MRSA Staphylococcus Aureus

Total Page:16

File Type:pdf, Size:1020Kb

MRSA Staphylococcus Aureus 4/12/2016 The Age of Modern Medicine The Battle of Resistance: Prior to Penicillin, the # 1 war-time killer was infection Treating Infections in the Age Began being mass produced in 1943 of Resistance ¾ Physicians were finally able to treat many diseases and childhood infections Mark T. Dunbar, O.D., F.A.A.O. ¾ This marked a new era in modern medicine Bascom Palmer Eye Institute Within 4 yrs of its release, resistance to University of Miami, Miller School of Med penicillin began popping up and grew at an Miami, FL alarming rate Mark Dunbar: Disclosure The Age of Modern Medicine Optometry Advisory Board for: By the mid-1940s and early 1950s streptomycin, chloramphenicol, and tetracycline had been ¾ Allergan discovered and the age of antibiotic therapy was ¾ Carl Zeiss Meditec underway ¾ ArticDx These new antibiotics were very effective against a number of different pathogens including Gram-(+) ¾ Sucampo and gram (-) bacteria, intracellular parasites, and tuberculosis. The mass production of antimicrobials provided a temporary advantage in the struggle with microorganisms ¾ Despite these rapid advances resistance quickly followed Mark Dunbar does not own stock in any of the above companies The Age of Modern Medicine Alexander Fleming is considered to be the father of modern medicine ¾ He discovered penicillin more How Resistance Develops than 70 years ago (1928) Considered to be one of the most significant medical breakthroughs of the twentieth century ¾ Ernest Duchesne was the 1st to describe the antibiotic properties of Penicillium sp. 1897 1 4/12/2016 Factors Implicated in Growing Bacterial Resistance Rates of Antibiotic Resistance Microbiological Bacterial become resistant when a ¾ Antibiotic misuse mutation occurs in the DNA that Environmental Factors protects the bacteria from a chemical ¾ Aging population ¾ Social behavior ¾ Mutation is only significant if the bacteria colony is exposed to the drug ¾ AIDS ¾ International travel “Survival of the fittest” dictates Technical Factors survival occurs in only those capable ¾ Increasing surgical of mutating intervention ¾ Organ replacement ¾ Life support systems Resistant Bacteria Susceptibility of Multidrug-Resistant Bacteria For any given bacterial population, 256 bacterial strains isolated from 164 patients random mutations will arise undergoing intraocular surgery b/w 1/2002 10/2002 With strong external selection pressures 124 (76%) coagulase-negative Staphylococci these mutations will be favored resulting High level of resistance to penicillin, aminoglycosides, macrolides, ciprofloxacin,ofloxacin in resistant bacteria Gatifloxacin and moxifloxacin had the lowest American Academy of Microbiology resistance frequency in the fluoroquinolones antibiotic group ¾ 17.8 million pounds of antibiotics are used Newer-generation fluoroquinolones provide excellent in animals each year broad-spectrum coverage against bacterial flora ¾ Human exposure of these antibiotics is isolated from conj, despite the high % of multidrug- resistant bacteria significant Miño de Kaspar et al. AJO 2005 Widespread Resistance Bacterial Resistance to Older Antibiotics 100% The problem is…. 90% 80% 70% Antibiotics are used extensively 60% 50% ¾ Topically 40% 30% 20% ¾ Systemically 10% 0% ¾ Agriculturally as a growth PercentageBacteria of Resistant Oxacillin Amikacin Penicillin Ofloxacin Cefazolin Neomycin Mezlocillin (Imipenem) Gentamicin Norfloxacin Cefotaxime Tobramycin Cefuroxime Meropenem Ceftazidime Tetracycline stimulant Gatifloxacin Moxifloxacin Levofloxacin Azithromycin Ciprofloxacin (Minocycline) Erythromycin Antibiotic (Vancomycin)l ¾ Most significant use of fluoroquinolones Chloramphenicol Miño de Kaspar et al. AJO 2005 2 4/12/2016 Staphylococcus Aures MRSA Pharmacology Methicillin was an antibiotic used Methicillin-Resistant many years ago to treat patients with Staphylococcus Aureus Staphylococcus aureus infections It is now no longer used except as a means of identifying this particular type of antibiotic resistance Staphylococcus Aureus MRSA Common bacteria usually found on the skin 1st outbreak identified in 1960 ‘s or in the nose Can cause a range of illnesses from minor Predominantly seen in hospitals, skin infections such as pimples, impetigo, chronic care facilities and parenteral