Letter to the Editor Pcr Detection and Identification of Plant-Pathogenic Bacteria: Updated Review of Protocols (1989-2007)

Total Page:16

File Type:pdf, Size:1020Kb

Letter to the Editor Pcr Detection and Identification of Plant-Pathogenic Bacteria: Updated Review of Protocols (1989-2007) 002_LetterEditor_249 25-06-2009 10:41 Pagina 249 Journal of Plant Pathology (2009), 91 (2), 249-297 Edizioni ETS Pisa, 2009 249 LETTER TO THE EDITOR PCR DETECTION AND IDENTIFICATION OF PLANT-PATHOGENIC BACTERIA: UPDATED REVIEW OF PROTOCOLS (1989-2007) A. Palacio-Bielsa1, M.A. Cambra2 and M.M. López3* 1 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avenida Montañana, 930, 50059 Zaragoza, Spain 2 Centro de Protección Vegetal (CPV), Gobierno de Aragón, Avenida Montañana 930, 50059 Zaragoza, Spain 3 Centro de Protección Vegetal y Biotecnología. Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain SUMMARY occur, so highly sensitive protocols are required. Nucle- ic-acid based tests offer greater sensitivity, specificity, re- PCR-based methods offer advantages over more tra- liability and may be quicker than many conventional ditional diagnostic tests, in that organisms do not need methods used to detect plant-pathogenic bacteria in dif- to be cultured prior to their detection and protocols are ferent plant hosts and environments. With the develop- highly sensitive and rapid. Consequently, there is a shift ment of polymerase chain reaction (PCR), and especial- in research towards DNA-based techniques. Although ly real-time PCR, such high sensitivity is achieved, im- reports already exist on a variety of PCR-based finger- proving the accuracy of pathogen detection and identifi- printing assays used to analyse the genetic diversity of cation (Mullis, 1987; Holland et al., 1991; Vincelli and bacterial populations and define their relationships, this Tisserat, 2008). review focuses on the general use of PCR in phytobacte- Globalisation implies that state borders have become riology for detection and diagnosis purposes. An updat- more open due to increase in free-trade agreements, and ed and detailed list of published PCR protocols for de- this can facilitate the introduction and dissemination of tection and identification of plant-pathogenic bacteria is foreign pathogens. This, in turn, leads to emerging dis- presented and discussed, aimed at facilitating access to eases, which are a growing reality for phytopathologists information that could be particularly useful for diag- worldwide. A guiding principle for disease prevention is nostic laboratories. This compilation includes and dis- that when key inoculum sources have been identified, cusses 246 articles published between 1989 and 2007 effective measures must be taken to prevent further addressing 23 genera, more than 50 species, 10 sub- spread and subsequent disease outbreaks. Consequent- species and more than 40 pathovars. ly, detection of the causal organisms becomes essential, as most bacterial diseases are transmitted through con- Key words: co-operational PCR; multiplex PCR; nest- taminated seeds or propagative plant material. Plant ed-PCR; real-time PCR. quarantine polices and regulations have been imple- mented in many countries to avoid pathogens from spreading and/or to prevent exotic pathogens from be- INTRODUCTION ing introduced with plant material. To achieve this goal, complex control systems have been designed, which of- Control of diseases caused by plant-pathogenic bac- ten include guidelines for rapid, sensitive and specific teria usually requires accurate detection, followed by pathogen detection and diagnosis and among them, proper identification of the causal organism. Although PCR is the technique of choice for rapid screening. presumptive diagnosis of bacterial diseases can be rela- Compared to conventional diagnostic methods, PCR tively simple when typical symptomatology is evident, offers several advantages, because organisms do not symptoms in plants are not always specific and can be need to be cultured prior to detection; moreover it is confused with those caused by other biotic or abiotic highly sensitive, relatively simple and fast to perform. agents. On the other hand, detection of bacteria in There has been a shift towards DNA-based protocols symptomless plant material for preventive control is developed for diagnostic purposes as well as for etiolog- necessary but can be extremely difficult, since low pop- ical or epidemiological studies, as reported by reviews ulations with uneven distribution of the pathogen can published over the past fifteen years (Henson and French, 1993; Louws et al., 1999; López et al., 2003; Schaad et al., 2003; Alvarez, 2004; López et al., 2006; Vincelli and Tisseral, 2008; López et al., 2009). Applica- tion of PCR techniques in diagnostic laboratories for Corresponding author: M.M. Lopez Fax: + 34. 