Evaluation of the BET Theory for the Characterization of Meso and Microporous Mofs

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of the BET Theory for the Characterization of Meso and Microporous Mofs REVIEW BET Theory www.small-methods.com Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs Filip Ambroz, Thomas J. Macdonald,* Vladimir Martis, and Ivan P. Parkin* together by organic bridging ligands to Surface area determination with the Brunauer–Emmett–Teller (BET) method form 1D, 2D, or 3D structures as illus- [30] is a widely used characterization technique for metal–organic frameworks trated in Figure 1. Since there are a (MOFs). Since these materials are highly porous, the use of the BET theory variety of different metal ions and organic linkers, essentially an infinite number of can be problematic. Several researchers have evaluated the BET method to possible combinations exist.[31] gain insights into the usefulness of the obtained results and interestingly, Furthermore, since MOFs are also their findings are not always consistent. In this review, the suitability of the relatively simple to prepare, building BET method is discussed for MOFs that have a diverse range of pore widths components can be well designed which can result in the production of targeted below the diameters of N2 or Ar and above 20 Å. In addition, the surface area of products.[33–35] Computational calcula- MOFs that are obtained by implementing different approaches, such as grand tions have proven to be useful in pre- canonical Monte Carlo simulations, calculations from the crystal structures dictions of interactions between guest or based on experimental N2, Ar, or CO2 adsorption isotherms, are compared hosts and the framework leading to pos- and evaluated. Inconsistencies in the state-of-the-art are also noted. Based on sible synthesis routes for MOFs with [36,37] the current literature, an overview is provided of how the BET method can give required properties. They are often [38–40] useful estimations of the surface areas for the majority of MOFs, but there are compared to zeolites; however cer- tain characteristics are often not present some crucial and specific exceptions which are highlighted in this review. in zeolites including big pore sizes, high sorption capacities, and complex sorption behavior.[6,41] New MOF structures with 1. Introduction diverse properties are still emerging with ever increasing spe- cific surface areas, that have to be determined in the course of Metal–organic frameworks (MOFs) are one of the most MOF characterization.[42–44] In this regard, correct measure- highly porous materials and since their discovery, have been ments of the surface areas are valuable as this is a very impor- thoroughly investigated as a result of their specific properties tant characteristic of microporous materials. Usually the sur- that are exceptional among known materials.[1–3] They combine face areas of MOFs are predicted by implementing the theory two disciplines, namely organic and inorganic chemistry[4] of Brunauer–Emmett–Teller (BET) where the surface areas are and possess many favorable characteristics, for example high derived from gas adsorption isotherms at the boiling point of a [45,46] [47,48] surface area, high porosity, tenability, reproducibility, high gas. Typically, N2 gas is used for this purpose. How- sorption capacities, facile syntheses, and good possibilities for ever, other gases, for instance Ar or CO2 or even organic vapors scale up.[5–8] Therefore, such materials can be used in numerous (dynamic vapor sorption) may also be used.[49–52] While there [9–11] [12–14] applications, for instance catalysis, gas storage, gas have been attempts to use H2, they remained in the form of separation,[15–17] drug delivery,[18–20] luminescence,[21–23] solar discussion.[53] Surface area can also be reported as the Lang- cells,[24–26] and batteries.[27–29] This class of porous polymeric muir surface area that is defined in terms of the monolayer material is assembled by the connection of a metal ion linked being the limit of adsorption.[54,55] Many researchers have investigated the suitability of the BET theory since it is based F. Ambroz, Dr. T. J. Macdonald, Prof. I. P. Parkin on several assumptions that may not be ideal for determining Department of Chemistry the surface area of microporous materials such as MOFs.[56–58] University College London London WC1E 6BT, UK Many concerns were focused on the pore-filling mechanism E-mail: [email protected]; [email protected] and uneven monolayer formation which is discussed in the Dr. V. Martis sections below. For amorphous porous materials, the most con- Surface Measurement Systems Ltd. venient way to determine the surface area is from adsorption Unit 5 Wharfside Rosemont Road, Middlesex, HA0 4PE, UK isotherms as opposed to crystalline materials where as a result The ORCID identification number(s) for the author(s) of this article of a known crystal structure, geometric methods can regularly can be found under https://doi.org/10.1002/smtd.201800173. be applied.