Deep Learning for Decoding of Linear Codes - a Syndrome-Based Approach

Total Page:16

File Type:pdf, Size:1020Kb

Deep Learning for Decoding of Linear Codes - a Syndrome-Based Approach Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach Amir Bennatan*, Yoni Choukroun* and Pavel Kisilev Huawei Technologies Co., Email: famir.bennatan, yoni.choukroun, [email protected] Abstract— We present a novel framework for applying deep In this paper, we present a method which overcomes this neural networks (DNN) to soft decoding of linear codes at drawback while maintaining the resilience to overfitting of [2]. arbitrary block lengths. Unlike other approaches, our framework Our framework allows unconstrained neural network design, allows unconstrained DNN design, enabling the free application of powerful designs that were developed in other contexts. Our paving the way to the application of powerful neural network method is robust to overfitting that inhibits many competing designs that have emerged in recent years. Central to our methods, which follows from the exponentially large number approach is a preprocessing step, which extracts from the of codewords required for their training. We achieve this by channel output only the reliabilities (absolute values), and transforming the channel output before feeding it to the network, the syndrome of its hard decisions, and feeds them into the extracting only the syndrome of the hard decisions and the channel output reliabilities. We prove analytically that this neural network. The network’s output is later combined with approach does not involve any intrinsic performance penalty, and the channel output to produce an estimate of the transmitted guarantees the generalization of performance obtained during codeword. training. Our best results are obtained using a recurrent neural Decoding methods that focus on the syndrome are well network (RNN) architecture combined with simple preprocessing known in literature on algebraic decoding (see e.g. [12][Sec. by permutation. We provide simulation results that demonstrate performance that sometimes approaches that of the ordered 3.2]). The approach decouples the estimation of the channel statistics decoding (OSD) algorithm. noise from that of the transmitted codeword. In our context of deep learning, its potential lies in the elimination of the need to simulate codewords during training, thus overcoming I. INTRODUCTION the overfitting problem. A few early works that used shallow Interest in applying neural networks to decoding has existed neural networks have employed syndromes (e.g. [6]). How- since the 1980’s [6], [7], [8]. These early works, however, did ever, these works did not discuss its potential in terms of not have a substantial impact on the field due to the limitations overfitting, presumably because the problem was not as acute of the networks that were available at the time. More recently, in their relatively simple networks. Importantly, their approach deep neural networks were studied in [4], [5], [2]. does not apply in cases where the channel includes reliabilities A major challenge facing applications of deep networks to (mentioned above). decoding is the avoidance of overfitting the codewords encoun- Our approach in this paper extends syndrome decoding tered during training. Specifically, training data is typically to include channel reliabilities, and applies it to overcome produced by randomly selecting codewords and simulating the overfitting issue mentioned above. We provide a rigorous the channel transitions. Due to the large number of codewords analysis which proves that our framework incurs no loss (exponential in the block length), it is impossible to account for in optimality, in terms of bit error rate (BER) and mean square error (MSE). Our analysis utilizes some techniques arXiv:1802.04741v1 [cs.IT] 13 Feb 2018 even a small fraction of them during training, leading to poor generalization of the network to new codewords. This issue developed by Burshtein et al: [14], Wiechman and Sason [13] was a major obstacle in [4], [5], constraining their networks and Richardson and Urbanke [11][Sec. 4.11]. to very short block lengths. Building on our analysis, we propose two deep neural Nachmani et al: [2], [3] proposed a deep learning frame- network architectures for decoding of linear codes. The first work which is modeled on the LDPC belief propagation (BP) is a vanilla multilayer network, and the second a more- decoder, and is robust to overfitting. A drawback of their elaborate recurrent neural network (RNN) based architecture. design, however, is that to preserve symmetry, the design is We also develop a preprocessing technique (beyond the above- constrained to closely mimic the message-passing structure mentioned computation of the syndrome and reliabilities), of BP. Specifically, the connections between neurons are which applies a permutation (an automorphism) to the decoder controlled to resemble BP’s underlying Tanner graph, as are input to facilitate the operation of the neural network. This the activations at neurons. This severely limits