Evolution of the COVID-19 Vaccine Development Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the COVID-19 Vaccine Development Landscape https://doi.org/10.1038/d41573-020-00151-8 Supplementary information Evolution of the COVID-19 vaccine development landscape In the format provided by the authors Nature Reviews Drug Discovery | www.nature.com/nrd Supplementary Table 1 | COVID-19 vaccines in clinical development* Candidate Lead partners Vaccine characteristics Start of first Current stage Location (current phase I trial and upcoming trials) Viral vector (including replicating and non-replicating) Ad5-nCoV CanSino Biological/ Adenovirus type 5 vector that 17 Mar 20 Phase II CHN, CAN, UAE, PAK, Beijing Institute of expresses S protein (ChiCTR2000031781) MEX, BRZ, RUS Biotechnology Approved for military use in China LV-SMENP-DC Shenzhen GIMI DCs modified with lentiviral 24 Mar 20 Phase I/II CHN vector expressing synthetic (NCT04276896) minigene based on domains of selected viral proteins AZD1222 AstraZeneca/ ChAdOx1 vector that expresses 23 Apr 20 Phase III BRZ, GBR, ZAF, USA, Oxford University S protein (NCT04516746) IND, BGD Gam-COVID-Vac Gamaleya Research Recombinant adenovirus vector 18 Jun 20 Phase III RUS, KAZ, BLR, BRZ, Institute based on the human adenovirus (NCT04530396) MEX type 5, 26, containing S protein Conditional registration in Russia Ad26.COV2-S J&J – Janssen Adenovirus type 26 vector that 22 Jul 20 Phase I/II USA, BEL, BRZ, CHL, expresses S protein (NCT04436276) COL, MEX, PER, PHL, ZAF, UKR, ARG Pathogen-specific Shenzhen GIMI aAPCs modified with lentiviral Feb 20 Phase I CHN aAPC vector expressing synthetic (NCT04299724) minigene based on domains of selected viral proteins GRAd-COV2 ReiThera Srl Gorilla adenovirus vector that 24 Aug 20 Phase I ITA expresses S protein (NCT04528641) V591 Merck Sharp & Measles virus vector Aug 20 Phase I USA Dohme (NCT04497298) DNA INO-4800 Inovio DNA plasmid that encodes 06 Apr 20 Phase I/II USA, KOR, CHN Pharmaceuticals S protein delivered by (NCT04336410) electroporation GX-19 Genexine DNA vaccine that encodes 19 Jun 20 Phase I/II KOR Consortium S protein delivered by (NCT04445389) electroporation or needle free AG0301-COVID19 Osaka University/ DNA vaccine that encodes 29 Jun 20 Phase I/II JPN AnGes S protein (NCT04463472) ZyCoV-D Zydus Cadila DNA vaccine 15 Jul 20 Phase I/II IND (CTRI/2020/07/026352) RNA mRNA-1273 Moderna LNP-encapsulated mRNA that 16 Mar 20 Phase III USA Therapeutics/NIAID encodes S protein (NCT04470427) mRNA-BNT162 Pfizer/BioNTech LNP-encapsulated mRNA that 29 Apr 20 Phase II/III USA, GER, ARG, BRZ, encodes stabilised S antigen (NCT04368728) CHN and others CVnCoV CureVac LNP-encapsulated mRNA that 19 Jun 20 Phase I GER, BEL encodes the S protein (NCT04449276) LNP-nCoVsaRNA Imperial College LNP-encapsulated self-amplifying 19 Jun 20 Phase I/II GBR London RNA that encodes the S protein (ISRCTN17072692) mRNA Walvax mRNA encoding the RBD 25 Jun 20 Phase I CHN Biotechnology (ChiCTR2000034112 ) ARCT-021 Arcturus