963424001 routine purposes is also increasing and will continue in E-mail: [email protected] the near future, especially for the rapid screening of 002_LetterEditor_249 25-06-2009 10:41 Pagina 250 250 PCR and plant pathogenic bacteria Journal of Plant Pathology (2009), 91 (2), 249-297 samples. PCR is now considered a routine technique gerprinting techniques have been described for classifi- and recommended in most protocols recently developed cation and typing of plant-pathogenic bacteria (Louws by the European Union and the European and Mediter- et al., 1999), such as randomly amplified polymorphic ranean Plant Protection Organization (EPPO) (Anony- DNA (RAPD) (Wang et al., 1993), repetitive sequence- mous 2004a, 2004b; 2005a, 2005b; 2006a, 2006b, based (rep-PCR) (Versalovic et al., 1998; Louws et al., 2006c, 2006d; 2007; López et al., 2006). 1994, 1995, 1998), amplified fragment length polymor- Taxonomy of plant-pathogenic bacteria has been ex- phism (AFLP) (Janssen et al., 1996), restriction frag- tensively revised in recent years. Therefore, in the pres- ment length polymorphism (RFLP) (Darrase et al., ent compilation, the names utilised are those recorded in 1994; Manceau and Horvais, 1997; Mkandawire et al., the “List of Names of Plant Pathogenic Bacteria, 1864- 2004) and others. However, the present compilation fo- 2004” of the International Society for Plant Pathology cuses solely on the PCR protocols available for routine (ISPP) (http://isppweb.org/names_bacterial.asp) and detection, diagnosis or identification of plant-pathogen- have been used to classify the listed publications. How- ic bacteria. ever, when the original bacterial genus or species differs One can appreciate from the Table, that the number from the one in the ISPP list (due to different reasons of references to the different genera is highly variable and the fact that some of the cited articles were pub- and not only related to the number of described species lished before the latest taxonomic revisions appeared) or pathovars in every genus, but also to the economic both the originally cited name and its current nomencla- importance of the diseases they cause, their distribution, ture, according to the ISPP, are indicated. whether local or widespread, and their status as quaran- A wide range of plant-pathogenic bacteria can be tine organisms. We found more than 50 protocols for currently detected by PCR in numerous hosts or envi- species of the genus Xanthomonas, more than 40 for ronmental samples (Schaad et al., 2001). This compila- Pseudomonas spp., 20 for Ralstonia spp., 19 for Clav- tion provides an updated listing of PCR published pro- ibacter and Agrobacterium spp., 16 for Erwinia and tocols for detection and identification of phytopatho- Xylella spp., 12 for Pectobacterium spp., 11 for “Candi- genic bacteria, which could be especially useful for di- datus Liberibacter” spp., nine for Burkholderia spp., agnosis laboratories. It contains a non-exhaustive list of seven for Streptomyces and Pantoea spp., six for Dickeya 246 references related to PCR protocols published from and Xylophylus spp., four for Leifsonia spp., three for 1989 up to 2007, which refers to 23 bacterial genera in- Acidovorax spp., and only one or two protocols for cluding more than 50 species, 10 subspecies and more species of other genera. than 40 pathovars. Depending on the choice of PCR primers, both nar- This work summarizes essential data from each of the row and broad specificity can be obtained, allowing de- published protocols and, in order to facilitate searches, tection of a single pathogen or of several members of a information is presented according to each bacterial group of related pathogens. Primer design requires genus in a Table, which comprises the following infor- knowledge of the target DNA sequences and the past mation: ISPP accepted nomenclature for the target bac- two decades have witnessed reports of primers used to teria and name of the bacteria in the original article, identify many plant-pathogenic bacteria (Schaad et al., primers name and target DNA, variants utilised in the 2001), multiple strategies being developed to design PCR protocol, type of sample and treatment prior to am- primers for specific detection and disease diagnosis. plification, reference and observations about the Among them, the DNA sequences from known patho- method. Protocols for specific detection of bacterial genicity/virulence genes have been used as targets to de- species, alphabetically ordered, appear first, followed by sign specific primers, as those described by Bereswill et those designed for the simultaneous detection of two or al. (1994), Darrasse et al. (1994), Dreier et al. (1995), more species, or for other genera that could also be pres- Leite et al. (1995), Nassar et al. (1996), Stange et al. ent in a given host. References for each species, sub- (1996), Sato et al.