the freedom technique builds on ideas by Fossorier et al: [9], [10] and available to the neural networks design, and precludes the Dimnik and Be’ery [17] but does not involve list decoding. application of powerful architectures that have emerged in Finally, we provide simulation results for decoding of BCH recent years [15]. codes which for the case of BCH(63,45), demonstrate per- formance approaches that of the ordered statistics algorithm * Both authors contributed equally to this work. (OSD) of [9], [10]. Summarizing, our main contributions are: for an associated computational algorithm. The nodes are 1) A novel deep neural network training framework for called neurons and each performs (i.e., is associated with) a decoding, which is robust to overitting. It is based on the simple computation on inputs to produce a single output. The extension of syndrome decoding that is described below. algorithm inputs are fed into the first-layer neurons, whose 2) An extension of syndrome decoding which accounts outputs are fed as inputs into the next layer and so forth. for reliabilities. As with legacy syndrome decoding, we Finally, the outputs of the last layer neurons become the define a generic framework, leaving room for a noise- algorithm output. Deep networks are simply neural networks estimation algorithm which is specified separately. We with many layers. provide analysis that proves that the framework involves The inputs and output at each neuron are real-valued num- no loss of optimality, and that regardless of the noise- bers. To compute its output, each neuron first computes an estimation algorithm, performance is invariant to the affine function of its input (a weighted sum plus a bias). It then transmitted codeword. applies a predefined activation function, which is typically 3) Two neural network designs for the noise-estimation al- nonlinear (e.g., sigmoid or hyperbolic tangent), to render the gorithm, including an elaborate RNN-based architecture. output. 4) A simple preprocessing technique that applies permuta- The power of neural networks lies in their configurability. tions to boost the decoder’s performance. Specifically, the weights and biases at each neuron are pa- Our work is organized as follows. In Sec. II we introduce rameters which can be tailored to produce a diverse range some notations and in Sec III we provide some bakground on of computations. Typically, the network is configured by a neural networks. In Sec. IV we describe our syndrome-based training procedure. This procedure relies on a sample dataset, framework and provide an analysis of it. In Sec. V we discuss consisting of inputs, and in the case of supervised training, of deep neural network architectures as well as preprocessing by desired outputs (known as labels). There are several training permutation. In Sec. VI we present simulation results. Sec. VII paradigms available, most of which are variations of gradient concludes the paper. descent. Overfitting occurs typically when the training dataset is II. NOTATIONS insufficiently large or diverse to be representative of all valid We will often use the superscripts b and s (e.g., xb and xs) to network inputs. The resulting network does not generalize well denote binary values (i.e, over the alphabet f0; 1g) and bipolar to inputs that were not encountered in the training set. values (i.e., over {±1g), respectively. We define the mapping from the binary to the bipolar alphabet, denoted bipolar(·), by IV. THE PROPOSED SYNDROME-BASED FRAMEWORK AND 0 ! 1; 1 ! −1 and let bin(·) denote the inverse mapping. ITS ANALYSIS Note that the following identity holds: A. Framework Definition bin(xs · ys) = bin(xs) ⊕ bin(ys); 8xs; ys 2 {±1g (1) We begin by briefly discussing the encoder. We assume standard transmission that uses a linear code C. We let where ⊕ denotes XOR. sign(x) and jxj denote the sign m 2 f0; 1gK denote the input message, which is mapped and absolute value of any real-valued x, respectively, In to a codeword xb 2 f0; 1gN (recall that the superscript b our analysis below, when applied to a vector, the operations denotes binary vectors). We assume that xb is mapped to a bipolar(·), bin(·), sign(·) and j · j are assumed to be applied bipolar vector x using the mapping defined in Sec. II, and x independently to each of the vector’s components. is transmitted over the channel. We let y denote the channel output. For convenience, we define m, xb, x and y to be III. BRIEF OVERVIEW OF DEEP NEURAL NETWORKS column vectors. We now briefly describe the essentials of neural networks. Our discussion is in no way comprehensive, and there are Decoder many variations on the simple setup we describe. For an 퐲풔 elaborate discussion, see e.g. [15]. Channel 퐲풃 퐻퐲풃 output sign bin 퐻 Noise Estimate estimation 퐲 x sign 퐱 abs F |퐲| Algorithm Algorithm inputs outputs Fig. 2. Decoder framework. The final sign operation is omitted when the system is designed to produce soft decisions. In Sec. V, we will implement F using a neural network. Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Our decoder framework is depicted in Figure 2.