boils, cellulitis and abscesses… drug abusers To life-threatening diseases such as pneumonia, meningitis, endocarditis, and The prevalence of MRSA isolates in septicemia hospitals in the US has risen steadily, There are many different types of staphylococcus aureus such that now about ¼ nosocomial isolates are methicillin resistant Staphylococcus Aures MRSA Pharmacology MRSA is a particular strain of Community-acquired MRSA is staphylococcus aureus that does not respond (is resistant) to many becoming a significant problem, with antibiotics the prevalence of MRSA among S aureus was sensitive to penicillin community isolates expected to reach when the drug was 1st introduced, but as high as 25% in the next decade resistance developed almost immediately as the organism acquired a β-lactamase enzyme that was capable of inactivating drug 3 4/12/2016 Reasons for Rise of MRSA Risk Factors for MRSA More powerful strains of MRSA Proloned hospital stays developing An increased number of very sick people in Prior surgery hospital Seriously ill in intensive care More complex medical treatments ¾ The use of central lines and catheters Immunocompromised Patients move within and between hospitals more often High workloads which result in less compliance with routine hand washing Multi-Drug Resistant 2005: Deaths from Bacteria MRSA Surpassed AIDS Emerging resistance of S aureus has also In 2005, AIDS killed 17,011 Americans been demonstrated for streptomycin, tetracycline, chloramphenicol, CDC reports > 90,000 get the potentially erythromycin and third-generation deadly "superbug" infections annually fluoroquinolones. T Recent JAMA surveillance study, only The topical 4th Generation about ¼ of MRSA infections involved fluoroquinolonesare are more potent hospitalized patients against MRSA than prior generation ¾ More than half were in the health care system fluoroquinolones People who had recently had surgery or were on kidney ¾ They inhibit both DNA gyrase and dialysis topoisomerase IV, requiring two genetic Open wounds and exposure to medical equipment are mutations for the bacteria to become resistant major ways the bug spreads. MRSA MRSA Facts About 1/3 of people carry MRSA on their MRSA has evolved into a multitude of skin or in their nose without knowing it genetically distinct strains that vary ‘ ’ These people are said to be carriers of widely in drug resistance, MRSA ¾ The bacteria are present on the body but transmissibility and virulence don’t cause any harm ¾ This is also referred to as being ‘colonised’ with MRSA Most people who carry MRSA in this way don’t go on to develop an infection 4 4/12/2016 4th Gen FQ Resistant Bacterial MRSA Facts Keratitis after Refractive Surgery Moshirfar M, J Cataract Refract Surg 2006; 32:515-518 Non-healthcare workers are now just as likely as healthcare workers to 2 Cases of Bacterial Keratitis resistant to carry MRSA on the conjunctiva and 4th Gen FQ lid margin 1st pt – Pseudomonas following PRK -> had been treated with Vigamox 2nd pt – MRSA following LASIK treated with Zymar…and Vigamox Culture susceptibilities resistance to both 4th Gen FQ 13 Cases of MRSA Following MRSA Fact Refractive Surgery While CA-MRSA strains tend to be Multicenter, retrospective chart less multi-drug resistant, some review of 13 cases of MRSA keratitis strains are associated with unusually following refractive surgery invasive infections of the eye and ¾ 9 were either healthcare workers or orbit exposed to a hospital surgical setting rd ¾ USA300 clone – CA-MRSA with the 7 pts were prescribed 3 generation PVL virulence marker FQ, 1 pt prescribed tobramycin, 1 pt was prescribed erythromycin and 3 were prescribed a 4th generation FQ Solomon. Am J Ophthalmol. 2007. Methicillin-Resistant Staphylococcus aureus Infectious Keratitis Following Refractive Surgery A retrospective chart review of cases occurring between May 2002 and February 2005 in 10 referral cornea and refractive disease practices Ocular Involvement of Prophylactic Antibiotics Unknown, 1 (bilateral)/13 patients MRSA Tobramycin 1/13 patients 7.7% 7.7% Erythromycin 1/13 patients 7.7% Third-generation Fluoroquinolones Ciprofloxacin or ofloxacin 53.4% 23.1% 7/13 patients Fourth-generation Fluoroquinolones Gatifloxacin or moxifloxacin 3/13 patients Solomon. Am J Ophthalmol. 2007. 