, Al, Fe, Rectangle, or Dose rate as fn. Power series soln. energies from Sn, Pb, W, arbitrary finite of geometric, using BF data. 0.5 to 9.5 U plane source atten. and BF para- meters. Kovalev, Popov, [USSR] Unspec. mono- PLI Vacuum Rectangular pri- Dose rate as fn. Numerical inte- Smirennyi energetic mary source of geometric gration; no parameters atten. or BF. Krieger RAND 7: 0.7 PLI Air Inf. plane; circu- Dose rate 1 Analytical and lar disk; inf. meter above numerical inte- long strip gnd. grations; unscatt. rad. only. Ksanda, Moskin, 56 NRDL 7: 1.25 PLI Air-ground 2 media with Ground-rough- Linear BF as- Shapiro interface; clear- ness effects sumed. ed square area in inf. plane source LeDoux NCEL 7, neutrons: PLI Concrete, Level ground, Protection Analyt., numer. initial and earth buried shelters: factors integrations. delayed rect. slab roof, "standard" hemisph., arch spectra LeDoux, NCEL 7: 1-10 PLI Concrete Level ground, Geom. effects Analyt., numer. Donovan buried shelters: integrations. horiz. cyl., paraboloid, ellipsoid, slab roof, hemisph. Malich, Beach NRL 7: 1.0 PLI Concrete Schematized Dose rate at Linear BF as- barracks various points sumed. in structure comp. with 3' above gnd. Meredith NDL Unspecified PLI Vacuum Rectangular Rad. flux at Numer. integr.; (~ Air) primary various points no atten. or BF. source above surface Minder [Bern, Unspec. PLI Vacuum Rectangular; Dose rate vs Series expansion Switz/ hollow cyl. "shape" of integral; no sources parameters atten. or BF. Moote cw 7: Co«° PLI Fe— 2 0 Rectangular Dose rate in Solid angle frac- primary H2O slab vs tion; linear BF source Fe cladding assumed. thickness Osanov, Kovalev [USSR] 7: unspec. PLI Unspecif. Rectangular pri- Dose rate vs Numer. integr.; monoener- mary source "shape" and exponential getic "barrier attenuation; thickness" no BF. parameters Putz, Broido IER 7: unspec. Unspec. Unspecif. Generalized Generalized Transmission shields: tetra- formulae for matrix. hedral, paral- dose rate lelopiped, etc. computation Schlegel 59 IER 7: unspec. PLI Air; standard Rectangular Dose rates Numer. integr., roof mate- roof-sections within struc- linear BF rials (Ref. ture assumed. Gil) [Stockholm] 7: unspec. PLI Unspecif. Circular disk Dose rate off- Series soln. in primary source axis vs powers of "bar- "shape" and rier thickness"; "barrier" 710 BF. parameters Smith, Storm 54 KAPL Unspec. PLI; arb. Unspecif. Circular disk Dose rate off- Variety of series ang. source axis solns., dep. on distrib. source type.

16 J ; ,

Table 7. Elementary geometries, theory {EOT) —Continued

Eef. Author Yr Lab or [Place] Rad. type, Source type Medium Structure, terrain. Type of Method energy (Mev) etc. type information

EGT30 Spencer 62 NBS y. 1.12-hr fis- PTI Air, HjO, Density interface, Extensive Use of MM, MC 90 sion; Co , PLI Concrete foxhole, shielded graphical data calc. results; basement, light and formulas solid angle superstructure, for calc. of fraction. vertical wall, protection blockhouse, factors vents, mazes, compartm. structures T ColtlCKTlCI rll Ir IM -1 .,1 - ~ . 1 EGT31 -D LI 61 i 7; neutrons; Unspecif. Circular disk Dose rate on Analytical inte* ILaly unspecif. Fermi primary and axis grations; monoener- ang. secondary unscatt. rad. getic distrib. sources. only. EGT32 Casper, Carver 58 APEX 7: fission, PLI disk, Al, Fe, Pb Fe slab with on plug Analyt. integr.; 0.5-9.5 radial de- hole; Al, Fe, axis use of BF data. pendence Pb plugs EGT33 Eisenhauer 63 NBS "PT T Air, Concrete Level ground; Urapnical clata USC OI IVliVl, roof sources; and formulas calc. results; vertical walls, for calc. pro- solid angle

' ' '<:.'' 1 1 3 MM.,. I L 1 1 ' 1 compartm. tors. Comp. structures. with experun. EGT34 Holland, Gold 62 toi 7; induced in PLI Air, Ground Level ground Dose rate in air Vacuum, SIM ground by (thermal) due to (n, 7) earth for neu- neutrons with PLS reactions in tron capture; energies: (fast) ground from plane symmetry 0 025 ev point neutron lur 7 pen. y.oy, 11 i\iev source in air. T A" r 1 O A A 1 ft TUP S-.KJ i oO Leimuorier OJ AE 1, z, i, o, iu 1 I opiierical room, ri\l2j 0) VS y. r Concrete t PTI source at radius of center. room; effect of miilt. refl. EGT36 Rose 56 ORNL a-particles Disk: aniso- Vacuum Circular disk Det. response Legendre expan- tropic source. on axis; sion. ang. finite disk distrib. detector. EGT37 Yakhontova, 62 [USSR] /S: unspecif. PLI disk Unspecif. Circular disk I(t) on axis Analytical Kononenko, multicoin- source; single formulas. Petrov ponent. and layered medium.

Table 8. Elementary geometries, experiments (EGE)

Ref. Author Yr Lab or [Place] Rad. type, Source type Medium Structure, terrain, Type of Method energy (Mev) etc. type information

EGEl Auxier et al. 59 ORNL 7: Co«°, Cs«' PLI Air; standard Thin and thick- Dose rate in Ion. building walled houses; houses from materials. level ground. sim. fallout field; dose above rec- tangular source array. EGE2 Batter 61 TOI 7: Co" PLI Fe Vent protruding "In and down" Ion. from under- effect. ground shelter. EGE3 Batter, Starbird 61 TOI 7: Co»o PLI Concrete Blockhouse Dose rate from Ion. sim. fallout field EGE4 Batter, Starbird 62 TOI 7: Co" PLI Fe Compartm. Effect of strip Ion; scale model. structure sources EGE5 Bernstein, 53 BNL 7: Co»° PTI off-gnd Air Foxhole Dose rate at Nal. Clarens, Weiss top, middle and bottom EGE6 Brodeur, Batter 62 TOI 7: Co«° PTI Fe Protruding vent "In and down" Ion. scatt. EGE7 Burson, Borella 61 EGG 7: Co«o PLI Earth, corru- Earth-covered Protection Ion. gated steel. shelter factor. EGE8 Clifford 61 DRCL 7: OS"? PLI Air-ground Foxhole in unif. Dose rate along Ion. contain, plane fox-hole axis and midway to wall; gnd. pen. contrib. EGE9 Clifford 62 DRCL 7: Cs»' PTI Sand between Blockhouse: full- Validity of Ion. plywood; size and 1/10 model Fe (scale scale model studies model) EGE10 Davis, 62 ORNL 7: Co*>, Csw PTI Air-ground Square array of Dose rate vs Nal, airborne. Bernhardt sources on ht. above level gnd. gnd. 0 EGE11 Davis, 62 ORNL 7: Co' , Cs'" PTI, PLI Air-ground Level ground; Dose rate Nal. Reinhardt extended vs ht. above sources gnd. EGE12 Eisenhauer 59 NBS 7: Co«° PLI Wood, Rectangular and Dose rates over Ion.; detailed concrete ring sources on simple source math, analysis level gnd., arrays, with- of data. houses with in houses; sources on roof wall pen. and surr. area effects.

17 Table 8. Elementary geometries, experiments (EGE)—Continued

Kef. Author Yr Lab or [Place] Rad. type, Source type Medium Structure, terrain, Type of Method energy (Mev) etc. type Information

EGE13 Goulding, Cowper 63 [Chalk River, 0: P» (~fission) PLI Air-soil Level ground Relative im- Geig., thin-win- Can.] portance of dow. fallout /9's EGE 14 Hill 64 RAND y. Zr»s, Nb" PLI Air-soil Streets; categorized Dose rate rel. to Analysis of data (0.76) structures 1 m above inf. assuming single Pi. scatt. EGE 15 Huddleston et al. 62 NCEL; Fallout y's PLI Air-soil Flat lake-bed; I(r, 6); ground Nal. EGG semi-rough ter- roughness rain; wild desert effects. EGE16 Margulis, Elms- 67 [USSR] y. Co»» PLI Air Rectangular source Dose rate pro- Activated phos- tale v array of 1 m- files across phor " Co'o rods source; vs. ht. theor. analysis above source using circular sector approx. EGE17 Mather, Johnson, 62 NRDL y. 9-day-old PLI Air-ground Level ground I(E, T, 6) Nal. Tomnovec fission prod- ucts EGE 18 Plummer 62 NRDL y: Co«° PLI Air-ground, Vertical wall Protection factor Nal. Fe vs wall thick- ness, collim- ator solid- angle. EGE19 Schlemm, Antho- 69 AFSWC 7: Co" PLI Air-ground Foxhole, shielded I(E, r, 6) Nal. ny, Burson basement, cleared areas EGE20 Schlemm, 69 AFSWC 7: Lau° PLI Air, ground, Foxhole, slab /(r, 6) Geig. Anthony concrete covered base- ment, cleared circular areas EGE21 Schmoke, Rex- 61 NDL 7: Co««, CsU' PLI Plywood, Fe, Blockhouse Dose rate in Ion. road concrete structure vs. position, roof material and thickness EGE22 Schumchyk, 60 NDL 7: Co«o PLI Air-ground Foxhole Gnd. pen. (lip Ion. Tiller contrib.) EGE23 Tomoeda, 60 NRDL 7: Co™ PTI Fe Compartmented "Geom. factors": Ion. Hastings, structure: scale meas. dose 4- Shumway model unatten. calc. dose EGE 24 Clifford 63 DRCL 7: Cs«» PLI Air-Concrete Level slabs with Ground rough- Ion. concentric and ness effects. with parallel sawtooth grooves

EGE25 Donovan, J. L. 61 [XT. of Mich. 7: Co«° PLI H 2 0-Fe Rectangular PLI I(t) vs. Fe Ion. Ann Ar- source for food cladding thick- bor] irradiator. ness. EGE 26 Johansson 62 [Lund, 7: 7 Mev for PMD, PTI Concrete for FS; straight and Validity of Nal. Sweden] full-scale full-scale 3-legged ducts. small-scale structure; 2.62 structure; models for Mev for model Fe for model shielding studies. EGE27 Ferguson 63 NRDL Fallout 7's PLI Air-ground Desert, dry lake Ground rough- Nal; comp. with bed, plowed ness effects; theor. results in ground. I(E, h, 8) ref. Gl-EGT 30.

Table 9. Ducting (D)

Ref. Author Yr Lab or [Place] Rad. type, Source type Barrier Geometry Type of Method energy (Mev) material information

Dl Barcus 59 SANDIA n PTI Unspecif. Straight and bent Generalized ex- Calc. ducts pressions D2 Benenson, Fasano 57 WADO n (fission) PLI H 2 0 Straight cylindri- Effect of "lip" Exp. using S32 (n, cal duets. pen. p) P32 det.; calc. using ray analy- sis. D3 Bergelson 61 [USSR] n (fast) PLI HaO, concrete Straight cylindri- Formulas; no Age approx. cal ducts data D4 Chappell 57 KAPL y PLI, PLC, Unspecif. Straight cylindri- Nomogram; ap- Scattering neglect- Fermi cal duct prox. formula ed. D5 Chilton 61 NCEL y: 0.34, .5 PTI Concrete 2-legged rectangu- Effect of off axis Calc, albedo ap- lar ducts detector and proach. source D6 Clifford 62 DRCL y: Csi" PTI Concrete Duct with side Spectral, trans- Ion. branches mission data D7 Eisenhauer 60 NBS y: Co"> PTI Concrete Bent ducts Effect of one Ion. and two right- angle turns D8 Fisher 56 AVCO n: unspecif. PLC Fe Straight and bent Effect of bends, One-velocity dif- ducts, annulus, offsets; ap- fusion theory. gaps prox. for- mulas. D9 62 NCEL y: Co' 0 PTI Concrete 2-legged rectangu- Dose rate along Exp.; analysis us- lar duct; source, duct axis. ing single scatt. det. on axis. approx. D10 Horton 59 AERE n: thermal, fast PLN Unspecif. Helical duct I(r) along duct Approx. by suc- vs ratio of cessive straight duct radius to sections joined at helix radius const, angle

Dll Horton, Halliday 66 AERE n: thermal Fermi plane H 2 0 Straight, 3-legged I(r) along duct Exp.: foil detectors. source eyl. ducts axis.

18 Table 9. Ducting (D)—Continued

Author Yr Lab or [Place] Rad. type, Source type Barrier Geometry Type of Method energy (Mev) material Inform at ion

Horton et al. AERE n: thermal Fermi plane Concrete Fe Straight annular T(r) nlnnff nn- Exp.; Mn foils; an- source lined duct nulus alysis using duct wall albedo. Hungerford ORNL n : uspecif. PLC Unspeclf.; Na Bend In pipe /(r) on and off Diffusion; soln. In in duct carrying scatt. duct axis. in terms of and wcaJcly abs. Bessel fn. medium LeDoux, Chilton 61 NCEL 7: Co" PTI Concrete 2-legged rectangu- /(r) along duct Calc; albedo ap- lar ducts axis - corner proach.

1 i n pfTpf*t

Park, Agnihotri, [U of Md J 7: Co' 0 PTI Concrete Straight, 2-legged 7(r) along duct Exp.; analysis by Silverman. rectangular axis; effect of detailed MC calc. ducts. successive

epet" tfpfi ntrc" L ,1 1 LCI 1 1 . _ . Price, Horton, AERE n: fast, thermal PLC H3O, concr.; Straight, bent Collection of Semi-empirical fits Spinney Fe duct- annular etc. formulas and to data. lining. ducts. exp. data. Rizzo, Quadrado, BNL 7: Co" PTI Concrete 9- and ^-lppfpH T(t\ q 1 An

Simon ORNL 7; n PLI H3O Straight and bent Formulas Calc: albedo analysis. Simon, Clifford ORNL n PLI HjO Long thin air Formulas Single bend of ducts; angle 8; series of straight and 0-bends. bent. Terrell, Jerri, ARF 7: Co", Cs i« PTI Concr©tc Ion. Lyday. en tranceways. 2-and U -shapes. Chapman NCEL 7: Co" PTI Concrete 2-legged square X(r) along duct Nal; comp. with duct. axis* contrib. albedo theor. of various re- calc. reflecting surfaces. Fowler, Dorn NCEL 7: Co" PTI Concrete 2- and 3-legged 7(r) along duct Geig.; Ion.; single round ducts. axis; comp. scatt. analysis. with sQuare

Piercey, Bendall AEEW n: fission PLN HaO; air in Straight cyl. I{t) (fast) up to S32(n,p)p32 de- ducts. ducts. 9Hn Hucf radii tector; comp. along axis. with moments calc. Piercey AEEW n: fission PLN H2O; air in Straight cyl. I(j) (thermal) Foils; comp. with ducts. ducts. up to 200 duct moments calc. radii along axis. Collins 62 NARF 7: Co«» PTI; cos, HjO; Al Straight cyl. duct Nj>) beyond duct. Anthr., fast- 3 n: Po-Be coss, cos , lining neutron point dosim., comp. sources. with MC calc

Table 10. Realistic structures (RS)

Ref. Author Yr Lab or [Place] Rad. type, Source type Barrier Structure, terrain, Type of Method energy (Mev) material etc type information

RSI Batter, Starbird 61 TOI 7: Co" PLI Concrete; hol- Basement, light Dose rate in Ion. low tile superstructur;. basement, blocks; sources on frame roof. gnd.

1 RS2 Batter, Kaplan, 60 TOI 7: Co" , PTI, PLI Concrete; Office bldg. Dose rates in Ion. Clarke. IxiM (0.34) brick facing. [AEC, Ger- interior due mantown Md.] to roof, gnd. sources. RS3 Borella, Burson, 61 EGG 7: Co" PLI Concrete; Office bide. do. Ion. Jacovitch. brick [BNL Med. facing. center] RS4 Burson, Parry, 62 EGG 7: Co" PLI Stucco and Southwestern do. Ion. Borella. frame. residential home; no basement.