[59,60] © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA In this review, the applicability of the BET method for deter- Weinheim. This is an open access article under the terms of the Creative mining surface areas of MOFs with various pore widths is Commons Attribution License, which permits use, distribution and discussed. Reported drawbacks and limitations of the BET reproduction in any medium, provided the original work is properly cited. theory which can lead to unreliable results are also covered. For DOI: 10.1002/smtd.201800173 evaluation of the BET method, experimental data have to be Small Methods 2018, 1800173 1800173 (1 of 17) © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.advancedsciencenews.com www.small-methods.com Filip Ambroz is currently an Engineering Doctorate (EngD) student in the Department of Chemistry at University College London (UCL). He received his M.S. degree in molecular mod- eling and materials science from UCL and B.S. degree in Figure 1. Assembly of 1D, 2D, and 3D network structures of MOFs. Reproduced with permission.[32] Copyright 2003, Elsevier. chemical engineering from the University of Maribor, compared. Hence, the surface areas of MOFs obtained with dif- Slovenia. Before starting his ferent approaches, namely the values calculated from the crystal EngD, he did research for a year at the University of South structures and from the simulated isotherms (applying BET Australia under the supervision of Prof. Thomas Nann. theory), are examined and compared against the experimental His research is closely linked with the industrial company, results. Surface Measurement Systems Ltd. In addition, his work includes the synthesis and characterization of microporous materials that can be used for renewable energy generation. 2. BET Theory Thomas J. Macdonald is The fundamental element of BET theory is associated with the [61–63] currently a Ramsay Memorial adsorption of a gas on the material’s surface. This phenom- Fellow in the Chemistry enon is caused by van der Waals forces that are created by a film Department at University of the adsorbate, which consists of atoms, ions, or molecules College London. He is also on the surface of a substance that adsorbs these particles. The [64,65] a visiting researcher in the process of adsorption can be physical or chemical. While Chemistry Department at physical adsorption is related to van der Waals forces, chemical Imperial College London. adsorption is a result of the chemical reaction between the solid Prior to this, he was a and the adsorbate (gas).[66,67] The amount of the adsorbed gas on [68] Research Associate in the the adsorbent material can be correlated with its surface area. group of Prof. Ivan Parkin There are several parameters that have influence on this pro- working on the synthesis of cess for instance, temperature, pressure, characteristics of the [69,70] gold nanomaterials. He obtained his Ph.D. at the University material, etc. BET theory is closely related to Langmuir of South Australia in 2016 working in the research group theory. The latter assumes that gas molecules form a monolayer [71,72] of Prof. Thomas Nann where he studied the synthesis of adsorption which is an ideal situation. In such formations, inorganic nanomaterials for water splitting and photovol- all the molecules that are adsorbed are in contact with the sur- taics. His research interests are in the synthesis of functional face of the adsorbent’s material. This coverage can occur in a nanomaterials for renewable energy conversion and storage. closed-packed structure where molecules are tightly next to each other or they can also be spread around the surface. The gas molecules are held on the surface by gas–solid forces. On the Ivan P. Parkin obtained his other hand, with multilayer adsorption more than one layer of B.S. and Ph.D. (supervisor gas molecules are formed, consequently not all of them are in Prof. Woollins) degrees from contact with the surface layer of the adsorbent. Therefore, vapor- Imperial College London and phase interaction between gas molecules occurs. These vapor did his postdoctoral research phase interaction energies are similar to gas–solid interaction at Indiana University with energies leading to the phenomenon of gas adsorption on the Prof. Chisholm FRS. He was top of gas molecules that are already adsorbed on the surface of appointed to a temporary lec- a solid. As a result of that, a gas condenses to a liquid phase.[73] tureship at the Open University Multilayer adsorption is a typical phenomenon when tempera- before moving to UCL in ture of the absorbent’s surface is lower than the critical tem- 1993. Having been head of the perature of gas molecules. When layers of adsorbate molecules Chemistry Department for six are formed, the pressure is increasing until it reaches a value and a half years, he has recently been appointed as Dean of similar to the bulk vapor pressure when the bulk condensation the Faculty of Mathematical and Physical Sciences.