5 4/12/2016 Infectious Keratitis in Refractive Eye Care Clinicians must be alert to the postop patient with signs and symptoms of Tracking Resistance possible post-LASIK and post-PRK infectious keratitis. PRK: Corneal scrapings, cultures, and sensitivities of all cases of focal infiltrates LASIK: Lifting the flap, scraping, culturing, and obtaining sensitivities on all cases of focal infiltrates Precautions for Culture Positive Rates Healthcare Workers BPEI 2011-2013 Patients exposed to healthcare facilities who are at higher risk of infection from nosocomial MRSA, prophylactically treat blepharitis with lid hygiene and hot compresses preoperatively Consider a nasal swab for MRSA carriage Consider bacitracin or a fourth-generation fluoroquinolone or bacitracin for preoperative prophylaxis Treatment of MRSA s/p Impact of Prior Therapy (59.8%)- LASIK Pathogen Recovery 2013*, N=338, Irrigating under the
Recommended publications
  • 100 Most Important Chemical Compounds
    69. Penicillin CHEMICAL NAME = 2S,5R,6R)-3,3-dimeth- yl-7-oxo-6-[(phenylacetyl)amino]-4-thia-1- azabicyclo[3.2.0]heptane-2-carboxylic acid CAS NUMBER = 61–33–6 = MOLECULAR FORMULA C6H18N2O4S MOLAR MASS = 334.4 g/mol COMPOSITION = C(57.5%) H(5.4%) N(8.4%) O(19.1%) S(9.6%) MELTING POINT = 209–212°C (for Penicillin G sodium) BOILING POINT = decomposes DENSITY = 1.4 g/cm3 Penicillin was the fi rst natural antibiotic used to treat bacterial infections and continues to be one of the most important antibiotics. Th e name comes from the fungus genus Penicillium from which it was isolated. Penicillus is Latin for “brush” and refers to the brushlike appear- ance of fi lamentous Penicillium species. Species of this genus are quite common and appear as the bluish-green mold that appears on aged bread, fruit, and cheese. Th e term penicillin is a generic term that refers to a number of antibiotic compounds with the same basic structure. Th erefore it is more appropriate to speak of penicillins than of penicillin. Th e general penicil- lin structure consists of a β-lactam ring and thiazolidine ring fused together with a peptide bonded to a variable R group (Figure 69.1). Penicillin belongs to a group of compounds called β-lactam antibiotics. Diff erent forms of penicillin depend on what R group is bonded to this basic structure. Penicillin aff ects the cell walls of bacteria. Th e β-lactam rings in penicillins open in the presence of bacteria enzymes that are essential for cell wall formation.
    [Show full text]
  • History of Antibiotics
    Sumerianz Journal of Medical and Healthcare, 2018, Vol. 1, No. 2, pp. 51-54 ISSN(e): 2663-421X, ISSN(p): 2706-8404 Website: https://www.sumerianz.com © Sumerianz Publication CC BY: Creative Commons Attribution License 4.0 Original Article Open Access History of Antibiotics Kourkouta L.* Professor of Nursing Department, Alexander Technological Educational Institute of Thessaloniki, Greece Tsaloglidou A. Assistant Professor of Nursing Department, Alexander Technological Educational Institute of Thessaloniki, Greece Koukourikos K. Clinical Professor of Nursing Department, Alexander Technological Educational Institute of Thessaloniki, Greece Iliadis C. RN, Private Diagnostic Health Center of Thessaloniki, Greece Plati P. Department of History and Archaeology, Greece Dimitriadou A. Professor of Nursing Department, Alexander Technological Educational Institute of Thessaloniki, Greece Abstract Introduction: Antibiotics are medicines used to treat or prevent bacterial infections. They can either kill or inhibit the growth of bacteria. Aim: The aim of this historical review is to provide information on the discovery and use of antibiotic formulations over time. Review Methods: The study material consisted of scientific publications related to the subject, such as those recorded in the literature of this study, and relevant writings. Results: The first known use of antibiotics was by the ancient Chinese over 2,500 years ago. Chinese have discovered the therapeutic properties of moldy soybeans and used this substance to cure furuncles (pimples), carbuncles and similar infections. Sir Alexander Fleming was a Scottish biologist and pharmacologist and he was involved in research of Bacteriology, Immunology and Chemotherapy. He is well known for the discovery of the first antibiotic, penicillin, in 1928, for which he received the Nobel Prize in Physiology and Medicine in 1945, along with Florey and Chain.