19 Table 10. Realistic structures (RS) —Continued

Ref. Author Yr Lab or [Place] Rad. type, Source type Barrier Structure, terrain, Type of Method energy (Mev) material etc. type information

T RS5 Clarke, Batter, 59 TOI y. Co»° PT Brick; reinf. Multistory bldg. Dose rates in Ion. Kaplan. concr.; blockhouse, interior due frame. basement, open to roof, hole, under- gnd. sources. ground shelter. RS6 Canningliam 57 DRCL y. Co«», Csi" PLI Residential Protection Ion. et al. homes. factor in basement, first floor. RS7 Graveson 56 NYO-HS Fallout y's PLI: roof, Al Standard housing Dose rates Nal. surround- structure. within struct. ing area comp. to in open. RS8 Malich, Beach 57 NRL y. 0.5-10.0; fis- PLI PTI Concrete, Barracks, Total dose rate BF fitted to sion 7's, n's. soil. underground from prompt quadratic. shelters. radiations. T3J T RS9 McDonald 56 [Brit. Home r. Co»° XT LiL Brick; frame Residential home Protection Ion. Off.] roof. factor. RS10 Putz.Kuykendall 59 IER •y: Co" "PT.T Frame; brick; Resid. homes: Dose rate Exp.; math. precast 1- and 2-story. "within struc- analysis using concr. tures from linear BF. sources on roof, surr. area. RS11 Rudloff 61 [Germany] y. 0.7; 24-hr PLI Concrete Buildings with Contrib. of rad. Calc: geom. fission prod. basements. scatt. in gnd.- factor; linear floor to BF. basement. PT T RS12 Shumway, 60 NRDL y. Co«° Fe Aircraft carrier, Dose at various Ion.; traveling Tomoeda et al. unif. contam. pts. at 3 levels source. on flight deck. below fit. deck. T>T T RS13 Spencer, 62 NBS y. 1.12 hr fission Concrete Schematized Protection Computer pro- Eisenhaucr. buildings, aper- factor. gram for Nat. tures, offsets, areaways, Survey. neighboring roofs, etc. considered. PT T RS14 Starbird, Batter, 61 TOI y. Co 90 Fo Scale models of Dose rates Ion. Mehlhorn. residential-type within struc- structures. tures; comp. with full- scale results. RS15 Striokler, Auxier 60 ORNL y. Co«° Frame; con- Typical Oak Dose rate Ion. crete block. Ridge homes. within struc- tures from sources on roof, surr. area. RS16 Tomoeda, Hast- 60 NRDL y. Cof, Cs'3', PTI Fe Light aircraft Dose rate with- Ion. ings, Miller. IrH2 carrier. in ship due to sources on flight deck. RS17 Tomoeda et al. 59 NRDL y. Co»o, Cs»', PLI Fe Light aircraft Protection fac- Ion; integr. of Iri«2 PTI carrier. tor within PTI data to get ship. PLI. RS18 Waldorf 59 NRDL 7 PLI Fe Light aircraft Comparison of Numerical, ana- carrier. exp. dose-rate lytical integra- data with tions. available theory. RS19 Burson 63 EGG y. Co«» PLI Concrete 3 multi-story Dose rate with- Ion; Nal. masonry build- in structures ings; ranch- from sources type home with on roof, surr. underground area. shelter. RS20 LeDoux 63 OCD y. 1.12-hr fission PLI Concrete Buildings with Protection Schematization as windows, in- factor. single-story terior parti- solid-wall equiv. tions, basements. buildings; use of Gl, G46, calc. data.

Glossary to Tables

Laboratories AFSWP Armed Forces Special Weapons Project, Washington, D.C. AE Aktiebolaget Atomenergi, Stockholm, Sweden. AN Associated Nucleonics, Inc., Garden AEEW Atomic Energy Establishment, Win- City, N.Y. frith, Dorset, England. ANL Argonne National Laboratory, Ar- AEI Associated Electronic Industries, gonne, 111. Ltd., Aldermaston, England. APEX Atomic Products Division, General AEEE Atomic Energy Research Establish- Electric Co., Cincinnati, Ohio. ment, Harwell, Berks., England. ARF Armour Research Foundation, Chi- AFSWC Air Force Special Weapons Center, cago, 111. Kirtland AFB, N. Mex. 20 .

American Standard, Atomic Energy TRG Technical Research Group, Inc., Syos- Dir., Redwood City, Calif. ett, N.Y. Avco Advanced Development Div., UCRL University of California Rad. Lab., Stratford, Conn. Berkeley, Calif. Brookhaven National Laboratory, WADC Wright Air Development Center, Upton, L.L, N.Y. Dayton, Ohio. Ballistic Research Labs., Aberdeen WAPD Westinghouse Electric Corp., Atomic Proving Ground, Md. Power Div., Pittsburgh, Pa. Clinton Laboratories, Oak Ridge, Term. Curtiss-Wright Corp., Princeton, N.J. Information Type Defence Research Chemical Labora- Spectra tories, Ottawa, Canada. HE) Depth dose or integrated intensity Edgerton, Geroaeshausen and Grier, m Inc., Goleta, Calif. HP) Angular distribution Hanford Atomic Products Div., Gen- HE, r) Depth spectra d) Spectra: angular eral Electric Co., Richland, Wash. HE, dependence r, Spectral-angular distributions Inst, of Engineering Res., Univ. of HE, 6) Radial distributions Calif., Berkeley, Calif. Hp) Kaman Aircraft Corp., Colorado Hr, h) Lateral-vertical distributions Springs, Colo. T Transmission Knolls Atomic Power Lab., General R (albedo) factor Electric Co., Schenectady, N.Y. BF Buildup Los Alamos Scientific Lab. (Univ. of Calif.), Los Alamos, New Mexico. Method Mass. Inst, of Technology, Cam- bridge, Mass. MC Monte Carlo North American Aviation, Downey, MM Moments method Calif. AA Analytical absorption Nuclear Aircraft Research Facility, CD Collision density Worth, Tex. Convair, Fort IS Importance sampling National Aeronautics and Space Ad- CECS Constant effective cross section min., Lewis Res. Center, Cleveland. AT Age theory Ohio. Nal Sodium iodide crystal spectrometer National Bureau of Standards, Wash- NBS Csl Cesium iodide crystal spectrometer ington, D.C. Anthr Anthracene crystal spectrometer Civil Engineering Lab., NCEL U.S. Naval Ion chamber Port Hueneme, Calif. Geig Nuclear Development Corp. of Amer- NDA Bi aprxmn Legendre components of the scat- ica, White Plains, NY tering function Bi = 0 for Z>1 Nuclear Defense Lab., Army Chemi- NDL Pi aprxmn Legendre components of the flux cal Center, Md. Pt=0 for 1>1 Ordnance Lab., White ^ NOL U.S. Naval SG aprxmn Selengut-Goertzel approximation Oak, Md. NPL National Physical Laboratory, Ted- dington, England. Source Type NRC Nat. Res. Council, Canada, Ottawa and Montreal. PLN Plane normal NKDL U.S. Naval Radiological Defense Lab., PLS Plane slant San Francisco, Calif. PLI Plane isotropic NRL Naval Research Lab., Washinston. PLC Plane cosine D.C. PTI Point isotropic NYO-HS Health and Safety Div., AEC, New PMD Point monodirectional York Office. UVD Uniform volume distribution OCD Office of Civil Defense (DOD), Wash- ington, D.C. ORNL Oak Ridge National Laboratory, Oak Absorber Configuration Ridse, Tenn.

RAND RAND Corp., Santa Monica, Calif . IM Infinite medium

SANDIA Sandia Corp., Albuquerque, jN . Mex. SIM Semi-infinite medium STL Standard Telecommunication Labs., FS Finite slab Ltd., Harlow, Essex, England. Sph Spherical shell TOI Technical Operations, Inc., Burling- Cyl Cylindrical shell ton, Mass. Lay Lavers 21 .

General References (G) G23 M. Grotenhuis, Lecture notes on reactor shielding, ANL-6000 (Mar. 1959). A selection of shielding manuals, handbooks, bibliogra- G24 N. G. Gusev, Radiation and Shielding Handbook phies and related background material is listed as follows: (State Medical Publishing House, USSR, 1956). Gl L. V. Spencer, structure shielding against fallout G25 G. J. Hine and G. L. Brownell, Radiation Dosimetrv radiation from nuclear weapons, NBS Mono. 42 (Academic Press, New York, N.Y., 1956). (June 1, 1962) (41 references) ; This reference G26 J. F. Hogerton and R. C. Grass, editors, The reactor also listed as EGT30. handbook, Vol. 1, AECD-3645 (Mar. 1955). G2 G. H. Albright, A. F. Dill, R. 0. Enge, A. H. Foder- G27 W. L. Hollister, Shielding, an annotated bibliog- aro, W. H. Hill, M. W. Isenberg, L. L. Boyer, raphy, NP-11466 (Feb. 1962) (SB-62-2); 338 W. A. Jester, and R. H. Kaness, (Pennsylvania references, slanted toward space vehicle shield- State Univ., University Park, Pa) Guidebook for ing; covers period 1958 to Feb. 1962. planning of integrated atomic defense shelters in selected military building types, NP-10014 (Feb. G28 Home Office, London, England, Assessment of the protection 1961). afforded by buildings against gamma radiation fallout (1957). G3 J. D. Abbatt, J. R. A. Lakey, and D. J. Mathias, Protection against radiation, a practical handbook G29 R. G. Jaeger, and , (Charles C. Thomas, Springfield, 111., 1961). Physical and Technical Data, (Stuttgart, Georg G4 R. D. Birkhoff, The passage of fast electrons through Thieme Verlag, 1959) (in German). , Encyclopedia of Physics 34, (Springer- G30 T. Jaeger, Outline of Radiation Shielding Tech- Verlag, Berlin, 1958). niques for Structural Engineers, Process Techni- G5 E. P. Blizard, The Shielding of Nuclear Reactors, cians, Health Engineers and (Springer- pp. 746-775 of Progress in Nuclear Energy, Ser. Verlag, Berlin, 1960) (in German). IV, Technology, Engineering and Safety 2. G31 H. Kahn, Applications of Monte Carlo, RAND (Pergamon press, N.Y., 1960). (77 references). RM-1237-AEC (revised; Apr. 27, 1956). Blizard and L. S. Abbott, editors, G6 E. P. Reactor G32 M. B. Kinder, Design of rectangular underground Handbook 2d ed. Ill, pt. B, Shielding. (Inter- structures to resist nuclear weapons (thesis), AD- science, New York 1962). 264553 (1961). G7 E. Bock and M. Jarnholt, shielding, G33 D. C. Kleinecke, scattering, an anno- part 1. A literature survey, VDIT-32(1) (Mar. tated bibliography of Monte Carlo calculations, 1961) (171 references covering period Mar. 1959- Civil Defense Research Project, Ser. No. Mar. 1961.) 2, Issue No. 36 (June G8 C. B. Braestrup and H. 0. Wyckoff, Radiation 1, 1961) (96 references). I. Protection, (Charles C. Thomas, Springfield, 111., G34 V. Kukhtevich and S. G. Tsypin, Physical and engineering problems of small shield design, 1958) .

G9 F. C. Brooks, et al., Radiological defense planning At. Energ. 5, 393 (1958), Trans, in Soviet J. At. I guide, TOI 58-26 (1958), (Technical Operations, Energy 5, 1285 (1958); 52 references to western Inc., Burlington, Mass.). and iron curtain shielding papers. G10 Bureau of Yards and Docks, Studies in atomic G35 J. C. Ledoux, Radiation slide rule for atomic fallout defense engineering, report Nav Docks, p. 290 problems, NP-8853, Final Report (May 24, 1960). (Jan. 1957). G36 O. I. Leipunskii, Gamma rays from a nuclear explo- Cannon, Building materials as Gil E. W. commonly sion, At. Ener. 6, 49, (1954); trans, in J. Nuclear in existing urban buildings in used the United Energy, pt. A, Reactor Sci. 22, 184 (1960). States, (Contract No. CD-GA-56-57) (Jan. 1958) G37 O. I. Leipunskii, Physics of protection, At. Energ. Institute of Engineering Reseach, Univ. of Cali- 12, 216 (1962), 71 references to Russian and fornia. western literature. G12 A. B. Chilton, Progress in radiation shielding re- search for protective shelters, NCEL Tech. Rept. G38 M. Merrill and W. L. Cowell, Literature survey of N-385 (June 23, 1960) (NP-9023) concretes for nuclear radiation shielding, U.S. G13 E. T. Clarke and J. O. Buchanan, Radiation shield- NCEL Tech. Report 084 (June 28, 1960). ing against fallout, Nucleonics 20, No. 8, 143 G39 W. Minder, Dosimetry of the Radiation from (1962). Radioactive Substances, (Springer-Verlag, Wien, G14 R. Dennis, S. N. Purohit, and L. E. Brownell, pro- 1961) (in German). cedures for shielding calculations, Tech. Rept. G40 J. Moteff, Miscellaneous data for shielding calcula- No. 1 (Univ. of Mich.) AECU-3510 (Jan. 1957) tions, APEX-176 (Dec. 1, 1954). (104 references). G41 National Bureau of Standards, Protection against G15 Emergency Measures Organization, Privy Council up to 30 Mev, NBS Handb. Office, Ottawa, Can. An engineer looks at fallout No. 63 (Nov. 22, 1957). shelter, EMO Manual No. 1 (1961). G42 NRDL Shielding Symposium Proceedings, Oct* G16 H. Etherington, editor, Nuclear Engineering Hand- 17-19, 1956, USNRDL Reviews and Lectures book, (McGraw-Hill Book Co., Inc., New York, No. 29 (E. P. Cooper, chairman); held at U.S. N.Y., 1958). Naval Radiological Defense Lab., San Francisco, G17 U. Fano, Gamma ray attenuation, Nucleonics 11, Calif. No. 8, p. 8, No. 9, p. 55 (1953).

' G18 U. Fano, L. V. Spencer, and M. J. Berger, Penetra- G43 NRDL-OCDM Shielding Symposium Proceedings, tion and diffusion of X-rays, Encyclopedia of Oct. 31-Nov. 1, 1960, NP-10038 (W. E. Kreger, Physics 38, II, 660 (Springer-Verlag, Berlin, chairman) ; held at U.S. Naval Radiological Defense Lab., San Francisco, Calif. 1959) . G19 R. L. French and M. B. Wells, Calculations of G44 Nuclear Shielding Supplies and Service, Inc., weapons radiation penetration in air, Health Phys. White Plains, N.Y., Radiation shielding bibliog- 5, 108 (1961). raphy, NP-8312 (1959) (331 references, earliest G20 S. Glasstone, editor, The effects of nuclear weapons, one 1945). Dept. of the Army Pamphlet No. 39-3 (Apr. 1962) G45 OCDM, Washington, D.C., A method for evaluating G21 H. Goldstein, The attenuation of gamma rays and the protection afforded buildings against fallout in reactor shields, neutrons USAEC, U.S. Govt. radiation (July 1, 1961) (unpublished). Printing Office, Washington, D.C., (1957). G46 OCDM, Washington, D.C., OCDM Engineering ) G22 H. Goldstein, Fundamental Aspects of Reactor Manual—Design and review of structures for Shielding (Addison- Wesley Publ. Co., Reading, protection from fallout gamma radiation (July Mass. 1958). 1, 1961) (unpublished). 22 G47 Office of Civil and Defense Mobilization, Washing- G72 G. R. Riese, Scattering of gamma rays, X-rays and ton, D. C, Fallout shelter surveys, guide for high energy electrons in matter, a bibliography, architects and engineers, NP-10-2 (May 1960). TID-15419 (Sept. 11, 1957), (122 references G48 B. T. Price, C. C. Horton and K. T. Spinney, 1943-57). Radiation Shielding (Pergamon Press, New- G73 P. F. Sauermann, Radiation protection by shielding, York, 1957), also listed as ducting reference D20. Kerntechnik 4, 481 (1962). G49 H. D. Raleigh, comp. Radiation shields and G74 L. V. Spencer, J. C. Ledoux, A. B. Chilton et al., shielding, TID, 3303 (suppl. 1) (Apr. 1961), Proceedings and final report, 1962 summer insti- bibliographv of 687 references covering period tute on Fundamental Radiation Shielding Prob- July 1956 to Jan. 1961. lems as Applied to Nuclear Defense Planning, G50 Risley group, Lancashire, England, Radiation Kansas State Univ., Manhattan, Kans., Nov., shielding information bibliography, British Re- 1962. port IGRL-IB-R-30 (Sept. 1957), 70 references G75 A. Wainwright and J. A. Baldwin, Radiological to gamma and neutron shielding. warfare and nuclear explosions, a report bibliog- G51 R. H. Ritchie and G. S. Hurst, Penetration of raphy, ASTIA Rept. AD-277-900, (July 1962). weapons radiation. Application to the Hiro- shima-Nagasaki studies, Health Phys. 1, 390 Spectral Data (SD) (1959). G52 T. Rockwell III, editor, Reactor shielding design SDl R. E. Batzel, Radioactivity associated with under- manual, TID-7004 (Mar. 1956), also ducting ground nuclear explosions, J. Geophys. Res. 65, reference D22. 2897 (1960). G53 K. Sauerwein, Shielding data for gamma radiation, SD2 R. Bjornerstedt, Health hazards from fission Atomwirtschaft 3, 103 (1958). products and fallout II. Gamma radiation from G54 A. Rudloff, Protection against the gamma radiation nuclear weapons fallout, Arkiv. Fysik 16, 293 of the radioactive fallout in atomic bomb ex- (1960) (61 references). plosions, Atompraxis 4, 444 (1958.). SD3 R. C. Bolles and N. E. Ballou, Calculated activi- G55 D. Spielberg, Shielding characteristics of air, soil, ties and abundances of U-235 fission products, water, wood, and other common materials, USNRDL-456 (Aug. 30, 1956). WKNL-98, vol. 1 (Feb. 28, 1957)—vol. 2 (Mar. 25 SD4 D. C. Borg, Theoretical calculations of the gamma

1957) . radiation spectrum from initial and fallout G56 K. T. Spinney, Shielding design, theory and prac- radiations of nuclear weapons, pp. 39-64 in The tice, Nuclear Power 5, No. 46, 134 (1960); Shorter-Term Biological Hazards of a Fallout reviews gamma and neutron penetration and Field, Dunning and Hilcken, editors, AEC-DOD ducting. (1958). G57 R. Stephenson, Introduction to Nuclear Engineering, SD5 F. H. Clark, Decay of fission product gammas, 2d ed. (McGraw-Hill Book Co., Inc., New York, NDA 27-39, (Dec. 30, 1954) (91 references).