Recommended publications
  • The Use of Nitrogen Adsorption for the Characterisation of Porous Materials
    Colloids and Surfaces A: Physicochemical and Engineering Aspects 187–188 (2001) 3–9 www.elsevier.nl/locate/colsurfa Review The use of nitrogen adsorption for the characterisation of porous materials Kenneth Sing * School of Chemistry, Bristol Uni6ersity, Bristol, UK Abstract Problems, which may arise when low-temperature nitrogen adsorption is used for the characterisation of porous materials, are discussed in this review. Continuous or discontinuous manometric techniques can be employed for nitrogen adsorption measurements at 77 K. For pore structure analysis, the nitrogen adsorption–desorption isotherms should be determined over the widest possible range of relative pressure, while allowing for slow equilibration and other operational problems, particularly at very low pressures. In spite of its artificial nature, the Brunauer–Emmett–Teller (BET) method is still used for the determination of surface area. In principle, nitrogen isotherms of Types II and IV are amenable to BET analysis provided that pores of molecular dimensions are absent and that the BET plot is obtained over an appropriate range of the isotherm. An empirical method based on the application of standard adsorption data is useful for checking the validity of the BET-area. All the computational procedures for pore size analysis have limitations of one sort or another. The various assumptions include an ideal pore shape, rigidity of the structure and an oversimplified model (capillary condensation or micropore filling). The derived pore widths and pore volumes should be regarded as effective (or apparent) values with respect to the adsorption of nitrogen at 77 K. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Physisorption; Nitrogen adsorption; BET method; Surface area; Pore size analysis 1.
    [Show full text]
  • Surface Area Sample Preparation
    THE IMPORTANCE OF SAMPLE PREPARATION WHEN MEASURING SPECIFIC SURFACE AREA Eric Olson ABSTRACT Specific surface area is a fundamental measurement in the field of fine particle characterization. Specific surface area measurements have numerous pharmaceutical manufacturing and quality applications. Compliance professionals should have a general understanding of the principles, procedures, and instrumentation associated with specific surface area testing, and be vigilant of potential situations that may impact the accuracy of test data. The conditions under which a sample is prepared for a specific surface area measurement can often influence test results. The first step when preparing a sample for specific surface area measurement is to clear the surface of all water and various contaminants. Discussed are the different types of water including surface adsorbed water, porosity and absorbed water, and water of hydration. When preparing a sample for analysis, the primary factor to be controlled is the temperature. The importance of thermal analysis is discussed in regards to specific surface area measurement. During heating, samples may undergo various changes, especially to their surfaces. These changes, including glass transitions, sintering, annealing, melting, and decomposition are discussed. Common materials are divided into groups, and general sample preparation conditions are provided for each group. INTRODUCTION Since the introduction of quality by design and design space in ICH Q8i, it has been apparent that US Food and Drug Administration and the rest of the international regulatory community expect pharmaceutical dosage form developers to establish a thorough, science-based knowledge of its product and processes, and present this knowledge in its application. Where the raw material is a solid, the specific surface area may be important, especially to solubility, dissolution, and bioavailability.