LNP-encapsulated self-replicating 12 Aug 20 Phase I/II SGN Therapeutics mRNA that encodes the prefusion (NCT04480957) S protein Supplementary Table 1 cont. | COVID-19 vaccines in clinical development* Candidate Lead partners Vaccine characteristics Start of first Current stage Location (current phase I trial and upcoming trials) Inactivated virus Inactivated Wuhan Institute of Inactivated novel coronavirus 11 Apr 20 Phase III CHN, UAE, MAR SARS-CoV-2 Biological Products/ Pneumonia vaccine (Vero cells) (ChiCTR2000034780) vaccine Sinopharm Adsorbed Sinovac Biotech SARS-CoV-2 inactivated vaccine 16 Apr 20 Phase III CHN, BRZ, BGD, CHL, COVID-19 (NCT04456595) IND, TUR (inactivated) vaccine Inactivated Beijing Institute Inactivated novel coronavirus 28 Apr 20 Phase I/II CHN SARS-CoV-2 of Biotechnology/ (2019-CoV) vaccine (Vero cells) (ChiCTR2000032459) vaccine Sinopharm Inactivated Institute of Medical SARS-CoV-2 inactivated vaccine 15 May 20 Phase I/II CHN SARS-CoV-2 Biology, Chinese (NCT04470609) vaccine Academy of Medical Sciences BBV 152 Bharat Biotech Whole-virion inactivated 14 July 20 Phase I/II IND (CTRI/2020/07/026300) Protein-based (including recombinant protein, virus-like particle, peptide-based) NVXCoV2373 Novavax Stable, prefusion protein, includes 25 May 20 Phase II AUS, USA, ZAF MatrixM™ adjuvant (NCT04368988) SCB-2019 Clover Recombinant SARS-CoV-2 19 Jun 20 Phase I AUS Biopharmaceuticals trimeric S protein subunit vaccine (NCT04405908) Recombinant Anhui Zhifei Recombinant SARS-CoV-2 RBD 22 Jun 20 Phase II CHN new coronavirus Longcom protein subunit vaccine (NCT04466085) vaccine (CHO cell) Biopharmaceutical/ IMCAS Covax-19 Vaxine Pty/Medytox Recombinant SARS-COV-2 spike 01 July 20 Phase I AUS protein with Advax-SM adjuvant (NCT04453852) UQ-1-SARS-CoV- University of Recombinant SARS-COV-2 spike 13 July 20 Phase I AUS 2-Sclamp Queensland/CSL protein ‘molecular clamp’ plus (ACTRN12620000674932p) MF59 adjuvant Coronavirus-like Medicago Plant-derived virus-like particle 13 Jul 20 Phase I CAN particle COVID-19 with/without ASO3 or CPG1018 (NCT04450004) vaccine adjuvant EpiVacCorona FBRI SRC VB Synthesized peptide antigens of 27 Jul 20 Phase I/II RUS VECTOR SARS-CoV-2 proteins (NCT04527575) Soberana 01 Instituto Finlay de RBD with adjuvant 24 Aug 20 Phase I/II CUB Vacunas (IFV/COR/04) Recombinant Sichuan University Recombinant SARS-CoV-2 28 Aug 20 Phase I CHN SARS-CoV-2 vaccine (Sf9 cell) (ChiCTR2000037518) vaccine Adjuvanted Sanofi / GSK Recombinant protein-based S Sep 20 Phase I/II USA recombinant protein vaccine together with (NCT04537208) protein-based ASO3 vaccine *The table includes candidates that have started dosing the first patient. The candidates are ordered by platform and the start date of the first phase I trial. The data is from 3 September 2020; see Supplementary Box 1 for details. aAPC, artificial antigen-presenting cell, DC, dendritic cell; LNP, lipid nanoparticle; RBD, receptor-binding domain. .
Recommended publications
  • What Do We Know About India's Covaxin Vaccine?