1958) . SD6 C. S. Cook, Energy spectrum of gamma radiation G58 H. H. Van Tuyl, Fission product radiation and from fallout, USNRDL-TR-318, (Oct. 26, 1959), shielding calculations, HW-69533 (May 16, 1961). see also Health Phys. 4, 42 (1960). G59 R. L. Walker and M. Grotenhuis, A summary of SD7 C. S. Cook, Residual gamma radiation in the shielding constants for concrete, ANL-6443 vicinity of nuclear weapons, Am. Scientist 49, (Nov. 1961). 399 (1961). G60 D. M. Wheeler and L. H. Bostick, Military field SD8 P. J. Dolan, Gamma spectrum of uranium-238 expedient shielding experiment, FZK-122. (Oct. fission products at various times after fission, 18, 1960) (26 references). DASA-526 (May 1959). G61 G. N. Whvte. Principles of Radiation Dosimetry SD9 L. B. Engle and P. C. Fisher, Energy and time (John W'iley & Sons Inc., New York, N. Y., 1959). dependence of delayed gammas from fission, G62 I. Benfenati, Shielding of nuclear radiation, Energia LAMS-2642 (Jan. 1962). Nucl. 6, 511 (1959). SD10 J. E. Francis and R. L. Gamble, Prompt fission G63 L. Brunelet, Ionizing Radiations. Technical Cal- gamma rays, pp. 20-23 of ORNL 1879 (Oct. 3, culations. Tables of Numerical Values for the Use 1955). of Engineers, Radiologists and Officials (Paris, SD11 E. C. Freiling, fractionation in bomb Gauthier-Villars, 1960). debris, Science 133, 1991 (1961). G64 E. D. Callahan, L. Rosenblum and J. R. Coombe, SD12 L. V. Groshev, V. N. Lutensko, A. M. Demidov, Shelter from fallout, TO-B-60-30, (Rev. Apr. 7, and V. I. Pelekhov, Altas of Radiative Capture 1961). of Thermal Neutrons, transl. by J. B. Sykes G65 E. R. Fletcher, R. W. Albright, R. F. D. Perret, (Pergamon Press, 1959). M. E. Franklin, I. G. Bowen and C. S. White, SD13 J. Mackin, P. Zigman, D. Love, D. MacDonald Nuclear bomb effects computer (including slide- and D. Sam, Radiochemical analysis of individ- rule design and curve fits for weapons effects, ual fallout particles, J. Inorg. and Nucl. Chem. CEX-62.2 (Feb. 15, 1963). 15, 20 (1960). G66 F. G. Hammitt, Design for a blast, fire, and fallout SD14 F. C. Maienschein, Fission gamma-ray energy shelter, MMPP-S-1 (Univ. of Mich.) (Sept. 1962). release as a function of time after fission, pp. G67 W. Hebel, Shielding against gamma-rays from 189-191 of ORNL-3193 (Nov. 17, 1961) (in- fission-products, Kerntechnik 4, 509 (1962). cludes references to prompt-gamma results.) G68 L. B. Holland, V. R. Cain, R. E. Maerker et al., SD15 R. L. Mather, Brief summary of gamma radiation Shielding against prompt weapons radiation, spectra from residual radiation sources, following pp. 122-33 of ORNL 3360 (Jan. 11, 1963). a nuclear detonation, USNRDL Shielding Sym- posium I, 115 (Oct. 1956) (ref. G42). G69 V. I. Ivanova, Dosimetry and radiation protection; SD16 C. F. Miller, Gamma decay of fission products from Moscow, Gosatomizdat (1962). the slow neutron fission of U-235, USNRDL- protective construction. G70 W. L. Owen, Radiological TR-187 (July 11, 1957). of facilities Principles for the protection and their SD17 J. Moteff, Fission product decay gamma energv against fallout, (Jan. inhabitants USNRDL-467 spectrum, APEX-134 (Aug. 5, 1953). 8, 1962). SD18 A. T. Nelms and J. W. Copper, U-235 fission pro- G71 S. K. Penny, D. K. Trubey and B. F. Maskewitz, duct decay spectra at various times after fission, Cumulative bibliography of literature examined Health Phys. 1, 427 (1958). by the Radiation Shielding Information Center, SD19 J. F. Scoles, Fission product gamma rav spectra, ORNL-RSIC-1 (Apr. 1963) (199 references). Convair Report FAM-1042 (Aug. 1958).

23 — .

SD20 C. A. Sondhaus and V. P. Bond, Physical factors GT15 A. B. Chilton and C. M. Huddleston, A semi- and dosimetry in the Marshall Island radiation empirical formula for differential dose albedo exposures, WT-939 (del) (Decl. with deletions for gamma rays on concrete, Trans. Am. Nu- Sept. 15, 1959). TID-5358 (July 1956). clear Soc. 5, 220 (1962); see also NCEL Tech. SD21 E. Troubetzkoy and H. Goldstein, A compilation Rept. R-228 (Nov. 16, 1962). of information on gamma-ray spectra resulting GT16 D. M. Dawson, W. L. Kirk, V. W. Shiel, and from thermal-neutron capture, ORNL-2904 Jan. W. P. Johnson, Comparison of Monte Carlo 18, 1961) (74 references); see also Nucleonics 18, calculation and experimental measurements for No. 11, 171 (1960). gamma-rav air scattering, WADC-TN-58-256 SD22 B. E. Watt, Energy spectrum of neutrons from (Aug. 1958). thermal fission of U-235. Phys. Rev. 87, 1037 GT17 L. K. Donovan and A. B. Chilton, Dose atten- (1952). uation factors for concrete slab shields cov- SD23 J. M. Wyckoff and H. W. Koch, Energy spectrum ered with fallout as a function of time after of the delayed gama rays from uranium photo- fission, NP-10306, Tech Rept. No. 137 (June fission, Phys. Rev. 99, 616 (1955) (abstr), NBS 1, 1961). Rept. 4335 (Sept. 30, 1955). GT18 W. R. Faust and A. D. Anderson, Penetration SD24 P. A. Yampol'skii, Neutrons from atomic ex- and diffusion of a beam of radiation, Nuclear plosions, Moscow Gosatomizdat (1961), transl. Sci. Eng. 14, 17 (1962). in JPRS-11873. GT19 L. D. Gates and C. Eisenhauer. Spectral dis- SD25 W. Zobel, T. A. Love, G. M. Estabrook, and R. W. tribution of gamma rays propagated in air, Peelle, Characteristics of fission-product gamma AFSWP-502A (Jan. 1954). rays emitted from 1 to 1800 sec after thermal GT20 H. Goldstein and J. E. Wilkins, Calculations of fission of U-235, ORNL-2609 (Feb. 15, 1958), the penetration of gamma rays, U.S. Atomic pp. 50-1. Energy Report No. NYO-3075 (1954). GT21 E. Hayward and J. H. Hubbell, The albedo of Gamma-Ray Penetration Theory (Table 1) various materials for 1-Mev photons, Phys. (GT) Rev. 93, 955 (1955). GT22 M. Kalos, private communication, see page 796; GTl A. F. Akkerman and D. K. Kaipov, The Monte of general reference G18. Carlo calculation of the passage of gamma radia- GT23 N. I. Leshchinskii, Method of calculating dosage tion from a plane directed source of Cs-137 field of powerful isotopic units, At. Energ. 8, through aluminum under conditions of barrier 62 (1960); transl. in Soviet J. At. Energy 8, At. Energ. geometry, 10, 391 (1961); transl. in 59 (1961). Soviet J. At. Energy 10, 383 (1962). GT24 R. E. Lynch, J. W. Benoit, W. P. Johnson, and S. Auslender, Monte Carlo study of the gamma- GT2 A C. D. Zerby, A Monte Carlo calculation of air- ray energy flux, dose rate, and buildup factors scattered gamma rays, ORNL-2292, Vol. 1 in a lead-water slab shield of finite thickness, (Oct. 7, 1958). ORNL-2194 (Jan. 29, 1957). GT25 B. D. O'Reilly, A Fortran code for gamma pene- J. Berger, Angular distribution of multiply GT3 M. tration in a finite slab, WAPD-TM-292 (Nov. scattered gamma radiation from a plane isotropic 1961). source, J. Appl. Phys. 26, 1504 (1955). GT26 G. H. Peebles, Attenuation of gamma rays. I. J. Berger, Reflection and transmission of GT4 M. Transmission values for finite slabs of lead, gamma radiation by barriers Monte Carlo — iron, and the Compton scatterer. II. Trans- collision density method, calculation by a NBS mission values of various materials and geome- J. Res. 55, 343 (1955) RP2640. tries, J. Appl. Phys. 24, 1272 (I), 1437 (II), GT5 M. J. Berger, Penetration of gamma radiation (1953). from a plane monodirectional oblique source, GT27 J. F. Perkins, Monte Carlo calculations of gamma NBS J. Res. 56, 111 (1956) RP2656. ray albedos of concrete and aluminum, J. Calculation of energy dissipation GT6 M. J. Berger, Appl. Phys. 26, 655 (1955). radiation near the interface bv gamma between GT28 L. Pullman, The transmission of gamma rays at J. Phys. two media, Appl. 28, 1502 (1957). slant incidence through slabs of various materi- GT7 M. J. Berger and J. A. Doggett, Reflection and als in shielding, NDA-2056-6 (Oct. 10, 1956) transmission of gamma radiation by barriers (Decl. March 31, 1960). semianalytic Monte Carlo calculation, J. Res. GT29 D. J. Raso, Transmission of Scattered gamma-rays 56,' 2653. NBS 89, (1956) RP through concrete and iron slabs, Health Phys. M. J. Berger and D. J. Raso, Monte Carlo calcu- GT8 5, 126 (1961), diff. data in Tech. Op. Rept. lations of gamma-ray backscattering, Rad. TO-B-59-13 (Oct. 9, 1959). Res. data in Rept. 12, 20, (1960); NBS 5982 GT30 D. J. Raso, Monte Carlo calculations on the (Feb. 8, 1960). reflection and transmission of scattered gamma J. L. radiologi- GT9 M. Berger and V. Spencer, Some radiations, NBY-32190, final report (revised cal applications of gamma-ray transport theory, May 1962) TO-B 61-39. Res. 552 (1959). Rad. 10, GT31 J. T. Serduke, N. E. Scofield, and W. E. Kreger. Spencer, GT10 M. J. Berger and L. V. Penetration of Penetration of plane normal Cs-137 gamma-rays gamma-rays from isotropic sources through through aluminum—theory vs. experiment, aluminum and concrete, NBS Tech. Note No. NRDL-TM-113 (Aug. 4, 1959). 11 (Mav 11, 1959). GT32 K. Shure, Penetration of point monodirectional Bruce H. E. Johns, spectra of GT11 W. R. and The gamma rays through slab shields, WAPD-T- X-rays scattered in low ma- 1464 (June 1962); also Trans. Am. Nucl. Soc. terials, Brit. J. Suppl. Rad. No. 9 (1960). 5, 221 (1962). GT12 M. O. Burrell and D. L. Cribbs, A Monte Carlo GT33 L. V. Spencer, Penetration and diffusion of X-rays, calculation of gamma rav penetrations through calculation of spatial distributions by semi- iron slabs, NP-9851, Vol. II (Jan. 1960). asymptotic methods, Phys. Rev. 88, 793 (1952) GT13 M. A. Capo, Polynomial approximation of gamma- rav buildup factors for a point isotropic source, GT34 L. V. Spencer and U. Fano, Calculation of spatial APEX-510 (Nov. 1958). distributions by polynomial expansion, J. Res. GT14 A. B. Chilton, D. Holoviak, and L. K. Donovan, NBS 46, 446 (1951) RP2213. Determination of parameters in an empirical GT35 L. V. Spencer and F. A. Jenkins, Penetration and function for buildup factors for various photon diffusion of hard X-rays through thick barriers, energies, USNCEL Tech. Note N-389 (Aug, IV. Multiply scattered X-ravs, angular distri- 1960). bution, Phys. Rev. 76, 1885 (1949).