Recommended publications
  • For Publication European and Mediterranean Plant Protection Organization PM 7/24(3)
    For publication European and Mediterranean Plant Protection Organization PM 7/24(3) Organisation Européenne et Méditerranéenne pour la Protection des Plantes 18-23616 (17-23373,17- 23279, 17- 23240) Diagnostics Diagnostic PM 7/24 (3) Xylella fastidiosa Specific scope This Standard describes a diagnostic protocol for Xylella fastidiosa. 1 It should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. Specific approval and amendment First approved in 2004-09. Revised in 2016-09 and 2018-XX.2 1 Introduction Xylella fastidiosa causes many important plant diseases such as Pierce's disease of grapevine, phony peach disease, plum leaf scald and citrus variegated chlorosis disease, olive scorch disease, as well as leaf scorch on almond and on shade trees in urban landscapes, e.g. Ulmus sp. (elm), Quercus sp. (oak), Platanus sycamore (American sycamore), Morus sp. (mulberry) and Acer sp. (maple). Based on current knowledge, X. fastidiosa occurs primarily on the American continent (Almeida & Nunney, 2015). A distant relative found in Taiwan on Nashi pears (Leu & Su, 1993) is another species named X. taiwanensis (Su et al., 2016). However, X. fastidiosa was also confirmed on grapevine in Taiwan (Su et al., 2014). The presence of X. fastidiosa on almond and grapevine in Iran (Amanifar et al., 2014) was reported (based on isolation and pathogenicity tests, but so far strain(s) are not available). The reports from Turkey (Guldur et al., 2005; EPPO, 2014), Lebanon (Temsah et al., 2015; Habib et al., 2016) and Kosovo (Berisha et al., 1998; EPPO, 1998) are unconfirmed and are considered invalid. Since 2012, different European countries have reported interception of infected coffee plants from Latin America (Mexico, Ecuador, Costa Rica and Honduras) (Legendre et al., 2014; Bergsma-Vlami et al., 2015; Jacques et al., 2016).