    FEATURE Tamil Nadu, India COVID-19 VACCINES [email protected] BMJ: first published as 10.1136/bmj.n997 on 20 April 2021. Downloaded from Cite this as: BMJ 2021;373:n997 http://dx.doi.org/10.1136/bmj.n997 What do we know about India’s Covaxin vaccine? Published: 20 April 2021 India has rapidly approved and rolled out Covaxin, its own covid-19 vaccine. Kamala Thiagarajan examines what we know so far. Kamala Thiagarajan freelance journalist Who developed Covaxin? cheapest purchased by any country in the world at 206 rupees per shot for the 5.5 million doses the Covaxin was developed by Indian pharmaceutical government currently has on order. The government company Bharat Biotech in collaboration with the has capped the price of the vaccine sold in the private Indian Council of Medical Research, a government market, with private hospitals able to charge up to funded biomedical research institute, and its 250 rupees.13 subsidiary the National Institute of Virology. Covaxin does not require storage at sub-zero Bharat Biotech has brought to market 16 original temperatures, which would be hard to maintain in vaccines, including for rotavirus, hepatitis B, Zika India’s climate and with the frequent power cuts in virus, and chikungunya.1 The company reportedly rural areas. Covaxin is available in multi-dose vials spent $60-$70m (£43-£50m; €50-€58m) developing and is stable at the 2-8°C that ordinary refrigeration Covaxin.2 can achieve. How does Covaxin work? Bharat Biotech says it has a stockpile of 20 million The vaccine is similar to CoronaVac (the Chinese doses of Covaxin for India and is in the process of vaccine developed by Sinovac)3 in that it uses a manufacturing 700 million doses at its four facilities complete infective SARS-CoV-2 viral particle in two cities by the end of the year.
    [Show full text]
  • SARS-Cov-2 RBD219-N1C1 Was Diluted in 20 Mm Tris, 150 Mm Nacl, Ph 7.5 (TBS Buffer) Before
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.367359; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title Page SARS‑CoV-2 RBD219-N1C1: A Yeast-Expressed SARS-CoV-2 Recombinant Receptor-Binding Domain Candidate Vaccine Stimulates Virus Neutralizing Antibodies and T-cell Immunity in Mice 1 2 3 Jeroen Pollet1,2, Wen-Hsiang Chen1,2, Leroy Versteeg1, Brian Keegan1, Bin Zhan1,2, Junfei 4 Wei1, Zhuyun Liu1, Jungsoon Lee1, Rahki Kundu1, Rakesh Adhikari1, Cristina Poveda1, 5 Maria-Jose Villar Mondragon1, Ana Carolina de Araujo Leao1, Joanne Altieri Rivera1, Portia 6 M. Gillespie1, Ulrich Strych1,2, Peter J. Hotez1,2,3,4,*, Maria Elena Bottazzi1,2,3* 7 1 Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA 8 2 Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical 9 Medicine, Baylor College of Medicine, Houston, TX, USA 10 3 Department of Biology, Baylor University, Waco, TX, USA 11 4 James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA 12 * Correspondence: 13 Corresponding Authors 14 [email protected]; [email protected] 15 16 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.367359; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Yeast-expressed SARS-CoV-2 RBD 17 Abstract 18 There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and 19 middle-income countries.