24 ;

L. V. Spencer and J. Lamkin, Slant penetration GT60 S. K. Penny, A Monte Carlo code for deep pene- of gamma rays in H 2 0, NBS Report 5944 (July tration of gamma-rays, CF-58-6-30 (June 4, 17, 1958). 1958) (ORNL). L. V. Spencer and J. C. Lamkin, Slant penetration GT61 R. Plcsch, The calculation of gamma shielding of gamma ravs, mixed radiation sources, NBS from extended radiation fields, Atompraxis 4, Report 6322, Feb. 27, 1959. 402 (1958). L. V. Spencer and J. C. Lamkin, Slant penetration GT62 G. L. Strobel, Additional exponential repre- of gamma rays in concrete, NBS Report 6591, sentations of gamma-ray buildup factors, Nucl. (Nov. 10, 1959). Sci. Eng. 11, 450 (1961). L. V. Spencer and F. Stinson, Further calculations GT63 D. K. Trubey, S. K. Penny, and M. B. Emmett, of X-ray diffusion in an infinite medium, Phys. OGRE-PI, A Monte Carlo program for com- Rev. 85, 662 (1952). puting gamma-ray transmission through lam- L. V. Spencer and C. Wolff, Penetration and dif- inated slabs, ORNL-TM-167 (rev.) (May 23, fusion of hard X-rays, polarization effects, 1962). Phys. Rev. 90, 510 (1953). GT64 A. R. Vernon, Analysis of the biological shield H. Steinberg and R. Aronson, Monte Carlo calcu- of the sodium reactor experiment, NAA-SR- lations of gamma ray penetration, WADC-TR- 1949 (June 15, 1957). 59-771 (Aug., 1960). GT65 N. R. Baumgardt, A. Trampus, and J. E. Mac- J. J. Taylor, Application of gamma ray buildup Donald, Program 15-2, Monte Carlo calcu- data to shield design, WAPD-RM-217 (Jan. lation of gamma ray scattering in air, XDX 25, 1954). 61-5-1 (May 1961). R. B. Theus and L. A. Beach, Gamma-rav albedo from iron, NRL Report 4701 (Feb. 8, 1956). Gamma-Ray Penetration Experiments (Table R. B. Theus, L. A. Beach, J. D. Plawchan, and 2) (GE) W. R. Faust, estimates of X-ray spectral intensities from shallow to deep pene- GEl L. A. Beach, R. B. Theus, and W. R. Faust, obser- tration, NRL Report 4412 (Aug. 3, 1954). Analysis of scintillation spectrometer D. K. Trubey, The single scattering approximation vations of the penetration of Cs-137 gamma to the gamma-ray air-scattering problem, radiation through water, NPL report 4227 ORNL-2998 (Jan. 20, 1961). (Dec. 1, 1953). M. B. Wells, Air and concrete scattering of gamma GE2 L. A. Beach and W. R. Faust, Penetration of rays, NARF-59-11T (Mar. 20, 1959). Na-24 radiation through H 2 0 and Hg, NRL R. R. Wilson, Monte Carlo study of shower pro- report 4581 (July 26, 1955). duction, Phys. Rev. 86, 261, 1952. GE3 D. L. Broder, Yu. P. Kayurin, and A. A. Kutuzov, C. D. Zerby, Transmission of obliquely incident Transmission of gamma radiation through hetero- gamma radiation through stratified slab barriers, geneous media, At. Energ. 12, 30 (1962) ; transl. ORNL-2224 (1956). in Soviet J. At. Energy 12, 26 (1962). D. C. Anderson, Calculation of buildup factors for GE4 B. P. Bulatov, The albedos of various substances infinite plane and line sources, WAPD-BT-8, for gamma rays from isotropic Co-60, Cs-137, pp. 19-21, (June 1958). and Cr-51 sources, At. Energ. 7, 369 (1959); D. C. Anderson, Comparison of Peebles' buildup transl. in J. Nucl. Energy A (Reactor Sci.) 13, data to experiment and moments method re- 82 (1960). sults, WAPD-BT-8, pp. 22-25 (June 1958). GE5 B. P. Bulatov and E. A. Garusov, Albedo of L. A. Bowman and D. K. Trubey, Stratified gamma rays from Co-60 and Au-198 from dif- slab gamma-ray dose-rate buildup factors for ferent materials, At. Energ. 5, 631 (1958) lead and water shields, CF-58-1-41 (Jan. 16, transl. in Soviet J. At. Energy 5, 1563 (1958). 1958). GE6 B. S. Burton, Jr., Spectral and angular distribu- E. A. Coppinger, Approximate shielding calcu- tions of air scattered Co-60 7-rays. NARF- lations, HW-69789 (May 31, 1961). 57-42T, (Sept. 18, 1957), suppl. No. 1, NARF- S. M. Ermakov, V. G. Zolotukhin and V. A. 59-10T (March 5, 1959). Kam'shin, Monte Carlo methods for calcu- GE7 E. T. Clarke and P. I. Richards, Scattering of lating energy and angular distributions of gamma rays near an interface, AFSWC-TR- gamma quanta passing through a plane-parallel 57-3 (July 1957). layer of finite thickness, pp. 155-9 of Theory GE8 C. E. Clifford, J. A. Carruthers, and J. R. Cun- and Calculations of Nuclear Reactors, Moscow, ningham, Gamma radiation at air-ground Gosatomizdat (1962). interfaces with distributed Cs-137 sources, E. M. Flew and B. T. James, Calculation of Can. J. Phys. 38, 504 (1960). U, Pb, Fe and Al shielding for irradiated GE9 T. S. Dahlstrom and W. E. Thompson, The angular distribution of dose rate from gamma natural uranium, AERE-HP/GEN-6 (Dec. 5, rays scattered various thicknesses of 1955), (decl. Mar. 31, 1958). through iron and aluminum, USNRDL-TR-558, (Apr. M. Leimdorfer, The backscattering of gamma 19, 1962); also Trans. Am. Nuclear Soc. 5, 220 radiation from plane concrete walls, AE-92 (1962). (Stockholm) (Dec. 1962). GE10 F. J. Davis and P. W. Reinhardt, Instrumentation M. Leimdorfer, The backscattering of gamma in aircraft for radiation measurements, Nucl. radiation from spherical concrete walls, AE-93 Sci. Eng. 2, 713 (1957). (Stockholm) (Dec. 1962). GE11 H. G. Ebert, Measurements of dose buildup factors J. I. Marcum, Comparison of Monte Carlo cal- for radiation shielding, Z. angew. Phvs. 13, 95 culations with experimental results for the (1961). propagation of gamma rays near an air-ground GE12 J. O. Elliot, R. T. Farras, R. D. Myers, and C. F. interface, RM-3399-PR (RAND) (Dec. 1962). Ravillious, Multiple gamma rav scattering in M. Oberhofer and T. Springer, Shielding of lead, Phys. Rev. 85, 1048 (1952)! scattering II, gamma radiation, Kerntechnik 2, 124 (1960). GE13 W. R. Faust, Multiple compton Phys. Rev. 77, 227 (1950). K. O'Brien, W. M. Lowder, and L. R. Solon, A semi-empirical method of calculating the GE14 W. R. Faust and M. H. Johnson, Multiple comp- energy-absorption buildup factor with an ap- ton scattering, Phys. Rev. 75, 467 (1949). plication to a uniformly contaminated space GE15 C. Garrett and G. N. Whyte, Build-up measure- having spherical boundaries, HASL-2 (Oct. 14, ments on Co-60 gamma radiation in iron and 1957); see also Nucl. Sci. Eng. 3, 77 (1958). lead, Phys. Rev. 95, 8S9 (1954).

25 GE16 G. R. Gol'bek, V. V. Matveev, and A. D. Sokolov, GE37 A. V. Larichev, Spectral and angular distributions The gamma-field formed in the atmosphere by of scattered gamma rays produced in iron by a of gamma-radiation located in a a 2-dimensional monodirectional Co-60 source, semi-infinite sandy medium, At. Energ. 6, 475 At. Energ. 11, 443 (1961). (1960); transl. in Soviet J. At. Energy 6, 339 GE38 0. I. Leipunskii and V. N. Sakharov, Propagation (1960). of Co-60 radiation in the air above the earth, GE17 G. M. Gorshkov and V. M. Kodyukov, The ab- At. Energ. 6, 585 (1959); transl. in Soviet J. sorption in water of the gamma radiation from At. Energy 6, 440 (1960). point and volume sources, At. Energ. 5, 71 GE39 K. A. Mahmoud, Energy distribution of gamma (1958;; transl. in Reactor Sci. 10, 65 (1959). rays penetrating thick barriers, Proc. Math. GE18 E. Hayward, The electron spectra produced by a Phvs. Soc. (Egypt) No. 21, pp. 41, 57 (May Co-60 source in H 2 0, Phys. Rev. 86, 493 (1952). 1957). GE19 E. Hayward and J. H. Hubbell, The backscatter- GE40 V. V. Matveev, A. D. Sokolov, and R. S. Shlyapni- ing of the Co-60 gamma rays from infinite kov, The energy distribution of gamma quanta media, J. Appl. Phys. 25, 506 (1954). from a point source of gamma radiation in an GE20 G. Hettinger and N. Starfelt, Energy and angular infinite sandy medium, At. Energ. 1, 57 (1956); distribution of scattered radiation in a water transl. in J. Nucl. Energy 4, 465 (1957). tank irradiated by X-rays, Arkiv. Fysik 14, GE41 H. A. Mehlhorn, E. T. Clarke, R. Gold, and R. 497 (1959). McMath, Final report on attenuation of point GE21 J. H. Hubbell, E. Hayward, and W. F. Titus, source gamma radiation in slabs, Tech. Op. Energy and angular distribution of X-rays Rept. TO-B-62-13 (Sept. 5, 1962). scattered in lead, Phys. Rev. 108, 1361 (1957). GE42 V. J. Mitchell and R. B. Smith, Water-air bound- GE22 T. Hyodo, Backscattering of gamma rays, Nucl. ary dose rate measurements using a Co-60 Sci. Eng. 12, 178 (1962). source, DC-58-4-54 (Apr. 7, 1958). GE23 Kenji Ishimatsu, Distribution of gamma radiation GE43 R. W. Peelle, F. C. Maienschein, and T. A. Love, from a Co-60 source in water, Nippon Genshir- The energy and angular distribution of gamma

yoku Gakkaishi 4, 175 (1962), (Mar ) (in Jap.) radiation from a Co-60 source after diffusion GE24 A. R. Jones, Aerial gamma monitor for measuring through many mean free paths of water, ORNL ground contamination, RDI-4 (Atomic Energy 56-12-25 (Dec. 10, 1956). of Canada, Ltd.) (March 1961); see also Nucle- GE44 R. E. Rexroad and M. A. Schmoke, Scattered onics 20, No. 3, 66 (1962). radiation and free field dose rates from dis- GE25 B. L. Jones, J. W. Harris, and W. P. Kunkel, Air tributed Co-60 and Cs-137 sources, NDL-TR-2 and ground scattering of Co-60 gamma rays, (Sept. 1960). CVAC-170T, (Mar. 30, 1955). GE45 V. H. Ritz, Broad and narrow beam attenuation GE26 Yu. A. Kazanskii, Angle-energy distribution of of Ir-192 gamma rays in concrete, steel and gamma-radiation scattered in water and iron, lead, J. Soc. Non-Destructive Testing 16, 269 At. Energ. 8, 454 (1960), transl. In Soviet J. (1958). At, Energy 8, 364 (1961). GE46 F. X. Rizzo and L. Galanter, Experimental build- GE27 Yu. A. Kazanskii, S. P. Belov, and E. S. Matu- up factors for semi-infinite water target and sevich, Angular and energy distributions of Co-60 slab sources, Trans. Am. Nucl. Soc. 4, gamma rays scattered in iron and lead, At. No. 2, 261 (1961). Energ. 5, 457 (1958); transl. In Soviet J. At. GE47 P. A. Roys, K. Shure, and J. J. Taylor, Penetra- Energy 5, 1354 (1958). tion of 6-Mev gamma rays in water, Phys. GE28 J. W. Keller and G. Gonzalez, Analysis of air Rev. 95, 911 (1954). scattering of Co-60 gamma radiation, NARF- GE48 V. N. Sakharov, Absorption by water of gamma 57-61T (Dec. 28, 1957). ravs from Au-198, Co-60, and Na-24, At. GE29 L. R. Kimel, The buildup factors for hetero- Energ. 3, 57 (1957). geneous shielding, At. Energ. 10, 173 (1961), GE49 N. E. Scofield, R. L. Lynn, and W. E. Kreger, transl. In Soviet J. At. Energy 10, 174 (1961). Penetration of plane normal and plane slant GE30 L. R. Kimel and O. I. Leipunskii, The radiation gamma rays through slabs of aluminum and field of a monodirectional gamma ray point steel, I. Angular and energv distributions source, At. Energ. 12, 236 (1962). (experimental pulse height) USNRDL-TR-272 GE31 F. S. Kirn, R. J. Kennedy, and H. O. Wyckoff, (Oct. 31, 1958). The attenuation of gamma rays at oblique GE50 N. E. Scofield and L. G. Haggmark, Penetration incidence, 63, 94 (1954). of plane normal and plane slant gamma rays through slabs of aluminum and steel, II. Angu- GE32 V. M. Kodyukov, The effect of boundary con- lar and energv spectra (photon number flux), ditions on the gamma ray buildup facton USNRDL-475 (Oct. 25, 1960). At. Energ. 6, 673 (1959); transl. in Soviet J- (jtijbl B. W. Soole, The angular distribution of multiply- At. Energy 6, 507 (1960). scattered gamma radiation, Proc. Rov. Soc. GE33 V. I. Kukhtevich and B. P. Shemetenko, The (London) A230, 343 (1955). spatial distribution of multiply scattered gamma GE52 J. R. Stokes and B. S. Burton (Convair, Fort rays from monodirectional Au-198, Co-60, Worth, Texas) , Air scattering of gamma radiation and Na-24 sources in water, At. Energ. 12, from Co-60, NARF-57-31T (July 16, 1957). 204 (1962). GE53 F. Titus, Measurement of the gamma-ray dose GE34 V. I. Kukhtevich, B. P. Shemetenko, and B. I. near the interface between two media, Nucl. Sinitsyn, Measurement of Co-60 gamma ray Sci. and Eng. 3, 609 (1958). dose close to the boundary between two bodies; GE54 F. Titus, Penetration in concrete of gamma radia- At. Energ. 8, 66 (1960), transl. in Soviet J. tion from fallout, NBS Report 6143, (Sept. 4, At. Energy 8, 64 (1961). 1958j, AEC Report ITR-1477 (Oct. 22, 1957). GE35 V. I. Kukhtevich, S. G. Tsypin, and B. P. She- GE55 M. M. Weiss and W. Bernstein, Degradation of metenko, Angular distribution of dose of scat- gamma rays in water, Phys. Rev. 92, 1264 tered gamma ravs from Co-60 source in water, (1953). At. Energ. 5, 638 (1958); transl. in Reactor GE56 G. R. White, The penetration and diffusion of Sci. 11, 165 (1960). Co-60 gamma rays in water using spherical GE36 C. L. Kusik, T. R. Jaworowski, D. C. Morse, geometry, Phys. Rev. 80, 154 (1950). and D. G. Strawson, Experimental verification GE57 G. N. Whyte, Measurements of spectral and of shielding equations, AECU-3873 (Dec. 20, angular distributions of secondary gamma-rays 1957). in matter, Can. J. Phys. 33, 96 (1955).

26 .