    [Show full text]
  • Bacterial Canker of Grapevine in Brazil
    BACTERIAL CANKER OF GRAPEVINE IN BRAZIL MIRTES F. LIMA1, MARISA A.S.V. FERREIRA2, WELLINGTON A. MORElRA1 & JOSÉ C. DIANESE2 lEmbrapa Semi Árido, Caixa Postal 23, CEP 56300-970, Petrolina, PE, e-mail: [email protected]; 2Departamento de Fitopatologia, Universidade de Brasília, CEP 70910-900, Brasília DF, e-mail: [email protected]. (Accepted for publication on 27/07/99) Corresponding author: Mirtes F. Lima LIMA, M.F., FERREIRA, M.A.S. V., MOREIRA, W.A. & DIANESE, J.c. Bacterial canker of grapevine in Brazil. Fitopatologia Brasileira 24:440-443. 1999. ABSTRACT In early 1998, symptoms of stem canker and necrotic which was identified as Xanthomonas campestris pv. spots on leaves, leaf veins, petioles, rachis, peduncles, cap viticola, after biochemical, physiological and pathogenicity stems and berries were observed on plants in vineyards in the tests. The disease has already been detected in vineyards in "Subrnédio" of the São Francisco Valley. Initially, the symp- Petrolina county of Pernambuco State, Piauí State and also in toms were observed on 'Red Globe' and seedless grape cul- tivars up to three years old, during the flowering and begin- Curaçá, Casa Nova, Sento Sé and Juazeiro counties in Bahia ning of fruit bearing stages. The incidence of disease symp- State. toms was 100% and in some cases yield losses were nearly Key words: Vitis vinifera, Xanthomonas campestris total. Isolations from diseased plants yielded a bacterium pv. viticola. RESUMO Cancro bacteriano da videira no Brasil No início de 1998, observou-se em alguns parreirais do em algumas áreas. Nos isolamentos a partir de plantas infec- Submédio do Vale do São Francisco plantas com sintomas tadas, detectou-se a presença de uma bactéria, identificada de manchas necróticas nas folhas, nervuras e pecíolos, na como Xanthomonas campestris pv.
    [Show full text]
  • Bacterial Diseases of Grapevine
    International Journal of Horticultural Science 2011, 17 (3): 45 –49. Agroinform Publishing House, Budapest, Printed in Hungary ISSN 1585-0404 Bacterial diseases of grapevine Szegedi, E. 1* & Civerolo, E. L. 2 1Corvinus University of Budapest, Institute for Viticulture and Enology, Experimental Station of Kecskemét, H-6001 Kecskemét, POBox 25, Hungary 2USDA-ARS, San Joaquin Valley Agricultural Sciences Center, 9611 So. Riverbend Ave., Parlier, CA 93648, USA *author for correspondence, e-mail: [email protected] Summary: Grapevines are affected by three major bacterial diseases worldwide, such as bacterial blight ( Xylophilus ampelinus ), Pierce’s disease ( Xylella fastidiosa ) and crown gall ( Agrobacterium vitis ). These bacteria grow in the vascular system of their host, thus they invade and colonize the whole plant, independently on symptom development. Latently infected propagating material is a major factor in their spreading. Therefore the use of bacteria-free planting stock has a basic importance in viticulture. Today several innovative diagnostic methods, mostly based on polymerase chain reaction, are available to detect and identify bacterial pathogens of grapevines. For production of bacteria-free plants, the use hot water treatment followed by establishment of in vitro shoot tip cultures is proposed. Keywords: Agrobacterium vitis , bacterial blight, crown gall, Pierce’s disease, Vitis vinifera , Xylella fastidiosa , Xylophilus ampelinus Grapevine as a host for bacteria Besides providing nutrients, grapevine sap contains certain, yet undetermined signal compound(s), which induce(s) a Bacteria require several environmental factors for their in differential gene expression in X. fastidiosa subsp. fastidiosa planta growth, including availability of appropriate nutrients, resulting in biofilm formation ( Shi et al.