    [Show full text]
  • Nobel Prizes in Physiology Or Medicine with an Emphasis on Bacteriology
    J Med Bacteriol. Vol. 8, No. 3, 4 (2019): pp.49-57 jmb.tums.ac.ir Journal of Medical Bacteriology Nobel Prizes in Physiology or Medicine with an Emphasis on Bacteriology 1 1 2 Hamid Hakimi , Ebrahim Rezazadeh Zarandi , Siavash Assar , Omid Rezahosseini 3, Sepideh Assar 4, Roya Sadr-Mohammadi 5, Sahar Assar 6, Shokrollah Assar 7* 1 Department of Microbiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. 2 Department of Anesthesiology, Medical School, Kerman University of Medical Sciences, Kerman, Iran. 3 Department of Infectious and Tropical Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. 4 Department of Pathology, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran. 5 Dental School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. 6 Dental School, Shiraz University of Medical Sciences, Shiraz, Iran. 7 Department of Microbiology and Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. ARTICLE INFO ABSTRACT Article type: Background: Knowledge is an ocean without bound or shore, the seeker of knowledge is (like) the Review Article diver in those seas. Even if his life is a thousand years, he will never stop searching. This is the result Article history: of reflection in the book of development. Human beings are free and, to some extent, have the right to Received: 02 Feb 2019 choose, on the other hand, they are spiritually oriented and innovative, and for this reason, the new Revised: 28 Mar 2019 discovery and creativity are felt. This characteristic, which is in the nature of human beings, can be a Accepted: 06 May 2019 motive for the revision of life and its tools and products.
    [Show full text]
  • Deconstructing the Fable of the Discovery of Penicillin By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository La Moisissure et la Bactérie: Deconstructing the Fable of the Discovery of Penicillin by Ernest Duchesne Gilbert Shama Department of Chemical Engineering. Loughborough University Loughborough Leicestershire, LE11 3TU, UK. +44 1509 222514 [email protected] Abstract: Ernest Duchesne (1874–1912) completed his thesis on microbial antagonism in 1897 in Lyon. His work lay unknown for fifty years, but on being brought to light led to his being credited with having discovered penicillin prior to Alexander Fleming. The claims surrounding Duchesne are examined here both from the strictly microbiological perspective, and also for what they reveal about how the process of discovery is frequently misconstrued. The combined weight of evidence presented here militates strongly against the possibility that the species of Penicillium that Duchesne worked with produced penicillin. Keywords: Ernest Duchesne, Penicillin, Alexander Fleming, Penicillium 1 Introduction Following the appearance of an article on penicillin in The Times of London in the summer of 1942,1 Almroth Wright, head of the inoculation department at St Mary’s Hospital in Paddington, wrote to the editor concerning a colleague of his—a certain Alexander Fleming. In his letter, Wright pointed out that the newspaper had “refrained from putting the laurel wreath around anybody’s brow for [penicillin’s] discovery” and that “on the principle of palmam qui meruit ferat (let him bear the palm who has earned it) it should be decreed to Professor Fleming.”2 A number of commentators over the seventy years or so that have elapsed since the publication of this letter have sought to remove—snatch even—the wreath from Alexander Fleming’s brow and award it elsewhere.