    [Show full text]
  • An Image- and BET-Based Monte-Carlo Approach to Determine Mineral Accessible Surface Areas in Sandstones
    ================================================== This a non-peer reviewed preprint submitted to EarthArXiv: An image- and BET-based Monte-Carlo approach to determine mineral accessible surface areas in sandstones Jin Ma, Geothermal Energy & Geofluids Group, Department of Earth Sciences (D-ERDW), ETH-Z¨urich,CH-8092, Switzerland. email: [email protected] Martin O. Saar, Geothermal Energy & Geofluids Group, Department of Earth Sciences (D-ERDW), ETH-Z¨urich,CH-8092, Switzerland. email: [email protected] Xiang-Zhao Kong, Geothermal Energy & Geofluids Group, Department of Earth Sciences (D-ERDW), ETH-Z¨urich,CH-8092, Switzerland. email: [email protected] ================================================== 1 1 An image- and BET-based Monte-Carlo approach to 2 determine mineral accessible surface areas in sandstones ∗ 3 Jin Ma, Martin O. Saar, Xiang-Zhao Kong 4 Geothermal Energy and Geofluids Group, Department of Earth Sciences, ETH-Z¨urich,CH-8092, 5 Switzerland 6 Abstract 7 Accessible surface areas (ASAs) of individual rock-forming minerals exert a fun- 8 damental control on how minerals react with formation fluids. However, due to 9 lacking adequate quantification methods, determining the ASAs of specific minerals 10 in a multi-mineral rock at the appropriate scale still remains difficult. Whole-rock 11 Brunauer-Emmett-Teller (BET) measurements at atomic scales cannot account for 12 the variability in ASAs of individual minerals, while image-based methods are in- 13 herently limited by the image pixel/voxel resolution. Here, we present a novel joint 14 method that overcomes the aforementioned limitations by appropriately downscal- 15 ing individual image-based ASAs with the support of a Monte-Carlo algorithm and 16 BET measurements.
    [Show full text]
  • Adsorption Isotherm A
    Objectives_template Module 5: "Adsoption" Lecture 26: "" The Lecture Contains: BET (Brunauer Emmet Teller) Adsorption Isotherm Assumptions in the BET theory Practically useful form Drawbacks of BET adsorption theory Application in Surface Phenomenon Reference file:///E|/courses/colloid_interface_science/lecture26/26_1.htm[6/16/2012 1:07:58 PM] Objectives_template Module 5: "Adsoption" Lecture 26: "" BET (Brunauer Emmet Teller) Adsorption Isotherm Stephen Brunauer, Paul Emmet and Edward Teller published this theory in 1938. It is a theory for multi-layer physisorption and is of profound significance in the development of this field. Fig. 7.7: Active sites in BET adsorption To derive the BET adsorption isotherm equation let us propose the following: Consider the surface of adsorbent to be made up of sites (in the above figure =20) Let number of sites which have adsorbed 0 molecules be = (in the above figure = 8; viz. site number 1, 3, 4, 9, 10, 11, 17, 18) Let number of sites which have adsorbed 1 molecule be = (in the above figure = 6; viz. sites number 2, 5, 12, 13, 14, 20 ) Let number of sites which have adsorbed 2 molecules be = (in the above figure = 4; viz. sites number 8, 15, 16, 19 ) …….. …….. (and so on) …….. Let number of sites which have adsorbed molecules be = Therefore, total number of sites has to be In the above example it can be verified that 20 = 8 + 6 + 4 + 1 + 1 ( Also it is easy to note that the total number of molecules adsorbed is given by (7.7) In the above figure N = 0*8 + 1*6 +2*4 + 3*1 + 4*1 = 21 molecules (which can be verified by counting) NOTE: Here, for mathematical completeness and without loss of generality we assume that infinite molecules can be adsorbed on one site though practically it is not possible.