    [Show full text]
  • Xylophilus Ampelinus
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Xylophilus ampelinus IDENTITY Name: Xylophilus ampelinus (Panagopoulos) Willems et al. Synonyms: Xanthomonas ampelina Panagopoulos Taxonomic position: Bacteria: Gracilicutes Common names: Bacterial blight (English) Nécrose bactérienne de la vigne (French) Tsilik marasi (Greek) Notes on taxonomy and nomenclature: The disease attributed to X. ampelinus was first described in Crete (Greece) (Panagopoulos, 1969). The “maladie d'Oléron”, described in France in 1895 (Ravaz, 1895) and attributed to Erwinia vitivora, has now been shown also to be due to X. ampelinus (Prunier et al., 1970). E. vitivora is simply thought to be a form of the saprophyte Erwinia herbicola. “Vlamsiekte” in South Africa, previously considered to be the same disease as the maladie d'Oléron, is now also recognized to be due to X. ampelinus (Matthee et al., 1970; Erasmus et al., 1974). The same is true of "mal nero” in Italy (Grasso et al., 1979). Recent DNA and RNA structure studies have, however, shown that it belongs to the third rRNA superfamily where it forms a separate branch, now referred to the genus Xylophilus (Willems et al., 1987). Bayer computer code: XANTAM EPPO A2 list: No. 133 EU Annex designation: II/A2 HOSTS Grapevines are the only known host. GEOGRAPHICAL DISTRIBUTION EPPO region: Authentic X. xylophilus is known from France, Greece, Italy, Moldova, Portugal (unconfirmed), Slovenia, Spain and Turkey (eradicated). Symptoms attributed to E. vitivora were at one time reported from Bulgaria, Switzerland, Tunisia, Yugoslavia; the present status of these reports is uncertain.
    [Show full text]
  • Xylophilus Ampelinus
    European and Mediterranean Plant Protection Organization PM 7/96 (1) Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes Diagnostics Diagnostic Xylophilus ampelinus Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Xylophilus Approved in 2009–09 ampelinus1. Introduction Identity Xylophilus ampelinus is the plant pathogenic bacterium causing Name: Xylophilus ampelinus (Panagopoulos) Willems et al., ‘bacterial blight’ of grapevine. The disease was originally 1987. described in Greece (Crete) and was named Xanthomonas ampe- Synonyms: Xanthomonas ampelina Panagopoulos, 1969. lina (Panagopoulos, 1969). It was transferred to the new genus Taxonomic position: Bacteria, Eubacteria, Proteobacteria, Beta- Xylophilus (Willems et al., 1987) on the basis of DNA and RNA proteobacteria, Burkholderiales. studies. The bacterium infects only grapevine (Vitis vinifera and EPPO code: XANTAM Vitis spp. used as rootstock). It is a systemic pathogen infecting Phytosanitary categorization: EPPO A2 list no 133, EU Annex the xylem tissues. It over-winters in plant tissue. Cuttings used II ⁄ A2. either as rooting or grafting material represent the primary source of inoculum and the main pathway of long distance dissemina- Detection tion. In a heavily infected vineyard, up to 50% of the canes can be latently infected, representing a major risk of long distance The bacterial distribution in the plant is irregular, varying both dissemination of the pathogen should they be used as propagating during the year and between years. This means that detection of material. Short distance dissemination occurs through contami- the bacterium in healthy looking plants is uncertain. Formal con- nated tools and machinery, and by direct contamination from firmation of preliminary positive results from presumptive tests plant to plant.
    [Show full text]
  • Towards an Improved Taxonomy of Xanthomonas
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 7-1990 Towards an Improved Taxonomy of Xanthomonas L. Vauterin Rijksuniversiteit Groningen J. Swings Rijksuniversiteit Groningen K. Kersters Rijksuniversiteit Groningen M. Gillis Rijksuniversiteit Groningen T. W. Mew International Rice Research Institute See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Vauterin, L.; Swings, J.; Kersters, K.; Gillis, M.; Mew, T. W.; Schroth, M. N.; Palleroni, N. J.; Hildebrand, D. C.; Stead, D. E.; Civerolo, E. L.; Hayward, A. C.; Maraîte, H.; Stall, R. E.; Vidaver, A. K.; and Bradbury, J. F., "Towards an Improved Taxonomy of Xanthomonas" (1990). Papers in Plant Pathology. 255. https://digitalcommons.unl.edu/plantpathpapers/255 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors L. Vauterin, J. Swings, K. Kersters, M. Gillis, T. W. Mew, M. N. Schroth, N. J. Palleroni, D. C. Hildebrand, D. E. Stead, E. L. Civerolo, A. C. Hayward, H. Maraîte, R. E. Stall, A. K. Vidaver, and J. F. Bradbury This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ plantpathpapers/255 Int J Syst Bacteriol July 1990 40:312-316; doi:10.1099/00207713-40-3-312 Copyright 1990, International Union of Microbiological Societies Towards an Improved Taxonomy of Xanthomonas L.