B. Zendle, H. W. Koch, J. McElhinney, and J. W. NT7 J. Certaine and R. Aronson, Distribution of fission Boag, Studies of dose distributions in water for neutrons in water at the indium betatron X-rays to up 37 Mev, Radiation Res. energy, NDA-15C-40 (June 15, 1954). 5, 107 (1956). NT8 J. Certaine and H. Goldstein, Penetration of 14 B. Bjarngard and G. Hettinger. Spectra of scatter- Mev neutrons in water, NDA-15-97 (Aug. 29, ed radiation behind slabs of water irradiated by 1957). X-rays, Arkiv. Fysik 20, 517 (1962). NT9 W. E. Drummond, Energy dependent albedo, R. Bruce W. and M. L. Pearson, Spectral distribu- UCRL-4379 (Sept. 20, 1954). tion of scattered radiation in a water phantom NT10 J. E. Faulkner, Single isotropic air scattering of irradiated with Cs-137 gamma ravs, Radiation neutrons in the presence of the ground (un- Res. 17, 555 (1962). shielded detector), CF-54-8-96 (Aug. 31, 1954). W. R. Dixon, Angular energy flux of secondary NTH M. Feix and S. Valentin, Neutron diffusion through gamma-rays in matter. Small-angle scattering a slab, Compt. Rend. 242, 617 (1956). from a point isotropic source, Can. J. Phys. 36, NT12 A. Foderaro and F. Obenshain, Neptune. Part 1. 419 (1958). The history generating code, Part 2. A. W. Futtermenger, H. Glubrecht, E. G. Niemann, Slowing down in water, B. The zero-zero and H. Schultz. On the determination of gam- moment of the collision density,. C. Trans- ma-ray attenuation factors of shielding materials mission through and reflection from water slabs, by means of differential buildup-measuring, WAPD-TN-517 (Navy) (Aug. 1955). Kerntechnik 4, 504 (1962). NT13 R. L. French, Some convenient representations for C. M. H. Hashmi, Energy-absorption, penetration, fission-neutron distributions in air, Health and diffusion of gamma-rays in an infinite Phvs. 8, 299 (1962). homogeneous medium, Nukleonik 5, 67 (1963). NTH S. S. Holland, Jr., and P. I. Richards, Penetration T. Hyodo and S. Shimizu, Some experiments on of neutrons in air, AFSWC-T3-55-27 (Sept. garnma-rav backscattering, Bull, of the Inst, for 1955). Chem. Res., Kyoto Univ. 39, No. 2, 180 (1961). NT15 S. S. Holland, Jr., and P. I. Richards, Neutron flux K. A. Mahmoud and L. El Nady, Angular distribu- spectra in air, J. Appl. Phys. 27, 1042 (1956). tion of backscattering of gamma rays from NT16 S. S. Holland, Jr., Neutron penetration in infinite shielding materials. Proc. Math. Phys. Soc. media—calculation bv semi-asvmptotic meth- (TJ.A.R.) 24, 93 (1960). ods, J. Appl. Phys. 29, 827 (1958). V. J. Mitchell, Interim report on the anah^sis of NT17 G. Holte, On the spatial distribution of neutrons gamma ray point source data from single mate- slowed down in carbon and water, Arkiv. Fvsik rial measurements, DC-61-1-101 (Jan. 27, 8, 165 (1954). 1961). NT18 M. H. Kalos, Importance sampling in Monte H. Mochizuki. Y. Tanaka, Y. Higashihara, K. Carlo calculations of thick shield penetration, Nagato and K. Yorihisa, Experimental study on Nucl. Sci. and Eng. 2, No. 1—suppl. 34-5 the penetration of Co—60 gamma rays through (1959). finite heterogeneous media, I and II (in Jap.) NT19 F. L. Keller, C. D. Zerby, and J. Hilgeman, I. J. Atomic Energy Soc. Japan 4, 448 (1962), Monte Carlo calculations of fluxes and dose II. ibid, 4, 703 (1962). rates resulting from neutrons multiply scattered C. Sybesma, Measurement of energy distributions in air, ORNL-2375 (Dec. 31, 195S). of Cs-137 gamma-ravs scattered in water, Nucl. NT20 W. E. Kinney, A Monte Carlo calculation of Instr. Methods 21, 167 (1963). scattered neutron fluxes at an air-ground inter- S. G. Tsypin, V. I. Kukhtevich and Yu. A. Kazan- face due to point isotropic sources on the inter- skii, The penetration of gamma-rays through face, ORNL-3287 (July 30, 1962) water, iron, lead, and combinations of iron and NT21 A. D. Krumbein, Summary of NDA unclassified lead, At. Energ. 1, 71 (1956); transl. in J. results of moments calculations for the penetra- Nuclear Energy 3, 336 (1956). tion of neutrons through various materials, V. A. Vasilev and V. A. Shishkina, Gamma-ray NDA-92-2 (Aug. 30, 1957) (revised Apr. 1958), backscattering from Al, At. Energ. 4, 205 (1958). includes earlier results by Aronson, Certaine, 0. I. Leipunskii, L. R. Kimel, and A. N. Pan- Goldstein, Kalos, Preiser, and Mittleman. chenko, Gamma-radiation field of Cs-137 and NT22 J. E. MacDonald, N. R. Baumgardt, and A. Co—60 monodirectional point sources in iron, Trampus, A Monte Carlo calculation of air- At. Energ. 14, 577 (1963). scattered neutrons, DC-60-7-119 (July 26, 1960). Neutron Penetration Theory (Table 3) (NT) NT23 J. I. Marcum, Neutron fluxes in air, a comparison R. XTI D. Albert and T. A. Welton, A simplified theory of Monte Carlo code computations bv RAND, of neutron attenuation and its application to Los Alamos and Sandia, RAND Rept. RM-2556 reactor shield design, WAPD-15 (Nov. 30, (July 1, 1960). 1950). NT24 C. R. Mehl, A Monte Carlo calculation of the N T2 A. E. Anthony, Jr., and E. Omoda, The transport neutron flux from a monoenergetic point source of neutrons through the atmosphere for a burst in air, SC-4174 (TR) (Apr. 1958). height of 500,000 feet, AFSWC-TDR-62-17 (Feb. 1962). NT25 P. B. Morgan, The Monte Carlo method- \*T3 M. J. Berger and J. W. Cooper, Reflection of fast neutron reflection by water, NAVORD-6227 neutrons from water, J. Res. NBS 63A (Phvs. (Jan. 29, 1959) (AD-220676). and Chem.) No. 3, 101 (1959). F. H. Murray, Notes on the calculation of T NT26 the \ T4 H. A. Bethe, L. Tonks, and H. Hurwitz, Jr., attenuation of neutrons through thick shields, Neutron penetration and slowing down at inter- (CF-53-11-64) (Nov. 30, 1953). mediate distances through medium and heavy NT27 F. Obenshain, A. Eddy, and H. Kuehn, Poly- nuclei, Phvs. Rev. 80, 11 (1950). T phemus—a Monte Carlo study of neutron \ T5 W. A. Biggers, L. J. Brown, and K. C. Kohr, penetration through finite water slabs, WAPD- time distribution of neutrons Space, energy and TM-54 (Jan. 1957). at the ground-air interface, calculated bv Monte NT28 S. Podgor, Neutron spectrum emerging from a Carlo code NHM, LA-2390 (Jan. 4, 1960). T water shield, CF-50-4-3 (Apr. (Decl. N T6 M. O. Burrell and D. L. Cribbs, A Monte Carlo 3, 1950) Dec. 21, 1955). calculation of neutron penetration through iron slabs, Nuclear Rept. 82, NP-9851, Vol. Ill NT29 D. Schiff, Neutron and gamma rav shielding (May 1960). calculation, WAPD-P-633 (May 1955).

27 NT30 F. H. Shelton, The neutron flux from mono- NT55 T. D. Roberts, Neutron and photon transport energetic point sources in air, Kaman Aircraft through shielding materials, XDC-60-2-28 Corp. Report KN-60-57(R) (Dec. 7, 1960). (Oct. 15, 1959). Spielberg, Penetration NT31 D. of neutrons from a point NT56 B. I. Sinitsyn and S. G. Tsypin, Use of empirical fission source in air—moments method calcu- constants in shield design, At. Energ. 12, 306 lation, NDA-2106-10 (Apr. 28, 1961). (1962). Spielberg A. NT32 D. and Duneer, Dose attenuation by NT57 D. K. Trubey and S. K. Penny, Transfusion— and concrete for broad parallel-beam A numerical method for computing low-energy- neutron sources, AN-108 (May 1, 1958). neutron spatial distributions, Trans. Am. Nucl. NT33 K. T. Spinney, Neutron attenuation in concrete, Soc. 5, 409 (1962). AERE-T/R-1617 (Feb. 1955). NT34 H. E. Stern, An estimate of the neutron reflection Neutron Penetration Experiments coefficient using the concept of removal cross (Table 4) (NE) section, AECD-3718 (Sept. 29, 1953). NT35 G. W. Stuart, Thermal flux distribution from a fast NEl D. D. Babb and R. E. De Wames, An experiment neutron line source, J. Appl. Phvs. 27, 89 (19561. to test the extension of the moments method of NT36 J. H. Tait and M. B. Biram, The calculation of calculation to finite media, NARF-59-9T the spectrum of neutrons at points in a semi- (Mar. 13, 1959) (Convair). infinite medium, whose free surface is irradiated NE2 W. Baer, Spatial distribution of thermal neutrons

by monoenergetic neutrons falling normally onto from a Po-Be source in H2 0-Zr mixtures, it, AERE-T/M-92 (Oct. 28, 1953). WAPD-99 (Dec. 1953). NT37 W. E. Thompson, J. M. Ferguson, and R. L. NE3 T. A. Barr and G. S. Hurst, Fast-neutron dose in Mather, Neutron distributions near an air-soil a large tissue-equivalent phantom, Nucleonics boundary, USNRDL-TR-478 (Nov. 18, 1960). 12, No. 8, p. 33 (1954). NT38 M. Verde and G. C. Wick, Some stationary dis- NE4 M. J. Bina, The transmission of fast neutrons tributions of neutrons in an infinite medium, through iron, aluminum, and lead (thesis), Phvs. Rev. 71, 852 (1947). AD-236498 (Mar. 1960). NT39 M. B. Wells, Monte Carlo calculations of fast NE5 E. P. Blizard, CP-6 Thermal shield experiments, neutron scattering in air, NARF-60-8T, Vol. 1 CF-52-12-34 (Dec. 6, 1952). (May 13, 1960), Vol. 2 (Aug. 19, 1960). NE6 E. P. Blizard and J. M. Miller, Radiation attenua- NT40 G. C. Wick, On the space distribution of slow tion characteristics of structural concrete, neutrons, Phvs. Rev. 75, 738 (1949). ORNL-2193 (Aug. 29, 1958). NT41 E. P. Wigner and G. Young, Penetration of fission NE7 P. C. Capron and E. Crevecouer, Emergence of neutrons through water, MonP-283 (Apr. 9, slow neutrons from a hydrogenous material, 1947) (decl. Jan. 10, 1956). Bull, classe sci. Acad. roy. Belg. 39, 562 (1953). NT42 C. D. Zerbv, A Monte Carlo calculation of air- NE8 R. S. Caswell, R. F. Gabbard, D. W. Padgett, scattered neutrons, ORNL-2227 (May 24, 1957). and W. P. Doering, Attenuation of 14.1 Mev NT43 P. F. Zweifel and S. R. Bigelow, Numerical neutrons in water, Nucl. Sci. Eng. 2, 143 (1957). solution of the neutron slowing down problem NE9 G. T. Chapman and C. L. Storrs, Effective neutron in the presence of hydrogen, KAPL-1278 removal cross section for shielding, AECD- (Feb. 3, 1955) (decl. Dec. 5, 1955). 3978 (Sept. 19, 1955). NT44 F. J. Allen, A. T. Futterer, and W. P. Wright, NE10 C. E. Clifford, Measurements of neutron and Neutron transmission versus thickness for some gamma distribution in 100 percent water from common materials, BRL-1174 (Sept. 1962\ a 28-inch diameter fission source, CF-50-1-153 NT45 F. J. Allen, A. Futterer, and W. Wright, Neutron (Feb. 1, 1950). reflection and flux versus depth for concrete, NE11 R. G. Cochran, J. D. Flynn, K. M. Henry, and BRL-1189 (Jan. 1963) G. Estabrook, Reactor radiations through slabs NT46 F. J. Allen, A. Futterer, and W. Wright, Neutron of graphite, CF-54-7-105 (July 30, 1954) reflection and flux versus depth for Nevada test (decl. Dec. 1, 1955). site soil, BRL-1190 (Jan. 1963). NE12 J. W. Cure and G. S. Hurst, Fast neutron scatter- NT47 F. J. Allen, A. Futterer, and W. Wright, Neutron ing—a correction for dosimetry, Nucleonics 12, reflection and flux versus depth for iron, No. 8, p. 36 (1954). BRL-1199 (Mar. 1963;. NE13 J. E. Dacey, R. W. Paine, Jr., and C. Goodman, NT48 A. F. Avery, The prediction of neutron attenua- Nuclear shielding studies III. Shielding prop- tion in iron—water shields, AEEW-R-125 erties of various materials against neutrons and (Apr. 1962). gamma rays, NR-022-075 (Oct. 20, 1949). NT49 D. E. Bendall, RASH D—A programme NE14 V. Delano and C. Goodman, Shielding properties for neutron shielding calculations, AEEW-M- of the concrete wall of the MIT cyclotron, 261 (Aug. 1962). J. Appl. Phys. 31, 1040 (1950). NT50 H. P. Sleeper, Jr., Neutron spectrum and buildup NE15 F. L. Fillmore, Discussion of the measurements of factor in water, CF-52-2-55 (Feb. 7, 1952). neutron attenuation by shield materials made NT51 T. E. Fessler and M. L. Wohl, Monte Carlo on the WBNS, NAA-SR-Memo-1123 (Oct. studies of gamma-ray and neutron transport in 14, 1954) (decl. May 11, 1956). infinite homogeneous media, NASA-TN-D-850 NE16 J. D. Flynn and G. T. Chapman, Attenuation by (Nov. 1961). Pb of fast neutrons from a fission source, CF- NT52 R. D. Jones, Jr., Investigation of the use of power- 53-3-166 (Mar. 10, 1953) (Decl. Mar. 23, 1956). series methods for solving the one-group- NE17 W. J. Grantham, Barytes concrete for radiation diffusion-equation with variable coefficients, shielding—mix criteria and attenuation charac- (thesis, Air Force Inst, of Tech.) NP-12368 teristics, ORNL-3130 (July 25, 1961). (May 1962). NE18 B. Grimeland, Determination of the neutron spec- NT53 R. H. Peterson and J. A. Williams, A complete set trum by means of absorption, JENER of functions for describing the angular distribu- Rept. No. 16 (1953) (Norway). tion of the neutron flux from a point source in NE19 J. E. Hill, L. D. Roberts, and T. E. Fitch, £ air, BRL Memo. Rept. No. 1432, (Sept. 1962). Slowing down distribution of U(235) fission neu- NT54 A. R. Ptitsyn, Use of the moments method for trons from a point source in light water, II. calculating the spatial and energy distributions Slowing down distribution to In resonance of of the neutron fluxes provided by point and two- U(235) fission neutrons from a point fission dimensional sources in an unbounded medium, source in two aluminum light water mixtures, At. Energ. 10, 117 (1961). J. Appl. Phys. 26, 1013, 1018 (1955).

28 NE20 H. E. Hungerford, Some ground scattering experi- Electron Penetration Theory (Table 5) (ET) ments performed at the bulk shielding facility, CF-52-^-99, (Apr. 16, 1952) (Decl. Feb. 22, 1957). ETl G. D. Archard, Backscattering of electrons, J. NE21 E. B. Johnson, G. McCammon, and M. P. Haydon, Appl. Phys. 32, 1505 (1961). Centerline foil measurements of the thermal neu- ET2 M. J. Berger, Transmission and reflection of tron intensities for experiment I. CF-5-4-156, electrons by aluminum foils, NBS Tech. Note 187 (Apr. 18, 1951) (decl. Dec. 15, 1955). (Apr. 1, 1963). NE22 F. R. Jones, Shields for neutron sources, HW- ET3 M. J. Berger, Monte Carlo calculations of the 21169 (May 1, 1950;. penetration and diffusion of fast charged NE23 A. M. Kogan, C. G. Petrov, L. A. Chudov, and particles, Methods in Computational Physics, P. A, Yampolskii, The reflection of neutrons of pp. 135-215 Vol. 1 (Academic Press, New York, various energies by paraffin and water, At. 1963). Energ. 7, 385 (1959); transl. in Soviet J. At. ET4 O. Blunck, Range of fast electrons, Z. Physik 131,. Energy 7, 865 (1961). 354 (1952). NE24 A. Langsdorf, Jr., R. O. Lane, and J. E. Monahan, ET5 A. E. Boyd and E. E. Morris, Spatial distribution Neutron scattering angular distribution, ANL- of energy dissipated by fallout beta rays, Health 5567 (June 1956). Phys. 2, 321 (1960). NE25 F. C. Maienschein, G. M. Estabrook, J. D. Flynn, ET6 J. E. Crew, Calculated energy dissipation distribu- E. B. Johnson and K. M. Henry, Attenuation by tion in air by fast electrons from a gun source, water of radiations from a swimming pool type J. Res. NBS 65A (Phys. and Chem.) No. 2, 113 reactor, ORNL-1891 (Sept. 19, 1955). (1961). NE26 A. M. Munn and B. Pontecorvo, Spatial distri- ET7 R. Engelmann, Scattering and absorption of beta bution of neutrons in hydrogeneous media con- rays in plane geometry, Part II. Theoretical taining bismuth, lead and iron, Can. J. Res. models of Schmidt and Odeblad, Nukleonik 3, A25, 157 (1947). 147 (1961). NE27 D. R. Otis, Neutron and gamma ray attenuation ET8 R. T. McGinnies (now R. T. Berger), Energy for a fission source in H 2 0—comparison of spectrum resulting from electron slowing down, theory with LTSF measurements, CF-57-3-48 NBS Circ. 597 (Feb. 20, 1959). (Mar. 12, 1957). ET9 A. T. Nelms, Energy loss and range of electrons NE28 J. H. Rush, Range of Ra-alpha-Be neutrons in and positrons, NBS Circ. 577 (July 1956), suppl. water, Phys. Rev. 73, 271 (1948). 577 (July 1958). NE29 A. Salmon, The diffusion length of thermal neu- ET10 F. Rohrlich and B. C. Carlson, -electron trons in Portland concrete, AERE-R/RI-1943, difference in energy loss and multiple scattering, (Mar. 1955). Phys. Rev. 93, 38 (1954). NE30 K. Shure and P. A. Roys, Spatial distribution of ET11 T. Sidei, T. Higashimura, and K. Kinosita, Monte thermal neutrons from an N-17 source in water, Carlo calculation of the multiple scattering of Nuc. Sci. Eng. 2, 170 (1957). the electron, Memoirs of the Faculty of Engi- NE31 W. W. Dunn, Transmission of fast neutrons neering, Kyoto Univ. Vol. XIX No. 2 (April through aluminum, iron and lead (thesis, air 1957). Force Inst, of Tech.), ASTIA-124760 (Mar. ET12 L. V. Spencer, Theory of electron penetration, 1957). Phys. Rev. 98, 1597 (1955). NE32 E. E. Stickley, Neutron capture . Slow ETl 3 L. V. Spencer, Energy dissipation by fast electrons, neutron depth distribution in tissue, NBS Mono. 1 (Sept. 10, 1959). Therapy 75, 609 (1956). ET14 T. Higashimura, Electron penetration through NE33 J. Tittman, Thermal energy relaxation length of aluminum, J. Rad. Res. (Japan) 2, 1 (1961). Ra-Be neutrons in water, Phys. Rev. 90, 256 ET15 V. J. Linnenbom, Range-energy relations for (1953). and electrons in Al, Si and SiO-2. NE34 G. F. Von Dardel, The interaction of neutrons NRL-5828 (July 13, 1962). with matter studied with a pulsed neutron ETl 6 Z. T. Body, On the backscattering of electrons source, Trans. Roy. Inst. Technol., (Stockholm), from solids, Brit. J. Appl. Phys. 13, 483 (1962). No. 75, 1954. ET17 L. V. Spencer and U. Fano, Energy spectrum re- NE35 G. T. Western, Experimental determination of sulting from electron slowing down, Phys. Rev. neutron flux distributions in slabs and of emer- 93, 1172 (1954). gent secondary gamma rays, NARF-62-6T, (June 1962). Electron Penetration Experiments (Table 6) NE36 L. N. Zaitsev, M. M. Komochkov, and B. S. (EE) Sychev, High energy neutron attenuation in concrete, At. Energ. 12, 525 (1962). EEl K. K. Aglintsev and V. P. Kasatkin, Beta spectra NE37 D. L. Broder, A. A. Kutuzov, and V. V. Levin, at various depths of an irradiated medium, Shielding properties of water, polyethylene At. Energ. 12, 51 (1962); transl. in Soviet J. and plexiglass, Inzh.-Fiz. Zh., Akad. Nauk At. Energy 12, 51 (1962). Belorus, SSSR 5, No. 2, 47 (1962), transl. in EE2 B. N. C. Agu, T. A. Burdette, and E. Matsukawa, JPRS-13609. Transmission of electrons through metallic foils, NE38 V. A. Dulin, Yu. A. Kazanskii, V. P. Mashkovich, Proc. Phvs. Soc. (London) 72, 727 (1958). E. A. Panov, and S. G. Tsypin, Attenuation EE3 A. V. Bialobzheskii and V. D. Val'kov, A method functions in water for neutrons from isotropic for the determination of the number of stopped and uni-directional fission sources, At. Energ. electrons and the energy absorbed from a