    [Show full text]
  • Perspectives for Therapeutic HPV Vaccine Development Andrew Yang1†, Emily Farmer1†,T.C.Wu1,2,3,4 and Chien-Fu Hung1,4,5*
    Yang et al. Journal of Biomedical Science (2016) 23:75 DOI 10.1186/s12929-016-0293-9 REVIEW Open Access Perspectives for therapeutic HPV vaccine development Andrew Yang1†, Emily Farmer1†,T.C.Wu1,2,3,4 and Chien-Fu Hung1,4,5* Abstract Background: Human papillomavirus (HPV) infections and associated diseases remain a serious burden worldwide. It is now clear that HPV serves as the etiological factor and biologic carcinogen for HPV-associated lesions and cancers. Although preventative HPV vaccines are available, these vaccines do not induce strong therapeutic effects against established HPV infections and lesions. These concerns create a critical need for the development of therapeutic strategies, such as vaccines, to treat these existing infections and diseases. Main Body: Unlike preventative vaccines, therapeutic vaccines aim to generate cell-mediated immunity. HPV oncoproteins E6 and E7 are responsible for the malignant progression of HPV-associated diseases and are consistently expressed in HPV-associated diseases and cancer lesions; therefore, they serve as ideal targets for the development of therapeutic HPV vaccines. In this review we revisit therapeutic HPV vaccines that utilize this knowledge to treat HPV-associated lesions and cancers, with a focus on the findings of recent therapeutic HPV vaccine clinical trials. Conclusion: Great progress has been made to develop and improve novel therapeutic HPV vaccines to treat existing HPV infections and diseases; however, there is still much work to be done. We believe that therapeutic HPV vaccines have the potential to become a widely available and successful therapy to treat HPV and HPV-associated diseases in the near future.
    [Show full text]
  • Gamma-Irradiated SARS-Cov-2 Vaccine Candidate, OZG-38.61.3, Confers Protection from SARS-Cov-2 Challenge in Human ACEII-Transgen
    www.nature.com/scientificreports OPEN Gamma‑irradiated SARS‑CoV‑2 vaccine candidate, OZG‑38.61.3, confers protection from SARS‑CoV‑2 challenge in human ACEII‑transgenic mice Raife Dilek Turan1,2,19, Cihan Tastan1,3,4,19*, Derya Dilek Kancagi1,19, Bulut Yurtsever1,19, Gozde Sir Karakus1,19, Samed Ozer5, Selen Abanuz1,6, Didem Cakirsoy1,8, Gamze Tumentemur7, Sevda Demir2, Utku Seyis1, Recai Kuzay1, Muhammer Elek1,2, Miyase Ezgi Kocaoglu1, Gurcan Ertop7, Serap Arbak9, Merve Acikel Elmas9, Cansu Hemsinlioglu1, Ozden Hatirnaz Ng10, Sezer Akyoney10,11, Ilayda Sahin8,12, Cavit Kerem Kayhan13, Fatma Tokat14, Gurler Akpinar15, Murat Kasap15, Ayse Sesin Kocagoz16, Ugur Ozbek12, Dilek Telci2, Fikrettin Sahin2, Koray Yalcin1,17, Siret Ratip18, Umit Ince14 & Ercument Ovali1 The SARS‑CoV‑2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A and smallpox proved to be reliable approaches for immunization for prolonged periods. In this study, a gamma‑irradiated inactivated virus vaccine does not require an extra purifcation process, unlike the chemically inactivated vaccines. Hence, the novelty of our vaccine candidate (OZG‑38.61.3) is that it is a non‑adjuvant added, gamma‑irradiated, and intradermally applied inactive viral vaccine. Efciency and safety dose (either 1013 or 1014 viral RNA copy per dose) of OZG‑38.61.3 was initially determined in BALB/c mice. This was followed by testing the immunogenicity and protective efcacy of the vaccine. Human ACE2‑encoding transgenic mice were immunized and then infected with the SARS‑CoV‑2 virus for the challenge test.