    [Show full text]
  • Comparison of Bacterial and Archaeal Communities from Different Habitats of the Hypogenic Molnár János Cave of the Buda Thermal Karst System (Hungary)
    D. Anda, G. Krett, J. Makk, K. Márialigeti, J. Mádl-Szőnyi, and A. K. Borsodi. Comparison of bacterial and archaeal communities from different habitats of the hypogenic Molnár János Cave of the Buda Thermal Karst System (Hungary). Journal of Cave and Karst Studies, v. 79, no. 2, p. 113-121. DOI: 10.4311/2015MB0134 COmpARISON OF BACTERIAL AND ARchAEAL COmmUNITIES FROM DIFFERENT HABITATS OF THE HYPOGENIC MOLNÁR JÁNOS CAVE OF THE BUDA ThERMAL KARST SYSTEM (HUNGARY) Dóra Anda1, Gergely Krett1, Judit Makk1, Károly Márialigeti1, Judit Mádl-Szőnyi2, and Andrea K. Borsodi1, C Abstract The Molnár János Cave is part of the northern discharge area of the Buda Thermal Karst System, and is the largest active thermal water cave in the capital of Hungary. To compare the prokaryotic communities, reddish-brown cave wall biofilm, black biogeochemical layers, and thermal water samples from the phreatic mixing zone of the cave were sub- jected to three investigative approaches, scanning electron microscopy, cultivation, and molecular cloning. According to the SEM images, multilayer network structures were observed in the biofilm formed by iron-accumulating filamentous bacteria and mineral crystals. Cultivated strains belonging to Aeromonadaceae and Enterobacteriaceae were charac- teristic from both water and subaqueous biofilm samples. The most abundant molecular clones were representatives of the phylum Chloroflexi in the reddish-brown biofilm, the class Gammaproteobacteria in the black biogeochemical layer, and Thiobacillus (Betaproteobacteria) in the thermal water samples. The reddish-brown biofilm and black biogeochemi- cal layer’s bacterial communities proved to be somewhat more diverse than that of the thermal water. The archaeal 16S rRNA gene clone libraries were dominated by thermophilic ammonia-oxidizer Nitrosopumilus and Nitrososphaera phy- lotypes in all three habitats.
    [Show full text]
  • DNA Type Analysis to Differentiate Strains of Xylophilus Ampelinus from Europe and Hokkaido, Japan
    Title DNA type analysis to differentiate strains of Xylophilus ampelinus from Europe and Hokkaido, Japan Author(s) Komatsu, Tsutomu; Shinmura, Akinori; Kondo, Norio Journal of general plant pathology, 82(3), 159-164 Citation https://doi.org/10.1007/s10327-016-0650-2 Issue Date 2016-05 Doc URL http://hdl.handle.net/2115/65237 Rights The final publication is available at Springer via http://dx.doi.org/10.1007/s10327-016-0650-2 Type article (author version) File Information DNA_type_analysis_of_X_a_20160317.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 1 DNA type analysis for differentiation of strains of Xylophilus ampelinus from Europe 2 and Hokkaido, Japan 3 4 Tsutomu Komatsu, Akinori Shinmura, Norio Kondo 5 6 T. Komatsu and N. Kondo 7 Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9 Kita-ku, Sapporo 8 060-8589, Japan 9 10 T. Komatsu 11 Hokkaido Research Organization, Central Agricultural Experiment Station, Naganuma, 12 Hokkaido 069-1395, Japan 13 14 A. Shinmura 15 Hokkaido Research Organization, Kamikawa Agricultural Experiment Station, Pippu 16 Hokkaido 078-0397, Japan 17 18 Corresponding author: T. Komatsu 19 E-mail: [email protected] 20 Tel.: +81-123-89-2290; Fax: +81-123-89-2060 21 22 Total text pages: 9 23 Numbers of tables and figures: 1 table, 3 figures 24 25 2 26 Abstract 27 Strains of the bacterium Xylophilus ampelinus were collected from Europe and 28 Hokkaido, Japan. Genomic fingerprints generated from a total of 43 strains revealed 29 four DNA types (A–D) using the combined results of Rep-, ERIC-, and Box-PCR.