9, 315 (1960) ; transl. in Reactor Sci. Technol.16, monoenergetic electron beam, At. Energ. 4, 321 (1962). 68 (1958); transl. in Soviet J. At. Energy NE39 J. T. Lence, R. R. Liguori, and A. Lowery, Hand 4, 881 (1958). calculation of neutron flux, APEX-652 (July 1961). EE4 W. L. Buys, Some experimental results on the NE40 S. G. Tsypin, Use of collimated neutron beam angular intensity distribution of backscattering sources in shielding studies (the B-2 assembly and transmission from an isotropic P-32 beta of the BR-5 Reactor), At. Energ. 12, 300 (1962). source on thick and thin plane scattering media, NE41 G. T. Western, Energy and angular distribution Z. Physik 157, 478 (1960). experiment, Vol. I: Angular distribution of EE5 R. Engelmann, Scattering and absorption of beta reactor radiation from slabs and of emergent rays in plane geometry, Part I. Measurement secondary gamma rays, NARF-62-16T (Dec. of transmission and backscattering, Nukleonik 31, 1962). 3, 133 (1961).

29 —

EE6 A. E. Griin, Luminescence—photometric meas- EGT4 M. J. Berger and J. C. Lamkin, Sample calcula- urements of the energy absorption in the tions of gamma-ray penetration into shelters radiation field of electron sources for the one- contribution of sky-shine and roof contamina- dimensional case in air, Z. Naturforsch. 12A, tion, J. Res. NBS 60, 109 (1958) RP2827. 89 (1957). EGT5 E. P. Blizard, On the disk to point or infinite EE7 G. Harigel, M. Scheer, and K. Shultze, Measure- plane shielding transformations, ORNL-2882 ment of the range of 20.4-Mev electrons, (Dec. 22, 1959). Z. Naturforsch. 16A, 132 (1961). EGT6 E. P. Blizard, Some new geometrical transforma- EE8 F. N. Huffman, spatial distribution of electron tions for shielding calculations, Trans. Am. depth dose in aluminum, ORNL-2137 (May 9, Nucl. Soc. 3, 350 (1960). 1958). EGT7 A. B. Chilton and L. N. Saunders, Fallout pro- EE9 W. Minder, Chemical dose measurements of tection afforded by below-ground structures, high-energy photons and electrons, selected BuDocks Tech. Dig. No. 74 (Feb. 1957). topics in radiation dosimetry, Intern. Atomic EGT8 D. S. Duncan, Cloud—an IBM-709 program for Energy Agency, Vienna (1961). computing gamma-ray dose rate from a radio- EE10 M. Oberhofer and T. Springer, Shielding of beta- active cloud, NAA-SR-Memo-4822 (1959). and alpha-radiation, Kerntechnik 2, 168 (1960). EGT9 C. Eisenhauer, Shielding calculations for civil EE11 E. Odeblad and E. Agren, Some further studies defense, Health Phys. 4, 129 (1960). on beta ray transmission, Acta Radiologica EGT10 A. Foderaro and F. Obenshain, Fluxes from regu- 51, 128 (1959). lar geometrical sources, WAPD-TN-508, EE12 S. A. Rothenberg, Coverall shielding to beta (June 1955); changed from Official Use Only radiation, NYO-1543 (Feb. 13, 1951). (July 18, 1956). EE13 H. H. Seliger, Transmission of positrons and EGT 11 R. Fullwood, S. Holland, R. Liboff, and P. electrons, Phys. Rev. 100, 1029 (1955). Grant, Applications of infinite plane theory of EE14 J. G. Trump, K. A. Wright, and A. N. Clark, gamma-scattering, CRLR-502 (Army Chemi- Distribution of ionization in materials irradiated cal Center) (Mar. 5, 1956). by two and three million-volt cathode rays, EGT12 J. H. Hubbell, Dose due to distributed gamma J. Appl. Phys. 31, 345 (1950). ray sources, NBS Rept. 4928 (Nov. 6, 1956). EE15 N. E. Tsvetaeva, On the shape of the attenuation EGT13 J. H. Hubbell, R. L. Bach, and J. C. Lamkin, curve for beta radiation in aluminum, At. Radiation field from a rectangular source, Energ. 9, 507 (1960); transl. in Soviet J. At. J. Res. NBS 64C, (Eng. and Instr.) 121 (1960). Energy 9, 1056 (1961). EGT 14 J. H. Hubbell, R. L. Bach, and R. J. Herbold, EE16 K. A. Wright and J. G. Trump, Backscattering of Radiation field from a circular disk source, J. mega volt electrons from thick targets, J. Appl. Res. NBS 65C, (Eng. and Instr.) No. 4, 249, Phys. 33, 687 (1962). (1961). EE17 C.-J. Andreen, Electron scattering experiments EGT15 J. H. Hubbell and R. L. Bach, Gamma ray using an intermediate image beta-ray spectrom- buildup data for use in distributed source cal- eter, Nucl. Instr. Methods 17, 321 (1962). culations, NBS Rept. 7501 (May 9, 1962). EE18 C.-J. Andreen, W. Parker, and H. Slatis, Elec- EGT16 E. E. Kovalev, V. I. Popov, and L. N. Smi- tron scattering measurements using a double rennyi, The field of radiation of a rectangular focusing beta-ray spectrometer, Nucl. Instr. source, At. Energ. 2, 181 (1957), transl. in J. Methods 21, 329 (1963). Nucl. Energy 5, 424 (1957). EE19 A. S. Chhabra, Sr-90-Y-90 beta-ray (and brems- EGT17 F. J. Krieger, Residual gamma radiation hazard strahlung) depth-dose measurements in lucite, after limited decontamination operations, RM- Radiology 79, 1001 (1962). 1226 (RAND) (Apr. 1, 1954). EE20 E. H. Cornish, Ionization distribution in water EGT18 C. F. Ksanda, A. Moskin, and E. S. Shapiro, irradiated with fast electrons, Intern. J. Appl. Gamma radiation from a rough infinite plane, Radiation 14, 81 (1963). NRDL-TR-108 (Jan. 18, 1956). EE21 L. Daddi and V. D'Angelo, On the identification of EGT19 J. C. Ledoux, Nuclear radiation shielding pro- beta-emitters by absorption measurements, vided by buried shelters, AD-230086, Tech. Intern. J. Appl. Radiation Isotopes 14, 97 Rept. 025 (Oct. 27, 1959). (1963). L. K. Donovan, Shielding EE22 L. Danguy, Contribution to the study of beta EGT20 J. C. Ledoux and of various backscattering, Monographie No. 10 (Institut factors for underground shelters Tech. Rept. Interuniversitaire des Sciences Nuclearies, Brus- geometric shapes, NP-10032, 080 (Apr. 1961). sels) (1962). 5, EE23 W. Ehrenberg and D. E. N. King, The penetration EGT21 C. W. Malich and L. A. Beach, Fallout pro- of electrons into luminescent materials, Proc. tection afforded by standard enlisted men's Phys. Soc. 81, 751 (1963). barracks, NRL Rept. 4886 (Mar 28, 1957). EE24 H. Mori and S. Taira, Fundamental considerations EGT22 J. L. Meredith, Method of evaluation of ex- in the backscattering of beta rays, Bunseki perimental radiation measurements over a

Kagaku 10, 1326 (1961) ; transl. into German by rectangular source, NDL-TR-11 (April 1961). Buriks (Kernreaktor Bau- und Betriegs- P. EGT23 W. Minder, The distribution of gamma radia- Gesellschaft M.B.H., Karsruhe) as KFK-TR- tion dose near a geometrically simple arrange- 114. ment of the radiating substance, Strah- lentherapie 76, 616 (1946-7). Elementary Geometries, Theory EGT24 F. G. Moote, Dose rates from rectangular (Table 7) (EGT) plaques, Nucleonics 19, No. 7, 102 (1961). D. P. Osanov and E. E. Kovalev, A shield for EGTl M. J. Berger, The dose received by partially EGT25 rectangular form, shielded gamma-ray detectors, NBS Rept. gamma radiation sources of At. Energ. 6, 670 (1959); transl. in Soviet 2902 (Oct. 8, 1954). J. At. Energy 6, 503 (1960). EGT2 M. J. Berger, Effects of boundaries and inhomo- geneities on the penetration of gamma radia- EGT26 R. R. Putz and A. Broido, A computational tion, NBS Rept. 4942, (Nov. 20, 1956), also p. method for gamma radiation intensity in the 47-92 of general reference G42. presence of general shielding and source EGT3 M. J. Berger and J. A. Doggett, Gamma radia- configurations, Contract No. CD-GA-56-57 tion in air due to cloud or ground contamina- (Dec. 18, 1957), Inst, of Engineering Res., tion, NBS Rept. 2224 (June 1, 1953). Univ. of Calif.

30 EGT27 C. Schlegel, Computed effects of the roof pitch EGE10 F. J. Davis and P. W. Reinhardt. Radiation and the ceilings of houses on the gamma measurements over simulated plane sources, radiation intensity from a roof source field, Health Phys. 8, 233 (1962). Civil Defense Res. Proj., Ser. No. 2, Issue EGE11 F. J. Davis and P. W. Reinhardt, editors, No. 9 (Feb. 2, 1959). Extended and point-source radiometric pro- EGT28 R. M. Sievert, intensity-distribution The of gram, CEX-60.3 (Aug. 8, 1962). the primary gamma-radiation in the vicinity EGE12 C. Eisenhauer, Analysis of experiments on light of medical radium-preparations, Acta Radiol. residential structures with distributed Co-60 1, 89 (1921-2). sources, NBS Rept. 6539 (Oct. 15, 1959). EGT29 J. H. Smith and M. L. Storm, Generalized EGE13 F. S. Goulding and G. Cowper, Hazard due to off-axis distributions from disk sources of beta-radiation from fission products deposited radiation, J. Appl. Phys. 25, 519 (1954). on the ground after an atomic explosion, EGT30 L. V. Spencer, see general reference [Gl]. CREL-529 (Jan. 1953). EGT31 I. Benfenati, Generalization of some basic EGE14 E. Hill, Effects of environment in reducing results of shielding theory to anisotropic J dose rates produced by radioactive fallout sources, Energia Nucl. (Milan) 8, 467 (1961). from nuclear explosions, RM-1285-1 (RAND) EGT32 A. W. Casper and J. G. Carver, comparison of (Sept. 1954). computed centerline dose rates from different 28, Kinkaid, areas of a source plate, APEX-507 (Nov. EGE15 C. M. Huddleston, Z. G. Burson, R. M. 1958). and Q. G. Klinger, Ground roughness effects EGT33 C. Eisenhauer, An engineering method for on the energy and angular distribuition of calculating protection afforded by structures gamma radiation from fallout, E. G. and G. against fallout radiation, NBS Rept. 7810 Interim Test Report CEP 62.81 (Oct. 1962). (Feb. 28, 1963). EGE16 U. Ya. Margulis and A. V. Khrustalev, On the EGT34 S. S. Holland, Jr., and R. Gold, Gamma dose spatial distribution of the gamma-ray dose rate from neutron-induced activity in the from a plane source, At. Energ. 3, 338 (1957); earth, NDL-TR-41 (TO-B 62-64) (Oct. 15, transl. in Intern. J. Appl. Radiation Isotopes 1962). 4, 109 (1958). EGT35 M. Leimdorfer, Multiple scattering of gamma EGE17 R. L. Mather, R. F. Johnson and F. M. Tom- radiation in a spherical concrete wall room, novec, Gamma radiation field above fallout- AE-94 (Stockholm) (Dec. 1962). contaminated ground, Health Phys. 8, 245 ETG36 M.E. Rose, Geometrical corrections for aniso- (1962). tropically emitting sources, ORNL-2050, EGE18 G. E. Plummer, A study of geometry and barrier (Mar. 19, 1956). attenuation generated by a vertical slab EGT37 V. E. Yakhontova, A. M. Kononenko, and V. A. exposed to a plane Co-60 source, Trans. Am. Petrov, Dose distribution along the axis of a Nucl. Soc. 5, 222 (1962). flat beta source. I. Single medium, Radio- EGE19 C. L. Schlemm, A. E. Anthony, Jr., and Z. G. biologiya 1, 452 (1961); II. Multicomponent Burson, Scattered gamma radiation measure- medium, 2, 166 (1962). ments from a Co-60 contaminated field, AFSWC-TN-59-6 (Jan. 1959). Elementary Geometries, Experiments EGE20 C. L. Schlemm and A. E. Anthony, Jr., Scattered gamma radiation measurements from a lantha- (Table (EGE) 8) num-140 contaminated field, AFSWC-TN- 59-18 (June 1959). EGEl J. A. Auxier, J. O. Buchanan, C. Eisenhauer, and EGE21 M. A. Schmoke and R. E. Rexroad, Attenuation H. E. Menker, Experimental evaluation of the of simulated fallout radiation by the roof of radiation protection afforded by residential a concrete blockhouse, NDL-TR-6 (Aug. structures against distrubuted sources, CEX- 1961). 58.1 (Jan. 19, 1959). EGE22 M. J. Schumchyk and H. J. Tiller, Ground EGE2 J. F. Batter, An experimental determination of penetrating radiation (lip contribution) in a "in and down" scattering of Co-60 gamma rays foxhole from a fallout field simulated by Co-60, from a plane source, Trans. Am. Nucl. Soc. 4, NDL-TR-3 (Dec. 1960). 262 (1961). EGE3 J. F. Batter and A. W. Starbird, Attenuation of EGE23 S. Tomoeda, M. B. Hastings, and B. W. Shum- Co-60 radiation from a source distributed way, Source geometry effects on gamma ray around a concrete blockhouse, TO-B 61-34 penetration into a compartmented structure, (June 1961). pp. 223-30 of general reference G43. EGE4 J. F. Batter and A. Starbird, The effect of limited EGE24 C. E. Clifford, Effects of ground roughness on strips of contamination on the dose rate in a the gamma dose from Cs-137 contamination, multistory windowless building, Vol. 1, 20 DRCL Rept. No. 401 (Mar. 1963). psf wall floor thickness, and TO-B 62-26, EGE25 J. L. Donovan, Three-plaque, two-pass irradia- (Apr. 30, 1962). tor, Nucleonics 19, No. 7, 104 (1961). EGE5 W. Bernstein, D. Clarens, and M. Weiss, Studies EGE26 S. A. E. Johansson, On the possibility of using on the propagation of gamma rays in air, model experiments to study shielding prob- BNL-1707, AFSWP-449 (1953). lems, Nucl. Sci. Eng. 14, 196 (1962). EGE6 R. J. Brodeur and J. F. Batter, Radiation re- flected into an underground shelter by a EGE27 J. M. Ferguson, Ground roughness effects for projecting air vent, TO-B 62-10, (Mar. 15, fallout-contaminated terrain: comparison of 1962). measurements and calculations, USNRDL- EGE7 Z. Burson and H. Borella, Experimental evalua- TR-645 (May 7, 1963). tion of the radiation protection provided by an earth-covered shelter, CEX-60.6, (Apr. 1961), issuance date (Feb. 1962). Ducting (Table 9) (D) EGE8 C. E. Clifford, Gamma dose in a hole in a uni- formly contaminated plane—contribution by ground penetration, Can. J. Phys. 39, 604 Dl J. R. Barcus, Transmission of neutrons by cylindri- (1961). cal ducts penetrating radiation shields, Sandia EGE9 C. E. Clifford, Use of models for gamma shielding Corp. AEC Rept. SCTM 21-59(16) (Mar. 25, studies, DRCL Rept. No. 364 (Feb. 1962). 1959).