    [Show full text]
  • Impact of Brunauer Emmett Teller Isotherm on Research in Science Citation Index Expanded
    Environmental Engineering and Management Journal September 2015, Vol.14, No. 9, 2163-2168 http://omicron.ch.tuiasi.ro/EEMJ/ “Gheorghe Asachi” Technical University of Iasi, Romania IMPACT OF BRUNAUER EMMETT TELLER ISOTHERM ON RESEARCH IN SCIENCE CITATION INDEX EXPANDED Moonis Ali Khan1,2, Yuh-Shan Ho3 1Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh, India 3Trend Research Centre, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung County 41354, Taiwan Abstract A bibliometric analysis along with a brief historical and modifications overview and scientific applications was carried out to reveal the impact of Brunauer-Emmett-Teller (BET) isotherm on scientific research. The data was based on the Science Citation Index Expanded (SCI-EXPANDED) database of the Thomson Reuters Web of Science. BET isotherm received a total of 10,418 citations from its publication to 2012. Among them, 9,117 (88%) were research articles by 20,108 authors with 95% manuscripts in English. Geographical distribution revealed that North America was the most productive continent, while Africa contributed the least citations. In terms of the institutions and research areas, Spanish National Research Council of Spain and chemistry took the lead. Citations on nanoscience and nanotechnology and environmental science categories increased significantly in the last five years. Journal of Colloids and Interface Science published the most BET isotherm cited articles, while “adsorption”, “surface”, and “properties” were the most frequently used words in title. Key words: adsorption, bibliometric, BET isotherm, physical chemistry Received: June, 2013; Revised final: June, 2014; Accepted: July, 2014 1.
    [Show full text]
  • Aerogel-Like Materials
    gels Article Influence of Structure-Directing Additives on the Properties of Poly(methylsilsesquioxane) Aerogel-Like Materials Marta Ochoa 1,2, Alyne Lamy-Mendes 1 , Ana Maia 1, António Portugal 1 and Luísa Durães 1,* 1 CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; [email protected] (M.O.); [email protected] (A.L.-M.); [email protected] (A.M.); [email protected] (A.P.) 2 Active Aerogels, Parque Industrial de Taveiro, Lote 8, 3045-508 Coimbra, Portugal * Correspondence: [email protected]; Tel.: +351-239-798-737; Fax: +351-239-798-703 Received: 22 December 2018; Accepted: 22 January 2019; Published: 28 January 2019 Abstract: The effect of glycerol (GLY) and poly(ethylene glycol) (PEG) additives on the properties of silica aerogel-like monoliths obtained from methyltrimethoxysilane (MTMS) precursor was assessed. The tested molar ratios of additive/precursor were from 0 to 0.1 and the lowest bulk densities were obtained with a ratio of 0.025. When a washing step was performed in the sample containing the optimum PEG ratio, the bulk density could be reduced even further. The analysis of the material’s microstructure allowed us to conclude that GLY, if added in an optimum amount, originates a narrower pore size distribution with a higher volume of mesopores and specific surface area. The PEG additive played a binder effect, leading to the filling of micropores and the appearance of large pores (macropores), which caused a reduction in the specific surface area. The reduction of the bulk density and the microstructural changes in the aerogels induced by adding a small amount of these additives confirm the possibility of fine control of properties of these lightweight materials.
    [Show full text]
  • Specific Surface Area and Pore-Size Distribution in Clays and Shales Utpalendu Kuila ∗ and Manika Prasad Colorado School of Mines, 1500 Illinois St
    Geophysical Prospecting, 2013, 61 , 341–362 doi: 10.1111/1365-2478.12028 Specific surface area and pore-size distribution in clays and shales Utpalendu Kuila ∗ and Manika Prasad Colorado School of Mines, 1500 Illinois St. Golden, CO 80401 Received February 2012, revision accepted December 2012 ABSTRACT One of the biggest challenges in estimating the elastic, transport and storage properties of shales has been a lack of understanding of their complete pore structure. The shale matrix is predominantly composed of micropores (pores less than 2 nm diameter) and mesopores (pores with 2–50 nm diameter). These small pores in the shale matrix are mainly associated with clay minerals and organic matter and comprehending the controls of these clays and organic matter on the pore-size distribution is critical to understand the shale pore network. Historically, mercury intrusion techniques are used for pore-size analysis of conventional reservoirs. However, for unconventional shale reservoirs, very high pressures ( > 414 MPa (60 000 psi)) would be required for mercury to access the full pore structure, which has potential pitfalls. Current instrumental limitations do not allow reliable measurement of significant portions of the total pore volume in shales. Nitrogen gas-adsorption techniques can be used to characterize materials dominated by micro- and mesopores (2–50 nm). A limitation of this technique is that it fails to measure large pores (diameter >200 nm). We use a nitrogen gas-adsorption technique to study the micro- and mesopores in shales