    [Show full text]
  • Grapevine Pathogens Spreading with Propagating Plant Stock : Detection and Methods for Elimination
    In: Grapevines: Varieties, Cultivation… ISBN: 978-1-62100-361-8 Editors: P. V. Szabo, J. Shojania, pp. © 2011 Nova Science Publishers, Inc. Chapter 1 GRAPEVINE PATHOGENS SPREADING WITH PROPAGATING PLANT STOCK : DETECTION AND METHODS FOR ELIMINATION György Dénes Bisztray 1*, Edwin L. Civerolo 2*, Terézia Dula 3*, Mária Kölber 4*, János Lázár 5*, Laura Mugnai 6*, Ern ő Szegedi 7* and Michael A. Savka 8*# 1 Corvinus University of Budapest, Institute for Viticulture and Enology, Department of Viticulture, Villányi út 29-43, H-1118 Budapest, Hungary. 2 USDA-ARS, San Joaquin Valley Agricultural Sciences Center, 9611 So. Riverbend Ave., Parlier, CA 93648, U.S.A. 3 DULA Grape & Wine Advisory Ltd., Eszterházy tér 9., H- 3300 Eger, Hungary. 4 FITOLAB Plant Pest Diagnostic and Advisory Ltd., Drótos utca 1., H-1031 Budapest, Hungary. * e-mail: [email protected] * e-mail: [email protected] * e-mail: [email protected] * e-mail: [email protected] * e-mail: [email protected] * e-mail [email protected] * e-mail: [email protected] * #Author for correspondence: e-mail: [email protected] 2 György Dénes Bisztray, Edwin L. Civerolo, Terézia Dula et al. 5 Corvinus University of Budapest, Institute for Viticulture and Enology, Experimental Station of Kecskemét, H-6001 Kecskemét, POBox 25, Hungary. 6 DiBA-Protezione delle piante , Università degli Studi di Firenze, P. le delle Cascine 28, 50144 FIRENZE, Italy . 7 Corvinus University of Budapest, Institute for Viticulture and Enology, Experimental Station of Kecskemét, H-6001 Kecskemét, POBox 25, Hungary. 8 Program in Molecular Bioscience and Biotechnology, Department of Biological and Medical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Dr., A350 Gosnell bldg., Rochester, NY 14623, U.S.A.
    [Show full text]
  • Panagopoulos 1969 to a New Genus, Xylophilus Gen
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1987, p. 422430 Vol. 37, No. 4 0020-7713/87/040422-09$02.00/0 Copyright 0 1987, International Union of Microbiological Societies Transfer of Xanthomonas ampelina Panagopoulos 1969 to a New Genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. A. WILLEMS, M. GILLIS, K. KERSTERS, L. VAN DEN BROECKE, AND J. DE LEY* Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit, B-9000 Ghent, Belgium Thirty-four strains of Xanthomonas ampelina, the causal agent of bacterial necrosis of grape vines, were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of their cellular proteins and by numerical analysis of 106 enzymatic features (API systems). These organisms formed a very homogeneous taxon. Generic and suprageneric relationships were determined by hybridizations between 23s 14C-labeled ribosomal ribonucleic acid from Xanthomonas ampelina NCPPB 2217T (T = type strain) and deoxyribonucleic acids from eight Xanthomonas ampelina strains, Xanthomonas campestris NCPPB 52€lT, and the type strains of 16 possibly related species. Xanthomonas ampelina was found to be a totally separate subbranch in ribosomal ribonucleic acid superfamily 111, without any relatives at the generic level. It is not related to the genus Xanthomonas. Genetically its closest relatives are, among others, Pseudomonas acidovorans, Alcaligenes paradoxus, and Comamonas terrigena. We propose the transfer of Xanthomonas ampelina to a new genus, Xylophilus. The only species and thus the type species is Xylophilus ampelinus. The type strain is NCPPB 2217. The causal agent of bacterial necrosis and canker of grape to a new genus, Xylophilus, as Xylophilus ampelinus (Pan- vines in the Mediterranean region and South Africa was agopoulos 1969) comb.