31 D2 R. E. Benenson and A. N. Fasano, The transmission D26 A. Simon and C. E. Clifford, The attenuation of of fission neutrons having energy above the S-32 neutrons by air ducts in shields, Nucl. Sci. Eng. (n, p)P-32 threshold by straight cylindrical 1, 156 (1956).

ducts in H 2 0. WADC-TR-57-89 (Feb. 1957). D27 C. W. Terrell, A. J. Jerri and R. Lyday, Jr., Radiation D3 B. R. Bergelson, Calculation of the passage of fast streaming in ducts and shelter entranceways, neutrons through cylindrical channels in a bio- Final Report ARF-1158A02-7 (April 1962). logical shield, At. Energ. 10, 388 (1961); transl. D28 J. M. Champman, Gamma dose rates and energy in Soviet J. At. Energy 10, 378 (1962). spectra in a 3-foot square duct, USNCEL Tech. D4 D. G. Chappell, Gamma-ray streaming through a Note, N-443 (June 29, 1962). duct, Nucleonics 15, No. 7, p. 65 (1957). D29 T. R. Fowler and C. H. Dorn, Gamma ray attenua- D5 A. B. Chilton, Further analysis of gamma ray tion in a 12-inch diameter round concrete duct, attenuation in two-legged rectangular ducts, USNCEL TN-465 (Nov. 5. 1962). NCEL Rept. TN-412, (May 11, 1961). D30 D. C. Piercey and D. E. Bendall, The transmission D6 C. E. Clifford, Gamma shielding provided by ducts, of fast neutrons along air filled ducts in water, DRCL Rept. 370 (May 1962), Def. Res. Bd. of AEEW Rept. R69 (June 1962). Canada—Ottawa). D31 D. C. Piercey, The transmission of thermal neutrons D7 C. Eisenhauer, Scattering of Co-60 gamma radia- along air filled ducts in water, AEEW Rept. R70 tion in air ducts, NBS Tech. Note. No. 74 (Oct. (June 1962). 1960). D32 D. G. Collins, An application to Monte Carlo D8 E. Fisher, The streaming of neutrons in shields, methods to duct streaming research, FZM-2773 Nuclear Sci. Eng. 1, 222 (1956). (Nov. 28, 1962). D9 D. W. Green, Attenuation of gamma radiation in a two-legged 11-inch rectangular duct, NCEL Realistic Structures Tech. Rept. R-195 (May 2, 1962). D10 C. C. Horton, The shielding of helical ducts, RSI J. F. Batter and A. W. Starbird, Attenuation of Nuclear Sci. Eng. 6, 525 (1959). Co-60 radiation by a simple structure with a Dll C. C. Horton and D. B. Halliday, The attenuation basement, TO-B 61-38 (July 1961). of thermal neutrons in cylindrical ducts through RS2 J. F. Batter, A. L. Kaplan and E. T. Clarke, An a water shield, AERE-SWP/P28 (Jan. 1956). experimental evaluation of the radiation protec- D12 C. C. Horton, D. B. Halliday, J. R. A. Lakey, and tion afforded by a large modern concrete office J. R. Harrison, The transmission of thermal building, CEX-59.1 (Jan. 22, 1960). neutrons in a straight annular duct, AERE- RS3 H. Borella, Z. Burson and J. Jacovitch, Evaluation SWP/P27, (Jan. 1956). of the fallout protection afforded by Brookhaven D13 H. E. Hungerford, Transmission of monoenergetic National Laboratory Medical Research Center, neutrons around a bend in a pipe carrying a CEP 60.1 (Feb. 1961). scattering and weakly absorbing medium, Nucl. RS4 Z. Burson, D. Parry, and H. Borella, Experimental Sci. Eng. 2, No. 1, suppl. 33-4 (1959). evaluation of the fallout radiation protection af- D14 J. C. Ledoux and A. B. Chilton, Gamma ray stream- forded by a typical southwestern residential ing through two-legged rectangular ducts, Nucl. home, CEX-60.5 (Feb. 1962). Sci. Eng. 11, 362 (1961). RS5 E. T. Clarke, J. F. Batter, and A. L. Kaplan, D15 J. C. Ledoux and A. B. Chilton, Attenuation of Measurement of attenuation in existing struc- gamma radiation through two-legged rectangular tures of radiation from simulated fallout, Tech. ducts and shelter entranceways—an analytical Op. Report TO-B 59-4 (Apr. 27, 1959). approach, NCEL Rept. TN-383 (Jan. 20, 1961). RS6 J. R. Cunningham, R. Wilson, F. A. Bury, and J. D16 V. N. Mironov, Transmission of radiation through K. M. Flexman, Protection factors for houses ducts, At. Energ. 12, 211 (1962). using radioactive sources, DRCL-260 (Nov.

D17 J. W. Neuberger and R. L. Johnston, Spatial 1957) ; Defence Res. Bd., Ottawa, Canada. distribution of neutrons beyond a straight RS7 R. T. Graveson, Radiation protection within a cvlindrical duct through a shield, NARF-57-1T. standard housing structure, NYO-4714 (Nov. (Jan. 15, 1957). 1956). D18 M. J. Novak, Transmission of neutron flux through RS8 C. W. Malich and L. A. Beach, Radiation protec- graphite ducts, ASAE-11, (Apr. 1, 1957), Ameri- tion afforded by barracks and underground can Standard, Atomic Energy Division, Redwood shelters, NRL-5017 (Aug. 22, 1957). City, Calif. RS9 A. G. McDonald, The penetration of gamma radia- D19 C. M. Park, C. B. Agnihotri, and J. Silverman, tion from a uniform contamination into houses, Interim report on scattering of gammas through a first report on some field trials, Home Office, ducts, Univ. of Maryland Rept. UMNE-2 (June CD/SA-69. (Jan. 1956). 1, 1962). RS10 R. R. Putz and E. Kuykendall, A comparison of D20 B. T. Price, C. C. Horton, and K. T. Spinney, computed and experimentally observed intensity Effect of ducts and voids in shields, pp. 197—2i 1 levels for various gamma radiation source dis- of general reference G48. tributions and shielding conditions in residential D21 F. X. Rizzo, A. Quadrado, and C. Eisenhauer, structures, Civil Defense Res. Proj. Ser. No. 2, Attenuation of Co-60 gamma radiation through Issue No. 16 (Feb. 2, 1959). air ducts in concrete shields, pp. 411-20 of Proc. RS11 A. Rudloff, Determining the protection value of of 8th Conf. on Hot Labs, and Equipment, buildings against fallout radiation, Atompraxis

San Francisco (Dec. 13-15, 1960) ; TID-7599. 7, 11 (1961). D22 T. Rockwell III, Editor, Effect of irregularities in RS12 B. W. Shumway, S. Tomoeda, G. E. Plummer, shield, chap. 8 of general reference G52. W. G. Miller, and M. B. Hastings, The dose D23 G. M. Roe, The penetration of neutrons through distribution within an aircraft carrier exposed to an empty cvlindrical duct in a shield, KAPL-712 uniform Co-60 contamination on the flight deck, (Mar. 29, 1952). USNRDL-TR-466 (Oct. 4, 1960). D24 F. J. Shore and R. D. Shamberger, The transmission RS13 L. V. Spencer and C. Eisenhauer, Calculation of of neutrons through ducts in water, BNL-390, protection factors for the national fallout shelter

(Mar. 1, 1956) ; see also BNL (Reports 2019 to survey, NBS Report 7539 (July 3, 1962). 2024, 2027-8. RS14 A. W. Starbird, J. F. Batter, Jr., and H. A. Mehl- D25 A. Simon, Ducts through shields, pp. 695-699 of horn, Modeling techniques as applied to fallout general reference G26, reference re gamma ray simulation on residential-type structures and ducting is made to BNL classified work by H. J. some preliminary results, TO-B 61-35 (July 8, Kouts and W. W. Pratt. 1961).

32 RS15 T. D. Strickler and J. A. Auxier, Experimental Boag, J. W., GE58. evaluation of the radiation protection afforded Bock, E., G7. by typical Oak Ridge homes against distributed Body, Z. T., ET16. sources, CEX-59.13 (Apr. 14, 1960). Bolles, R. C, SD3. RS16 S. Tomoeda, M. B. Hastings and W. G. Miller, Bond, V. P., SD20. Experimental data of gamma-ray penetration Borella, H., EGE7; RS3, 4. into the compartments of a light aircraft carrier, Borg, D. C, SD4. USNRDL-TR-412 (Apr. 6, 1960). Bostick, L. H., G60. RS17 S. Tomoeda, W. E. Kreger, M. B. Hastings, and Bowman, L. A., GT51. W. G. Miller, Gamma-ray penetration into the Boyd, A. E., ET5. compartments of a light aircraft carrier, USN- Boyer, L. L., G2. RDL-TR-343 (July 7, 1959). Braestrup, C. B., G8. RS18 W. F. Waldorf, Jr., A correlation between theory Broder, D. L., GE3; NE37. and experiment in ship shielding studies, USN- Brodeur, R. J., EGE6. RDL-TR-373 (Oct. 13, 1959). Broido, A., EGT26. RS19 Z. G. Burson, Experimental evaluation of the fall- Brooks, F. C, G9. out radiation protection provided by selected Brown, L. J., NT5. structures in the Los Angeles area, CEX-61.4 BrowneU, G. L., G25. (Feb. 26, 1963). Brownell, L. E., G14. RS20 J. C. LeDoux, Equivalent building method of fall- Bruce, W. R., GT11; GE60. out radiation shielding analysis and design, Brunelet, L., G63. " (OCD) Vol. 2 (Sept. 1963). Buchanan, J. O., G13; EGE1. Bulatov, B. P., GE4, 5. Author Index Burdette, T. A., EE2. Bureau of Yards and Docks, G10. Abbatt, J. D., G3. Burrell, M. O., GT12; NT6. Abbott, L. S., G6. Burson, Z. G., EGE7, 15, 19; RS3, 4, 19. Aglintsev, K. K., EE1. Burton, B. S., GE6, 52. Agnihotri, C. B., D19. Bury, F. A. RS6. Agren, E., EE11. Buys, W. L., EE4. Agu, B. N. C, EE2. Ajzenberg, F., ref. 1 in text. Cain, V. R., G68. Akkerman, A. F., GT1. Callahan, E. D., G64. Albert, R. D., NT1. Cannon, E. W., Gil. Albright, G. H., G2. Capo, M. A., GT13. Albright, R. W., G65. Capron, P. C. NE7. Allen, F. J., NT44, 45, 46, 47. Carlson, B. C, ET10. D., Anderson, A. GT18. Carruthers, J. A., GE8. 50. Anderson, D. C, GT49, Carver, J. G., EGT32. Andreen, C. J., EE17, 18. Casper, A. W., EGT32. 20. Anthony, A. E., NT2; EGE19, Caswell, R. S., NE8. G. D., ET1. Archard, Certaine, J., NT7, 8, 21. 21. Aronson, R., GT41; NT7, Chapman, G. T., NE9, 16. Auslender, S., GT2. Chapman, J. M., D28. Auxier, J. A., EGE1; RS15. ChappeU, D. G., D4. Avery, A. F., NT48. Chhabra, A. S., EE19. Chilton, A. B., G12, 74; GT14, 15, 17; EGT7; D5, 14, 15. Babb, D. D., NE1. Chudov, L. A., NE23. Bach, R. L., EGT13, 14, 15. Clack, R. W., G74. Baer, W., NE2. Clarens, D., EGE5. Baldwin, J. A., G75. Clark, A. M., EE14. Ballou, N. E., SD3. Clark, F. H., G68; SD5. Baran, J. A., G74. Clarke, E. T., G13, 74; GE7, 41; RS2, 5. Bareus, J. R., Dl. Clifford, C. E. (DRCL), GE8; EGE8, 9, 24; D6. Barr, T. A., NE3. Clifford, C. E. (ORNL), NE10; D26. Batter, J. F., EGE2, 3, 4, 6; RSI, 2, 5, 14. Cochran, R. G., NE11. Batzel, R. E., SD1. Collins, D. G., D32. Baumgardt, N. R., GT 65; NT22. Cook, C. S., SD6, 7. Beach, L. A., GT43, 44; GE1, 2; EGT21; RS8. Coombe, J. R., G64. Belov, S. P., GE27. Cooper, E. P., G42. Bendall, D. E., NT49; D30. Cooper, J. W., SD18; NT3. Benenson, R. E., D2. Coppinger, E. A., GT52. Benfenati, I., G62; EGT31. Cornish, E. H., EE20. Benoit, J. W., GT24. Cowell, W. L., G38. D3. Bergelson, B. R., _ ATrno Cowper, G., EGE13. Berler, M. J., G18, 74; GT3, 4, 5, 6, 7, 8, 9, 10; NT3; Crevecouer, E., NE7. ET2, 3; EGT1, 2, 3, 4. Crew, J. E., ET6. Bernstein, W., GE55; EGE5. Cribbs, D. L., GT12; NT6. Bethe, H. A., NT4. Cunningham, J. R., GE8; RS6. Bialobzheskii, A. V., EE3. Cure, J. W., NE12. Bigelow, S. R., NT43. Biggers, W. A., NT5. Dacey, J. E., NE13. Bina, M. J., NE4. Daddi, L., EE21. Biram, M. B., NT36. Dahlstrom, T. S., GE9. Birkhoff, R. D., G4. D'Angelo, V., EE21. Bjarngard, B., GE59. L., EE22. Bjornerstedt, R., SD2. Danguy, Da\is, F. J., GE10; EGE10, 11. Blizard, E. P., G5, 74; NE5, 6; EGT5, 6. 6, Dawson, D. M., GT16. Blunck, O., ET4.