    [Show full text]
  • Scorption Theories Applied to Wood
    SORPTION THEORIES APPLIED TO WOOD1 W. Simpson Forest Products Technologist Forest Products Laboratory, U.S. Department of Agriculture2 (Received 26 December 1979) ABSTRACT A number of sorption theories are discussed in relation to the wood-water system. The theories are tested in terms of how well they can be made to predict moisture content through curve fitting and how well they can predict heats of adsorption. Theories discussed are the BET (Brunauer, Emmett, Teller). Hailwood and Horrobin, King, and Peirce. Even though the theories can be fitted very closely to experimental sorption data, they do not do well in predicting heat of adsorption. They do, however, all suggest the same general form of adsorption: part of the water is intimately associated with cellulose molecules and part is distinctly less intimately associated. Keywords: sorption, isotherms, moisture content. INTRODUCTION Numerous theories have been derived for sorption of gases on solids, many of which can be applied to the sorption of water vapor by wood. Why has such effort been expended, and what success has been achieved? What can sorption theories tell us, and is what they tell realistic? Can they tell us anything useful about the wood-water system? This paper attempts to answer some of these questions. The paper reviews the nature of sorption and how water is held in wood, sorption isotherms, and thermodynamics of sorption, and how it all relates to sorption theory. A description of some of the theories is presented, and finally some tests of the theories developed. This should lead us to the point where we can answer some questions on the usefulness of sorption theories.
    [Show full text]
  • Brunauer-Emmett-Teller (BET) Surface Area Analysis Introduction  BET  Gas Adsorption Or Nitrogen Adsorption
    Brunauer-Emmett-Teller (BET) surface area analysis Introduction BET Gas adsorption or Nitrogen adsorption Stephen Brunauer, Paul Hugh Emmett, and Edward Teller Directly measures surface area & pore size distribution BET theory deviates from ideal to actual analysis 2 Basic Principle Ideal PV = nRT Actual No gas molecules Never start from no gas molecules Q Ads P/Po Nitrogen gas molecules Monolayer: Gas molecules clump Q Ads together P/Po Saturated Nitrogen gas molecules Multilayer: Gas molecules clump together Q Ads P/Po Some pores are not filled 3 Basic Principle Cont. BET is an extension of Langmuir model Kinetic behavior of the adsorption process Rate of arrival of adsorption is equal to the rate of desorption Heat of adsorption was taken to be constant and unchanging with the degree of coverage, θ 4 Basic Principle Cont. Assumptions Gas molecules behave ideally Only 1 monolayer forms All sites on the surface are equal No adsorbate-adsorbate interaction Adsorbate molecule is immobile 5 BET Theory Basic Principle Cont. Homogeneous surface No lateral interactions between molecules Uppermost layer is in equilibrium with vapour phase First and Higher layer: Heat adsorption All surface sites have same adsorption energy for adsorbate Adsorption on the adsorbent occurs in infinite layers The theory can be applied to each layer 5 Basic Principle Cont. Pore classification Pore size 5 Basic Principle Cont. Adsorption Mechanism Capillary Monolayer Multilayer condensation 5 Sample preparation Weigh solid sample (200 ≈ 300 mg)
    [Show full text]
  • Study on Water Sorption Isotherm of Summer Onion
    ISSN 0258-7122 Bangladesh J. Agril. Res. 40(1): 35-51, March 2015 STUDY ON WATER SORPTION ISOTHERM OF SUMMER ONION MD. MASUD ALAM1 AND MD. NAZRUL ISLAM2 Abstract The water sorption characteristics of dehydrated onion and onion solutes composite by vacuum drying (VD) and air drying (AD) were developed at room temperature using vacuum desiccators containing saturated salt solutions at various relative humidity levels (11-93%). From moisture sorption isotherm data, the monolayer moisture content was estimated by Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) equation using data up to a water activity of 0.52 and 0.93 respectively. Results showed that in case of non treated samples the monolayer moisture content values (Wo) of BET gave slightly higher values than GAB (9.7 vs 8.2) for VD, while GAB gave higher value than BET (11.0 vs 9.8) for AD. It is also seen that the treated and non treated onion slice and onion powder absorbed approximately the same amount of water at water activities below about 0.44 and above 0.44 the treated samples begin to absorb more water than the non treated samples. It was observed that 10-20% added of sugar gave no change in water sorption capacity while the amount of sorbed water increases with increasing amount added salt for mix onion product. Keywords: BET equation, GAB equation, Monolayer moisture content, Water activity Introduction Summer onion (Allium cepa L.) is one of the most important spice crop grown all the year round in Bangladesh. Even any curry cannot be think without onion.