    [Show full text]
  • Grapevine Xylophilus Ampelinus
    Plant Diseases Caused by Bacteria - NARRATIVES Bacterial Blight of Grapevine Xylophilus ampelinus Host: Grapevine (Vitis vinifera). Disease common name: Bacterial blight or bacterial necrosis. Pathogen: Xylophilus ampelinus; syn.: Xanthomonas ampelina. Disease Cycle Inoculum: Inoculum comes from infected plants, including transplants, and contaminated grafting material and equipment. Transmission: Bacteria, exuded from infected plants, are splashed to new infection sites by rain and overhead irrigation. Contaminated equipment, grafting material, and movement of infected plants are major modes of transmission. The pathogen also has been spread by soil. Infection: The bacterium enters plant tissues through stomata and wounds, especially in wet, windy weather. It then invades the xylem vessels in late winter and spreads transvascularly into healthy branches and spurs. It later invades healthy branches, spurs, and new growth. The disease is associated with warm and moist conditions. Symptoms and signs: Symptoms include blighted shoots, absence of bud break, stunted shoots, and cankers on stems and branches (Figs. 1 and 2). Hyperplasia of the cambial tissues may cause spurs to appear slightly swollen, and leaves may show sectional and marginal necrosis (Fig. 3). Symptoms vary considerably depending upon the cultivar and environmental conditions. Dead canes are common as the disease progresses (Fig. 4). Survival: The bacterium survives in wood, and thus may be transmitted from nursery to nursery in infected cuttings. The life cycle of Xylophilus ampelinus is not completely known. Disease Management Bacterial blight is managed by preventing its spread to unaffected grape-growing regions and in newly established vineyards. All planting and grafting material should be obtained from disease-free areas, and nursery stock should be inspected and handled using proper sanitation procedures prior to its use.
    [Show full text]
  • Taxonomic Revision of Xanthomonas Axonopodis Pv. Dieffenbachiae Strains and Pathogenicity on Araceae Plants
    Taxonomic revision of Xanthomonas axonopodis pv. dieffenbachiae strains and pathogenicity on Araceae plants Elena Corina Constantin Promoters Em. Prof. Dr. Paul De Vos Dr. Martine Maes Prof. Dr. Anne Willems Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) of Science: Biochemistry and Biotechnology Dutch translation of the title: Taxonomische herziening van Xanthomonas axonopodis pv. dieffenbachiae stammen en pathogeniteit op Araceae planten Please refer to this work as follows: Constantin, EC. (2017). Taxonomic revision of Xanthomonas axonopodis pv. dieffenbachiae strains and pathogenicity on Araceae plants. PhD thesis, Ghent University, Belgium. The author and the promotors give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Acknowledgements No one gets anywhere alone. What little we accomplish in life, we certainly owe it to the people that are around us, the people that raise us, the friends we meet, the colleagues we work with. The work that was developed in the course of this thesis would certainly not have been possible without the support of many people that have helped me on a personal or professional level. To all of them I wish to extend my gratitude, and in particular to: Martine Maes, my PhD supervisor, who gave me the opportunity to carry out the PhD in the Laboratory of Bacteriology at ILVO. Your encouragement, advices and suggestions were invaluable for completing this work. Prof. Paul De Vos and Anne Willems, my PhD supervisors from UGent, thank you very much for taking your time to read my PhD and for your positive feedback.
    [Show full text]