    [Show full text]
  • Main Outcomes of Discussion of WHO Consultation on Nucleic Acid
    MAIN OUTCOMES OF DISCUSSION FROM WHO CONSULTATION ON NUCLEIC ACID VACCINES I. Knezevic, R. Sheets 21-23 Feb, 2018 Geneva, Switzerland CONTEXT OF DISCUSSION • WHO Consultation held to determine whether the existing DNA guidelines were due for revision or if they remained relevant with today’s status of nucleic acid vaccine development and maturity towards licensure (marketing authorization) • Presentation will cover alignment to existing guidelines • Current status of development of DNA and RNA vaccines, both prophylactic & therapeutic • Main outcomes of discussion • Next steps already underway & planned STATUS OF DEVELOPMENT OF NUCLEIC ACID VACCINES • First likely candidate to licensure could be a therapeutic DNA vaccine against Human Papilloma Viruses • Anticipated to be submitted for licensure in 3-5 years • Other DNA vaccines are likely to follow shortly thereafter, e.g., Zika prophylaxis • RNA vaccines – less clinical experience, but therapeutic RNAs anticipated in 2021/22 timeframe to be submitted for licensure • For priority pathogens in context of public health emergencies, several candidates under development (e.g., MERS-CoV, Marburg, Ebola) MAIN OUTCOMES - GENERAL • Regulators expressed need for updated DNA guideline for prophylaxis and therapy • Less need at present for RNA vaccines in guideline but need some basic PTC • Flexibility needed now until more experience gained for RNA vaccines that will come in next few years • Revisit need for a more specific guideline at appropriate time for RNA vaccines • Institutional Biosafety Committees are regulated by national jurisdictions & vary considerably • How can WHO assist to streamline or converge these review processes? Particularly, during Public Health Emergency – can anything be done beforehand? MAIN OUTCOMES - DEFINITIONS • Clear Definitions are needed • Proposed definition of DNA vaccine: • A DNA plasmid(s) into which the desired immunogen(s) is (are) encoded and prepared as purified plasmid preparations to be administered in vivo.
    [Show full text]
  • (ACIP) General Best Guidance for Immunization
    8. Altered Immunocompetence Updates This section incorporates general content from the Infectious Diseases Society of America policy statement, 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host (1), to which CDC provided input in November 2011. The evidence supporting this guidance is based on expert opinion and arrived at by consensus. General Principles Altered immunocompetence, a term often used synonymously with immunosuppression, immunodeficiency, and immunocompromise, can be classified as primary or secondary. Primary immunodeficiencies generally are inherited and include conditions defined by an inherent absence or quantitative deficiency of cellular, humoral, or both components that provide immunity. Examples include congenital immunodeficiency diseases such as X- linked agammaglobulinemia, SCID, and chronic granulomatous disease. Secondary immunodeficiency is acquired and is defined by loss or qualitative deficiency in cellular or humoral immune components that occurs as a result of a disease process or its therapy. Examples of secondary immunodeficiency include HIV infection, hematopoietic malignancies, treatment with radiation, and treatment with immunosuppressive drugs. The degree to which immunosuppressive drugs cause clinically significant immunodeficiency generally is dose related and varies by drug. Primary and secondary immunodeficiencies might include a combination of deficits in both cellular and humoral immunity. Certain conditions like asplenia and chronic renal disease also can cause altered immunocompetence. Determination of altered immunocompetence is important to the vaccine provider because incidence or severity of some vaccine-preventable diseases is higher in persons with altered immunocompetence; therefore, certain vaccines (e.g., inactivated influenza vaccine, pneumococcal vaccines) are recommended specifically for persons with these diseases (2,3). Administration of live vaccines might need to be deferred until immune function has improved.
    [Show full text]
  • COVID-19 Vaccination Strategy in China: a Case Study
    Article COVID-19 Vaccination Strategy in China: A Case Study Marjan Mohamadi 1,†, Yuling Lin 1,*,† ,Mélissa Vuillet Soit Vulliet 1,†, Antoine Flahault 1, Liudmila Rozanova 1 and Guilhem Fabre 2 1 Institute of Global Health, University of Geneva, 1211 Geneva, Switzerland; [email protected] (M.M.); [email protected] (M.V.S.V.); antoine.fl[email protected] (A.F.); [email protected] (L.R.) 2 Department of Chinese, UFR 2, Université Paul Valéry Montpellier 3, 34199 Montpellier, France; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The coronavirus disease 2019 (COVID-19) outbreak in China was first reported to the World Health Organization on 31 December 2019, after the first cases were officially identified around 8 December 2019. However, the case of an infected patient of 55 years old can probably be traced back on 17 November. The spreading has been rapid and heterogeneous. Economic, political and social impacts have not been long overdue. This paper, based on English, French and Chinese research in national and international databases, aims to study the COVID-19 situation in China through the management of the outbreak and the Chinese response to vaccination strategy. The coronavirus disease pandemic is under control in China through non-pharmaceutical interventions, and the mass vaccination program has been launched to further prevent the disease and progressed steadily with Citation: Mohamadi, M.; Lin, Y.; 483.34 million doses having been administered across the country by 21 May 2021. China is also Vulliet, M.V.S.; Flahault, A.; acting as an important player in the development and production of SARS-CoV-2 vaccines.