    [Show full text]
  • Overcoming Bacterial Resistance to Antibiotics: the Urgent Need–A Review
    Ann. Anim. Sci., Vol. 21, No. 1 (2021) 63–87 DOI: 10.2478/aoas-2020-0098 OVERCOMING BACTERIAL RESISTANCE TO ANTIBIOTICS: THE URGENT need – A REVIEW Magdalena Stachelek1#, Magdalena Zalewska1,2#, Ewelina Kawecka-Grochocka3, Tomasz Sakowski1, Emilia Bagnicka1♦ 1Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland 2Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland 3Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warszawa, Poland ♦Corresponding author: [email protected] # both authors contributed equally to this research Abstract The discovery of antibiotics is considered one of the most crucial breakthroughs in medicine and veterinary science in the 20th century. From the very beginning, this type of drug was used as a ‘miraculous cure’ for every type of infection. In addition to their therapeutic uses, antibiotics were also used for disease prevention and growth promotion in livestock. Though this application was banned in the European Union in 2006, antibiotics are still used in this way in countries all over the world. The unlimited and unregulated use of antibiotics has increased the speed of anti- biotic resistance’s spread in different types of organisms. This phenomenon requires searching for new strategies to deal with hard-to-treat infections. The antimicrobial activity of some plant deriv- atives and animal products has been known since ancient times. At the beginning of this century, even more substances, such as antimicrobial peptides, were considered very promising candidates for becoming new alternatives to commonly used antimicrobials.
    [Show full text]
  • Historia De La Penicilina: Más Allá De Los Héroes, Una Construcción Social
    HISTORIA DE LA MEDICINA Historia de la penicilina: más allá de los héroes, una construcción social Nicolás Giraldo-Hoyos1,2 RESUMEN El hecho científico conocido como “penicilina” se ha considerado tradicionalmente como el producto del ingenio de Alexander Fleming, ganador del Premio Nobel por descubrir esta “droga milagrosa”. Apartándose de esta idea popular, se hace necesario resaltar el desarrollo de la penicilina como un constructo social, producto del trabajo invaluable de varios científi- cos, sumado a un contexto social excepcional que motivó la voluntad política y el apoyo de la industria farmacéutica; en ausencia de cualquiera de estos, la penicilina no sería lo que sig- nifica hoy para nosotros o, simplemente, no existiría en el arsenal terapéutico. Los conceptos epistemológicos de “estilo de pensamiento” y “colectivo de pensamiento” como fundamentos en la construcción del conocimiento, presentes en la obra epistemológica de Ludwick Fleck, apoyan la conclusión, a partir del recuento histórico, de la necesidad de apartarnos de la penicilina como el producto de un descubrimiento de un único héroe, para verla como una construcción social, que además es un ejemplo clásico de serendipia. La penicilina, además, tiene otras facetas menos conocidas históricamente como el uso de ella de manera cruda, producida y usada por médicos generales, o la búsqueda de información para su producción durante la segunda guerra mundial; estas se abordan en este breve recuento histórico. PALABRAS CLAVE Historia; Penicilinas; Penicillium; Segunda Guerra Mundial SUMMARY History of penicillin: Beyond heroes, a social construction The scientific breakthroug we know as “penicillin”, has been traditionally considered as the re- sult of the genius of Alexander Fleming, awarded with the Nobel Prize for the discovery of the 1 Médico de la Universidad de Caldas, Manizales, Colombia.
    [Show full text]
  • Medicinal Chemistry of Modern Antibiotics
    Chemistry 259 Medicinal Chemistry of Modern Antibiotics Spring 2012 Lecture 2: History of Antibiotics Thomas Hermann Department of Chemistry & Biochemistry University of California, San Diego 03/23/2006 Southwestern College Prelude to Antibiotics: Leeuwenhoek & The Birth of Microbiology Antonie van Leeuwenhoek (Delft, 1632-1723) Bacteria in tooth plaque (1683) First to observe and describe single celled organisms which he first referred to as animalicula, and which we now know to be microorganisms (protozoa, bacteria). Prelude to Antibiotics: Pasteur, Koch & The Germ Theory of Disease Koch’s Postulates: (1890) To establish that a microorganism is the cause of a disease, it must be: 1) found in all cases of the disease. 2) isolated from the host and Louis Pasteur maintained in pure culture. (Strasbourg, 1822-1895) 3) capable of producing the Showed that some original infection, even after Robert Koch microorganisms several generations in (Berlin, 1843-1910) contaminated fermenting culture. beverages and concluded Discovered Bacillus that microorganisms infected 4) recoverable from an anthracis, Mycobacterium animals and humans as well. experimentally infected host. tuberculosis, Vibrio cholerae and developed “Koch’s Postulates". Nobel Price in Medicine 1905 for work on tuberculosis. Invention of Modern Drug Discovery: Ehrlich & The Magic Bullet Atoxyl Salvarsan (Bechamp 1859) (Compound 606, Hoechst 1910) Paul Ehrlich (Frankfurt, 1854-1915) Synthesized and screened hundreds of compounds to Salvarsan in solution eventually discover and consists of cyclic develop the first modern species (RAs)n, with chemotherapeutic agent n=3 (2) and n=5 (3) as (Salvarsan, 1909) for the the preferred sizes. treatment of syphillis Lloyd et al. (2005) Angewandte (Treponema pallidum).