33 Delano, V., NE14. Graveson, R. T., RS7. Demidov, A. M., SD12. Green, D. W., D9. Dennis, R., G14. Grimeland, B., NE18. De Wames, R. E., NE1. Groshev, L. V., SD12. Dill, A. F., G2. Grotenhuis, M., G23, 59. Dixon, W. R., GE61. Griin, A. E., EE6. Doering, W. P., NE8. Gusev, N. G., G24. Doggett, J. A., GT7; EGT3. Doggett, W. 0., G74. Haggmark, L. G., GE50. Dolan, P. J., SD8. Halliday, D. B., Dll, 12. Donovan, J. L., EGE25. Hammitt, F. G., G66. Donovan, L. K., GT14, 17; EGT20. Harigel, G., EE7. Dorn, C. H., D29. Harris, J. W., GE25. Drummond, W. E., NT9. Harrison, J. R., D12. Dulin, V. A., NE38. Hashmi, C. M. H., GE63. f Duncan, D. S., EGT8. Hastings, M. B., EGE23, RS12, 16, 17. Duneer, A., NT32. Haydon, M. P., NE21. Dunn, W. W., NE31. Hayward, E., GT21; GE18, 19, 21. Hebel, W., G67. Ebert, H. G., GE11. Henry, K. M., NE11. Eddy, A., NT27. Herbold, R. J., EGT14. Ehrenberg, W., EE23. Hettinger, G., GE20. Eisenhauer, C, GT19; EGT9, 33; EGE1, 12; D7, 21; Higashihara, Y., GE67. RS13. Higashimura, T., ET11, 14. Elliot, J. O., GE12. Hilgeman, J., NT19. El Nady, L., GE65. HiU, J. E., NE19; EGE14. Emergency Measures Organization, Privy Council Office, Hill, W. H., G2. Ottawa, Canada, G15. Hine, G. J.. G25. Enge, R. 0., G2. Hogerton, J. F., G26. Engelmann, R., ET7; EE5. Holland, L. B., G68. Engle, L. B., SD9. Holland, S. S., NT14, 15, 16; EGT11, 34. Ermakov, S. M., GT53. Hollister, W. L., G27. Estabrook, G. M., SD25; NE11, 25. Holoviak, D., GT13. Etherington, H., G16. Holte, G., NT17. Home Office, London, G28. Fano, U., G17, 18; GT34; ET17. Horton, C. C., G48; D10, 11, 12, 20. Farras, R. T., GE12. Hubbell, J. H., GT21; GE19, 21; EGT12, 13, 14, 15. Fasano, A. N., D2. Huddleston, C. M., GT15; EGE15. Faulkner, J. E., NT10. Huffman, F. N., EE8. Faust, W. R., GT18, 44; GE1, 2, 13, 14. Hull, J. L., G68. Feix, M., NTH. Hungerford, H. E., NE20; D13. Ferguson, J. M., NT37; EGE27. Hurst, G. S., G51; NE3, 12. Fessler, T. E., NT51. Hurwitz, H., NT4. Fillmore, F. L., NE15. Hyodo, T., GE22, 64. Fisher, E., D8. Fisher, P. C, SD9. Isenberg, M. W., G2. Fitch, T. E., NE19. Ishimatsu, K., GE23. FitzSimons, N., G74. Ivanova, V. L, G69. Fletcher, E. R., G65. Flew, E. M., GT54. Jacovitch, J., RS3. Flexman, J. K. M., RS6. Jaeger, R. G., G29. Flynn, J. D., NE11, 16, 25. Jaeger, T., G30. Foderaro, A. H., G2; NT12; EGT10. James, B. T., GT54. Fowler, T. R., D29. Jarnholt, M., G7. Francis, J. E., SD10. Jaworowski, T. R., GE36. Freiling, E. C, SDH. Jenkins, F. A., GT35. French, R. L., G19; NT13. Jerri, A. J., D27. FuUwood, R., EGT11. Jester, W. A., G2. Futterer, A. T., NT44, 45, 46, 47. Johansson, S. A. E., EGE26. Futtermenger, W., GE62. Johns, H. E., GT11. Johnson, E. B., NE21. Gabbard, R. F., NE8. Johnson, M. H., GE14. Galanter, L., GE46. Johnson, R. F., EGE17. Gamble, R. L., SD10. Johnson, W. P., GT16, 24. Garrett, C, GE15. Johnston, R. L., D17. Garusov, E. A., GE5. Jones, A. R., GE24. Gates, L. D., GT19. Jones, B. L., GE25. Glasstone, £L G20. Jones, F. R., NE22. Glubrecht, H., GE62. Jones, R. D., NT52. Golbek, G. R., GE16. Gold, R., GE41; EGT34. Kahn, H., G31. Goldstein, H., G21, 22; SD21; GT20; NT8, 21. Kaipov, D. K, GT1. Gonzalez, G., GE28. Kalos, M., GT22; NT18, 21. Goodman, C, NE13, 14. Kaness, R. H., G2. Gorshkov, G. M., GE17. Kaplan, A. L., RS2, 5. Goulding, F. S., EGE13. Kasatkin, V. P., EE1. Grant, P., EGT11. Kawai, H., Ref. 2 in text. Grantham, W. J., NE17. Kayurin, Yu. P., GE3. Grass, R. C, G26. Kazanskii, Yu. A., GE26, 27, 69; NE38.

34 Keller, F. L., NT 19. McMath, R., GE41. Keller, J. W., GE28. Mehl, C. R., NT24. Kennedy, R. J., GE31. Mehlhorn, H. A., GE41, RS14. Khrustalev, A. V., EGE16. Menker, H. E., EGE1. Kimel, L. R., GE29, 30, 71. Meredith, J. L., EGT22. Kimel, W. R., G74. Merrill, M. G38. Kinder, M. B., G32. Miller, C. F., SD16. King, D. E. N., EE23. Miller, J. M., NE6. Kinkaid, R. M., EGE15. Miller, W. G., RS12, 16, 17. Kinney, W. E., NT20. Minder, W., G39; EE9; EGT23. Kinosita, K., ET11. Mironov, V. N., D16. Kirk, W. L., GT16. Mitchell, V. J., GE42, 66. Kirn, F. S., GE31. Mittleman, P. S., NT21. Kleinecke, D. C, G33. Mochizuki, EL, GE67. Klinger, Q. G„ EGE15. Monahan, J. E., NE24. Koch, H. W., SD23; GE58. Moote, F. G., EGT24. Kodyukov, V. M., GE17, 32. Morgan, P. B., NT25. Kogan, A. M., NE23. Mori, H., EE24. Kohr, K. C., NT5. Morris, E. E., ET5 Komochkov, M. M., NE36. Morse, D. C., GE36. Kom'shin, V. A., GT53. Moskin, A., EGT18. Kononenko, A. M., EGT37. Moteff, J., G40, SD17. Kovalev, E. E., EGT16, 25. Munn, A. M., NE26. Kreger, W. E., G43; GT31; GE49; RS17. Murray, F. H., NT26. Krieger, F. J., EGT17. Myers, R. D., GE12. Krumbein, A. D., NT21. Ksanda, C. F., EGT18. Nagato, K., GE67. H., Kuehn, NT27. National Bureau of Standards, G41. V. I., GE33, 69. Kukhtevich, G34; 34, 35, Nelms, A. T., SD18; ET9. P., GE25. Kunkel, W. Nesmith, D. A., G74. Kusik, C. L., GE36. Neuberger, J. W., D17. Kutuzov, A. A., GE3; NE37. Nisliiwaki, Y., ref. 2 in text. Kuykendall, E., RS10. Novak, M. J., D18. Nuclear Shielding Supplies and Services, Inc., G44. Lakey, J. R. A., G3; D12. Lamkin, J., GT36, 37, 38; EGT4, 13. Obenshain, F., NT12, EGT10. Lane, R. O., NE24. 27; Oberhofer, M., GT58; EE10. Langsdorf, A., NE24. O'Brien, K., GT59. Larichev, A. V., GE37. OCDM, Washington, D.C., G45, 47. Lauritsen, T., ref. 1 in text. 46, Odeblad, E., EE11. LeDoux, J. C., G35, 74; EGT19, 20; D14, 15; RS20. Omoda, E., NT2. Leimdorfer, M., GT55, 56; EGT35. O'Reilly, B. D., GT25. Leipunskii, 0. I., G36, 37; GE30, 38, 71. Osanov, D. P., EGT25. Lence, J. T., NE39. Otis, D. R., NE27. Leshchinskii, N. I., GT23. Owen, W. L., G70. Levin, V. V., NE37. Liboff, R., EGT11. Liguori, R. R., NE39. Padgett, D. W., NE8. Linnenbom, V. J., ET15. Paine, R. W., NE13. Love, D., SD13. Panchenko, A. N., GE71. Love, T. A., SD25; GE43. Panov, E. A., NE38. Lowder', W. M., GT59. Park, C. M., D19. Lowery, A., NE39. Parker, W., EE 18. Lutensko, V. N., SD12. Parry, D., RS4. Lyday, R., D27. Pearson, M. L., GE60. Lynch, R. E., GT24. Peebles, G. H., GT26. Lynn, R. L., GE49. Peelle, R. W., SD25; GE43. Pelekhov, V. I., SD12. km Penny, S. G71; GT60, NT57. MacDonald, D., SD13. K, 63; Perkins, J. F., GT27. MacDonald, J. E., GT65; NT22. Perret, R. F. D., G65. Mackin, J., SD13. Peterson, R. H., NT53. Maerker, R. E., G68. Petrov, C. G., NE23. Mahmoud, K. A.. GE39, 65. Petrov, V. A., EGT37. Maienschein, F. C., SD14; GE43; NE 25. Piercey, D. C., D30, 31. Malieh, C. W., EGT21; RS8. Plawchan, J. D., GT44. Manning, J. J., G68. Plesch, R., GT61. Marcum, J. L, GT57; NT23. Plummer, G. E., EGE18; RS12. Margulis, U. Ya., EGE16. Podgor, S., NT28. Mashkovich, V. P., NE38. Pontecorvo, B., NE26. Maskewitz, B. F., G71. Popov, V. I., EGT16. Mather, R. L., SD15; NT37; EGE17. Preiser, S., NT21. Mathias, D. J., G3. Price, B. T., G48; D20. Matsukawa, E., EE2. Ptitsyn, A. R., NT54. Matusevich, E. S., GE27. Pullman, L., GT28. Matveev, V. V., GE16, 40. Purohit, S. N., Gl4. McCammon, G., NE21. Putz, R. R., EGT26; RS10. McDonald, A. G., RS9. McElhinney, J., GE58. McGinnies, R. T., ET8. Quadrado, A., D21.

35 Raleigh, H. D., G49. Stokes, J. R., GE52. Raso, D. J., GT8, 29, 30. Storm, M. L., EGT29. Ravillious, C. F., GE12. Storrs, C. L., NE9. Reinhardt, P. W., GE10; EGE10, 11. Strawson, D. G., GE36. Rexroad, R. E., GE44; EGE21. Strickler, T. D., RS15. Richards, P. I., GE7; NT14, 15. Strobel, G. L., GT62. Riese, G. R., G72. Strope, W. E., G74. Risley Group. Lancashire, England, G50. Stuart, G. W., NT35. Ritchie, R. H., G51. Sybesma, C., GE68. Ritz, V. H., GE45. Sychev, B. S., NE36. Rizzo, F. X., GE46; D21. Roberts, L. D., NE19. Roberts, T. D., NT55. Taira, S., EE24. Rockwell, T., G52; D22. Tait, J. H., NT36. Roe, G. M., D23. Tanaka, Y., GE67. Taylor, J. J., GE47. Roembke, J. E., G74. GT42; Rohrlich, F., ET10. Terrell, C. W., D27. Rose, M. E., EGT36. Theus, R. B., GT43, 44; GE1. E., Rosenblum, L., G64. Thompson, W. GE9; NT37. Tiller, Rothenberg, S. A., EE12. H. J., EGE22. Roys, P. A., GE47; NE30. Tittman, J., NE33. Rudloff, A., G54; RSll. Titus, W. F., GE21, 53, 54. Tomnovec, F. Rush, J. H., NE28. M., EGE17. Tomoeda, S., EGE23; RS12, 16, 17. Tonks, L., NT4. Sakharov, V. N., GE38, 48. Trampus, A., GT65; NT22. Salmon, A., NE29. Troubetzkov. E., SD21. Sam, D., SD13. Trubey, D. K., G71; GT45, 51, 63; NT57. Sauermann, P. F., G73. Trump, J. G., EE14, 16. Sauerwein, K., G53. Tsvetaeva, N. E., EE15. Saunders, L. N., EGT7. Tsypin, S. G., G34; GE35, 69; NT56; NE38, 40. Scheer, M., EE7. Schiff, D., NT29. Schlegel, C., EGT27. Valentin, S., NTH. Schlemm, C. L., EGE19, 20. Valkov, V. D., EE3. Schmoke, M. A., GE44; EGE21. Van Tuyl, H. H., G58. Schultz, H. GE62. Vasilev, V. A., GE70. M., Schumchyk, M. J., EGE22. Verde, NT38. Scofield, N. E., GT31; GE49, 50. Vernon, A. R., GT64. F., Scoles, J. F., SD19. Von Dardel, G. NE34. Seliger, H. H., EE13. Serduke, J. T., GT31. Wainwright, A., G75. Shamberger, R. D., D24. Waldorf, Jr., W. F., RS18. Shapiro, E. S., EGT18. Walker. R. L., G59. Shelton, F. H., NT30. Ward, D. R., G68. Shemetenko, B. P., GE33, 34, 35. Watt, B. E., SD22. Shiel, V. W., GT16. Weiss, M. M., GE55; EGE5. Shimizu, S., GE64. Wells, M. B., G19; GT46; NT40. Shishkina, V. A., GE70. Welton, T. A., NT1. Shlyapnikov, R. S., GE40. Western, G. T., NE35, 41. Shore, F. J., D24. Wheeler, D. M., G60. Shultze, K., EE7. White, G. R., GE56. Shumway, B. W., EGE23; RS12. Whvte, G. N., G61; GE15, 57. Shure, K., GT32; GE47; NE30. Wick, G. C., NT38, 40. Sidei, T., ET11. Wigner, E. P., NT41. Sievert, R. M., EGT28. Wilkins, J. E., GT20. Silverman, J., D19. Williams, J. A., NT53. Simon, A., D25, 26. Wilson, R., RS6. Sinitsyn, B. I., GE34; NT56. Wilson, R. R., GT47. Slatis, H., EE18. Wohl, M. L., NT51. Sleeper, H. P., NT50. Wolff, C., GT40. Smirennyi, L. N., EGT16. Wright, K. A., EE14, 16. Smith, J. H., EGT29. Wright, W. P., NT44, 45, 46, 47. Smith, R. B., GE42. Wyckoff, H. O., G8; GE31. Sokolov, A. D., GE16, 40. Wyckoff, J. M., SD23. Solon, L. R.. GT59. Sondhaus, C. A., SD19. Soole, B. W., GE51. Yakhontova, V. E., EGT37. Yampolskii, P. A., SD24; NE23. Spencer, L. V., Gl, 18, 74; GT9, 10, 33, 34, 35, 36, 37, 38, 39, 40; ET12, 13, 17; EGT30; RS13. Yorihisa, K., GE67. Spielberg, D., G55; NT31, 32. Young, G., NT41. Spinney, K. T., G48, 56; NT33; D20. Springer, T., GT58; EE 10. Zaitsev, L. N., NE36. Starbird, A. W., EGE3, 4; RSI, 14. Zendle, B., GE58. Starfelt, N., GE20 Zerby, C. D., GT24, 48; NT19, 42. Steinberg, H., GT41. Zigman, P., SD13. Stephenson, R., G57. SD25. Stern, H. E., G68; NT34. Zobel, W., Stickley, E. E., NE32. Zolotukhin, V. G., GT53. Stinson, F., GT39. Zweifel, P. F., NT43.

36 U.S. GOVERNMENT PRINTING OFFICE:I964 THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements. Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Volume. Heat. Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equip- ment. Nucleonic Instrumentation. Neutron Physics. Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Refer- ence Materials. Applied Analytical Research. Crystal Chemistry. Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combus- tion Controls. Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Charac- terization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research. Metallurgy. Engineering Metallurgy. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition. Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography. Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. . Inorganic Building Materials. Metallic Building Materials. Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Op- erations Research. Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis. Atomic Physics. . Spectroscopy. Far Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy. Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instru- ments. Basic Instrumentation. Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecularj Spectroscopy. Ele- mentary Processes. Mass Spectrometry. Photochemistry and . Office of Weights and Measures. BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Processes. Cryogenic Properties of Solids. Cryogenic Technical Services. Properties of Cryogenic Fluids. CENTRAL LABORATORY Ionosphere Research and Propagation. Low and Very Research. Ionosphere Re- search. Prediction Services. -Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research. Troposphere and Space Telecommunications. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Spectrum Utilization Research. Radio-Meteorological. Lower Atmos- phere Physics. Radio Systems. Applied Electromagnetic Theory. and Research. Fre- quency Utilization. Modulation Research. Antenna Research. Radiodetermination. Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio . RADIO STANDARDS LABORATORY

Radio Standards Physics. Frequency and Time Disseminations. Radio and Materials. Atomic Fre- quency and Time-Interval Standards. Radio Plasma. Microwave Physics. Radio Standards Engineering. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services. NBS LABORATORY GROUP (Joint Institute for Laboratory Astrophysics at Univ. of Colo.)