    [Show full text]
  • Considerations for Causality Assessment of Neurological And
    Occasional essay J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2021-326924 on 6 August 2021. Downloaded from Considerations for causality assessment of neurological and neuropsychiatric complications of SARS- CoV-2 vaccines: from cerebral venous sinus thrombosis to functional neurological disorder Matt Butler ,1 Arina Tamborska,2,3 Greta K Wood,2,3 Mark Ellul,4 Rhys H Thomas,5,6 Ian Galea ,7 Sarah Pett,8 Bhagteshwar Singh,3 Tom Solomon,4 Thomas Arthur Pollak,9 Benedict D Michael,2,3 Timothy R Nicholson10 For numbered affiliations see INTRODUCTION More severe potential adverse effects in the open- end of article. The scientific community rapidly responded to label phase of vaccine roll- outs are being collected the COVID-19 pandemic by developing novel through national surveillance systems. In the USA, Correspondence to SARS- CoV-2 vaccines (table 1). As of early June Dr Timothy R Nicholson, King’s roughly 372 adverse events have been reported per College London, London WC2R 2021, an estimated 2 billion doses have been million doses, which is a lower rate than expected 1 2LS, UK; timothy. nicholson@ administered worldwide. Neurological adverse based on the clinical trials.6 kcl. ac. uk events following immunisation (AEFI), such as In the UK, adverse events are reported via the cerebral venous sinus thrombosis and demyelin- MB and AT are joint first Coronavirus Yellow Card reporting website. As of ating episodes, have been reported. In some coun- authors. early June 2021, approximately 250 000 Yellow tries, these have led to the temporary halting of BDM and TRN are joint senior Cards have been submitted, equating to around authors.
    [Show full text]
  • Immunisation How Vaccines Work
    Immunisation How vaccines work Dr Fiona Ryan Consultant in Public Health Medicine, Department of Public Health April 2015 Presentation Outline • An understanding of the following principles • Overview of immunity • Different types of vaccines and vaccine contents • Vaccine failures • Time intervals between vaccine doses • Vaccine overload • Adverse reactions • Herd immunity Immunity Immunity • – The ability of the human body to protect itself from infectious disease The immune system • Cells with a protective function in the – bone marrow –thymus – lymphatic system of ducts and nodes – spleen – blood Types of immunity Source: http://en.wikipedia.org/wiki/Immunological_memory Natural (innate) immunity Non-specific mechanisms – Physical barriers • skin and mucous membranes – Chemical barriers • gastric and digestive enzymes – Cellular and protein secretions • phagocytes, macrophages, complement system ** No “memory” of protection exists afterwards ** Passive immunity – adaptive mechanisms Natural • maternal transfer of antibodies to infant via placenta Artificial • administration of pre- formed substance to provide immediate but short-term protection (anti- toxin, antibodies) Protection is temporary and wanes with time (usually few months) Active immunity – adaptive mechanisms Natural • following contact with organism Artificial • administration of agent to stimulate immune response (immunisation) Acquired through contact with an micro-organism Protection produced by individual’s own immune system Protection often life-long but may need
    [Show full text]
  • Different Types of COVID-19 Vaccines
    Pfizer-BioNTech Help stop the pandemic Type of vaccine: Messenger RNA, or mRNA, a genetic Different Types material that tells your body how to make proteins that by getting vaccinated triggers an immune response inside our bodies of COVID-19 Effectiveness: 95% based on clinical trials Even if you are undocumented Common side effects: Pain and/or swelling in the arm and/or don’t have insurance, you and tiredness, headache, muscle pain, chills, fever, or can get the vaccine—for free. Vaccines: nausea in the body that may last two days Recommended Ages: 16 and older (currently testing the vaccine in kids ages 12-15) Understanding