    [Show full text]
  • The Rise and Fall of Penicillin
    THE MICROSCOPE • Vol. 62:3, pp 123–135 (2014) C R I T I C A L FOCUS Brian J. Ford Crisis Point: The Rise and Fall of Penicillin ur lives are at risk. as never before. Standing O The World Health Everywhere around the world, bacteria by as a patient succumbs Organization (WHO) says are developing a resistance to antibiotics. to what was once a trivial there is a global security infection is a devastating threat that requires action Patients with a simple infection cannot experience for any physi- across government sectors be treated by any of today’s drugs. cian; and this is becoming and society as a whole. In more common as the Atlanta, the Centers for weeks go by. In the 1940s, Disease Control and Prevention (CDC) are similarly the world of medicine was deliriously happy as peni- blunt, describing the situation as a nightmare. In Lon- cillin was introduced, and once-fatal diseases were don, Chief Medical Officer Sally Davies, says we now quickly cured with a course of capsules. Now, the pic- face a catastrophic threat. What is it? International ture is very different, and methicillin-resistant Staphy- terrorism? No, says Davies, the danger is greater than lococcus aureus (MRSA) is now widespread. terrorism. Bacteria have long been familiar objects of study. The CDC adds that it is a “critical health issue.” So Microscopists understand what goes on beyond our is it Ebola? Bird flu? SARS? No. Their cause for concern normal sight. This explains why you can always iden- is something far more insidious: bacterial resistance tify the microscopists at a conference — we always to antibiotics.
    [Show full text]
  • Formative Writing Assessment
    FORMATIVE WRITING ASSESSMENT Department of Literacy Instruction & Interventions Office of Academics Grade: 8 Text-Based Writing Prompts: Administration and Scoring Guidelines Teacher Directions: Students will read a stimulus about a single topic. A stimulus consists of several texts written on a single topic. The stimulus may include informational or literary fiction or nonfiction texts and can cover a wide array of topics. After reading the stimulus, the students will respond to a writing prompt in which they will provide information on a topic, develop a narrative, or take a stance to support an opinion or argument. Students will be required to synthesize information from the text sets and must cite specific evidence from the texts to support their ideas. Students’ informative/explanatory responses should demonstrate a developed and supported controlling idea. Students’ opinion/argumentative responses should support an opinion/argument using ideas presented in the stimulus. Students will have 90 minutes to read the passages, and plan, write, revise and edit their essay. Students should read the prompt first. They should be encouraged to highlight, underline, and take notes to support the planning process. Scoring: The attached text-based rubric should be used to score student responses. While the total possible points on the rubric is ten, it is recommended that three individual scores be given—one score for each of the three domains on the rubric. This will allow the teacher to determine specific areas of need within individual student responses, thus allowing for differentiation in the writing instruction that follows these formative writing tasks. The three domains are: Purpose, Focus, Organization (PFO), Evidence and Elaboration (EE), and Conventions of Standard English (CSE).
    [Show full text]
  • Antibiotic Discovery: History, Methods and Perspectives
    International Journal of Antimicrobial Agents 53 (2019) 371–382 Contents lists available at ScienceDirect International Journal of Antimicrobial Agents journal homepage: www.elsevier.com/locate/ijantimicag Review Antibiotic discovery: history, methods and perspectives ∗ Guillaume André Durand, Didier Raoult, Grégory Dubourg Aix-Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France a r t i c l e i n f o a b s t r a c t Article history: Antimicrobial resistance is considered a major public-health issue. Policies recommended by the World Received 8 August 2018 Health Organization (WHO) include research on new antibiotics. No new class has been discovered since Accepted 17 November 2018 daptomycin and linezolid in the 1980s, and only optimisation or combination of already known com- pounds has been recently commercialised. Antibiotics are natural products of soil-living organisms. Acti- Editor: Jean-Marc Rolain nobacteria and fungi are the source of approximately two-thirds of the antimicrobial agents currently used in human medicine; they were mainly discovered during the golden age of antibiotic discovery. This Keywords: era declined after the 1970s owing to the difficulty of cultivating fastidious bacterial species under labo- Antibacterial Drug resistance ratory conditions. Various strategies, such as rational drug design, to date have not led to the discovery Actinobacteria of new antimicrobial agents. However, new promising approaches, e.g. genome mining or CRISPR-Cas9, Gastrointestinal are now being developed. The recent rebirth of culture methods from complex samples has, as a mat- Microbiome ter of fact, permitted the discovery of teixobactin from a new species isolated from soil.