    [Show full text]
  • Quantifying Surface Morphology of Manufactured Activated Carbon And
    www.nature.com/scientificreports OPEN Quantifying surface morphology of manufactured activated carbon and the waste cofee grounds using the Getis‑Ord‑Gi* statistic and Ripley’s K function Sanghoon Lee1, Sukjoon Na2, Olivia G. Rogers3 & Sungmin Youn2* Activated carbon can be manufactured from waste cofee grounds via physical and/or chemical activation processes. However, challenges remain to quantify the diferences in surface morphology between manufactured activated carbon granules and the waste cofee grounds. This paper presents a novel quantitative method to determine the quality of the physical and chemical activation processes performed in the presence of intensity inhomogeneity and identify surface characteristics of manufactured activated carbon granules and the waste cofee grounds. The spatial density was calculated by the Getis‑Ord‑Gi* statistic in scanning electron microscopy images. The spatial characteristics were determined by analyzing Ripley’s K function and complete spatial randomness. Results show that the method introduced in this paper is capable of distinguishing between manufactured activated carbon granules and the waste cofee grounds, in terms of surface morphology. Activated carbon is one of the most widely used absorbents in water and wastewater treatment1. Activated car- bon has been used since ancient Greece to remove contaminants in air and water2. Relatively small amounts of activated carbon can absorb signifcant amounts of contaminants due to its extremely large surface area per unit mass. Te porous structure of activated carbon determines the absorptive capacity 3. Many studies have shown the efectiveness of activated carbon adsorption for a wide range of contaminants. According to the literature, activated carbon can efectively adsorb both organic and inorganic contaminants including biological nutrients, pharmaceuticals, endocrine disruptors, pesticides, dyes, heavy metals, and even persistent organic pollutants like per- and polyfuoroalkyl substances4–11.
    [Show full text]
  • Specific Surface Area by Brunauer-Emmett-Teller (BET) Theory
    SOP: Specific surface area analysis by BET theory Specific surface area by Brunauer-Emmett-Teller (BET) theory Date 30.05.2016 Version 1.0 English Contents 1 Scope 2 2 Basics 2 2.1 Background: BET theory 2 3 Materials & Instruments 2 3.1 Materials 2 3.2 Instruments 3 4 Experimental procedure 3 4.1 Preparation and measurement 3 4.2 Quantification 4 5 Safety precautions 4 6 Waste disposal 4 7 Literature 4 Page 1 of 5 Specific surface area analysis by BET theory 1 Scope This Standard Operating Procedure (SOP) describes the experimental procedure and set- tings of the specific surface area analysis by Brunauer-Emmett-Teller (BET) theory. 2 Basics Within the increased use of nanomaterials (NM) in the last years also the efforts to detect the specific surface area of NM increased. The specific surface area determines the contact area of the NM with other surfaces / substances in the environment. NM show a larger specific surface area compared to their microscale pendants, with the consequence that it has been suggested that NM are more “reactive”. Thus, it is not surprising that the specific surface ar- ea is suggested to be a relevant dose metric e. g. in nanotoxicology. The surface area has been defined by ISO (2012) as “the quantity of accessible surface of a sample when exposed to either gaseous or liquid adsorbate phase.” The specific surface area is defined as the sur- face area of a material divided by its mass or its volume. In this SOP the specific surface area per mass is used (m2/g) and its determination based on the BET theory is described.
    [Show full text]