How Dosage: Two shots, 21 days apart They Work Visit VaccinateALL58.com Moderna for the newest information about when and where the vaccine Type of vaccine: Messenger RNA, or mRNA, a genetic will be available to you. material that tells your body how to make proteins that triggers an immune response inside our bodies Sign up at myturn.ca.gov or Effectiveness: 94.1% based on clinical trials call 1-833-422-4255 to find out Common side effects: Pain and/or swelling in the arm if it’s your turn to get vaccinated and and tiredness, headache, muscle pain, chills, fever, or schedule vaccination appointments. nausea in the body that may last two days Recommended Ages: 18 years and older (currently testing the vaccine in kids ages 12-17) Dosage: Two shots, 28 days apart Johnson & Johnson Follow us on social media for more COVID-19 tips and information. Type of vaccine: A viral vector, it uses a harmless version of a different
    [Show full text]
  • Understanding How Vaccines Work
    ➤ For more information on vaccines, Understanding vaccine-preventable diseases, and vaccine safety: How Vaccines Work http://www.cdc.gov/vaccines/conversations Last reviewed Februar y 2013 Diseases that vaccines prevent can be The body keeps a few T-lymphocytes, called memory cells that go dangerous, or even deadly. Vaccines greatly into action quickly if the body encounters the same germ again. When the familiar antigens are detected, B-lymphocytes produce reduce the risk of infection by working with antibodies to attack them. the body’s natural defenses to safely develop immunity to disease. This fact sheet explains How Vaccines Work how the body fights infection and how Vaccines help develop immunity by imitating an infection. This type of infection, however, does not cause illness, but it does cause vaccines work to protect people by the immune system to produce T-lymphocytes and antibodies. producing immunity. Sometimes, after getting a vaccine, the imitation infection can cause minor symptoms, such as fever. Such minor symptoms are normal and should be expected as the body builds immunity. Once the imitation infection goes away, the body is left with a The Immune System— supply of “memory” T-lymphocytes, as well as B-lymphocytes that The Body’s Defense Against Infection will remember how to fight that disease in the future. However, it To understand how vaccines work, it is helpful to first look at how typically takes a few weeks for the body to produce T-lymphocytes the body fights illness. When germs, such as bacteria or viruses, and B-lymphocytes after vaccination. Therefore, it is possible that invade the body, they attack and multiply.
    [Show full text]
  • An Update on Self-Amplifying Mrna Vaccine Development
    Review An Update on Self-Amplifying mRNA Vaccine Development Anna K. Blakney 1,* , Shell Ip 2 and Andrew J. Geall 2 1 Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 2 Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; [email protected] (S.I.); [email protected] (A.J.G.) * Correspondence: [email protected] Abstract: This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects. Keywords: RNA; self-amplifying RNA; replicon; vaccine; drug delivery 1. Introduction: The Four Pillars of saRNA Vaccines In December 2019, the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus emerged, causing a respiratory illness, coronavirus disease 2019 (COVID-19), in Hubei province, China [1,2]. The virus has spread globally, with the World Health Organization (WHO) declaring it a Public Health Emergency of International concern on 30 January 2020 and a pandemic officially on 7 March 2020 [3]. There is a strong consensus globally that a COVID-19 vaccine is likely the most effective approach to sustainably controlling the COVID-19 pandemic [4]. There has been an unprecedented research effort and global Citation: Blakney, A.K.; Ip, S.; Geall, coordination which has resulted in the rapid development of vaccine candidates and A.J. An Update on Self-Amplifying initiation of human clinical trials.
    [Show full text]