    [Show full text]
  • Antibiotic Resistance Antibiotic Resistance
    Antibiotic Resistance Antibiotic Resistance What are antibiotics? Mechanisms of resistance Managing antimicrobial resistance (AMR) Antibiotics are substances produced by micro-organisms that kill Resistance can develop in four main ways. The bacteria can: 1. Preventing infections and preventing the spread of resistance, other microorganisms. Most of them have been derived from soil for example, by improving hygiene practices. This is very effective 1. develop methods to inactivate or modify the antibiotic dwelling microbes, fungi and bacteria and some can in fact be in reducing the spread of infections, including those that are synthesised chemically. 2. alter its surface and so prevent the antibiotic from binding to it. resistant to antibiotics. This also helps to raise awareness of transmission routes. 3. change its metabolic pathways to circumvent the antibiotic Discovery 2. Surveillance in order to track transmission routes, measure the The HPRA (The Health Products Regulatory Authority) is 4. reduce the concentration of the antibiotic within it by either The ancient Greeks and Indians used mouldy bread to treat wounds extent of resistance and provide early warning of specific risks. a state agency whose role is to protect and enhance public (a) reducing the permeability of its surfaces so less antibiotic and animal health by regulating medicines, medical devices and various others noted the beneficial effects of similar compounds. 3. Promoting the responsible use of antibiotics around the world in enters, or and other health products. It regulates clinical trials and In 1928 Alexander Fleming noted that a common fungus, Penicillium order to minimise inappropriate use. This could involve restricting human organs for transplantation.
    [Show full text]
  • CHARACTERIZATION of IMIS, the METALLO-Β-LACTAMASE from AEROMONAS VERONII Bv
    MIAMI UNIVERSITY – THE GRADUATE SCHOOL CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Patrick A. Crawford Candidate for Degree: Doctor of Philosophy _______________________________________________ Dr. Michael W. Crowder, Director _______________________________________________ Dr. Gilbert Gordon, Reader _______________________________________________ Dr. Gary Lorigan, Reader _______________________________________________ Dr. Christopher A. Makaroff, Reader _______________________________________________ Dr. Kenneth Wilson, Graduate School Representative ABSTRACT CHARACTERIZATION OF IMIS, THE METALLO-β-LACTAMASE FROM AEROMONAS VERONII bv. SOBRIA by Patrick Anthony Crawford Zinc-containing metallo-β-lactamases are an emerging class of enzymes that render bacteria resistant to β-lactam-containing antibiotics. In an effort to better understand the structure and function of the metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria, spectroscopic and mechanistic studies were performed. ImiS was over-expressed in E. coli and purified as a 25.2 kDa monomer, containing 0.48 equivalents of Zn(II). The purified enzyme -1 exhibited substrate selectivity toward carbapenems, hydrolyzing imipenem with a kcat of 233 s and KM of 154 µM. The presence of a second equivalent of Zn(II) resulted in the loss of enzymatic activity. For spectroscopic characterization the native and spectroscopically silent Zn(II) was replaced with Co(II). UV/Vis, NMR, and EPR spectroscopies were all gathered on the Co(II)-substituted ImiS samples and EXAFS data were collected on the Zn(II)-ImiS. The Co(II) in Co(II)-ImiS is 4-coordinate, with 1 cysteine, 1 histidine, and presumably 1 aspartic acid and 1 water serving as metal ligands. Proton inventory studies were inconclusive, not clearly indicating one or more than one proton being transferred during the rate-liming step.
    [Show full text]