Recommended publications
  • A [49 16 6 ]-Linear Code As Product of the [7 4 2 ] Code Due to Aunu and the Hamming [7 4 3 ] Code
    General Letters in Mathematics, Vol. 4, No.3 , June 2018, pp.114 -119 Available online at http:// www.refaad.com https://doi.org/10.31559/glm2018.4.3.4 A [49 16 6 ]-Linear Code as Product Of The [7 4 2 ] Code Due to Aunu and the Hamming [7 4 3 ] Code CHUN, Pamson Bentse1, IBRAHIM Alhaji Aminu2, and MAGAMI, Mohe'd Sani3 1 Department Of Mathematics, Plateau State University Bokkos, Jos Nigeria [email protected] 2 Department Of Mathematics, Usmanu Danfodiyo University Sokoto, Sokoto Nigeria [email protected] 3 Department Of Mathematics, Usmanu Danfodiyo University Sokoto, Sokoto Nigeria [email protected] Abstract: The enumeration of the construction due to "Audu and Aminu"(AUNU) Permutation patterns, of a [ 7 4 2 ]- linear code which is an extended code of the [ 6 4 1 ] code and is in one-one correspondence with the known [ 7 4 3 ] - Hamming code has been reported by the Authors. The [ 7 4 2 ] linear code, so constructed was combined with the known Hamming [ 7 4 3 ] code using the ( u|u+v)-construction method to obtain a new hybrid and more practical single [14 8 3 ] error- correcting code. In this paper, we provide an improvement by obtaining a much more practical and applicable double error correcting code whose extended version is a triple error correcting code, by combining the same codes as in [1]. Our goal is achieved through using the product code construction approach with the aid of some proven theorems. Keywords: Cayley tables, AUNU Scheme, Hamming codes, Generator matrix,Tensor product 2010 MSC No: 97H60, 94A05 and 94B05 1.
    [Show full text]
  • Coding Theory: Linear Error-Correcting Codes Coding Theory Basic Definitions Error Detection and Correction Finite Fields Anna Dovzhik
    Coding Theory: Linear Error- Correcting Codes Anna Dovzhik Outline Coding Theory: Linear Error-Correcting Codes Coding Theory Basic Definitions Error Detection and Correction Finite Fields Anna Dovzhik Linear Codes Hamming Codes Finite Fields Revisited BCH Codes April 23, 2014 Reed-Solomon Codes Conclusion Coding Theory: Linear Error- Correcting 1 Coding Theory Codes Basic Definitions Anna Dovzhik Error Detection and Correction Outline Coding Theory 2 Finite Fields Basic Definitions Error Detection and Correction 3 Finite Fields Linear Codes Linear Codes Hamming Codes Hamming Codes Finite Fields Finite Fields Revisited Revisited BCH Codes BCH Codes Reed-Solomon Codes Reed-Solomon Codes Conclusion 4 Conclusion Definition A q-ary word w = w1w2w3 ::: wn is a vector where wi 2 A. Definition A q-ary block code is a set C over an alphabet A, where each element, or codeword, is a q-ary word of length n. Basic Definitions Coding Theory: Linear Error- Correcting Codes Anna Dovzhik Definition If A = a ; a ;:::; a , then A is a code alphabet of size q. Outline 1 2 q Coding Theory Basic Definitions Error Detection and Correction Finite Fields Linear Codes Hamming Codes Finite Fields Revisited BCH Codes Reed-Solomon Codes Conclusion Definition A q-ary block code is a set C over an alphabet A, where each element, or codeword, is a q-ary word of length n. Basic Definitions Coding Theory: Linear Error- Correcting Codes Anna Dovzhik Definition If A = a ; a ;:::; a , then A is a code alphabet of size q. Outline 1 2 q Coding Theory Basic Definitions Error Detection Definition and Correction Finite Fields A q-ary word w = w1w2w3 ::: wn is a vector where wi 2 A.
    [Show full text]
  • Mceliece Cryptosystem Based on Extended Golay Code
    McEliece Cryptosystem Based On Extended Golay Code Amandeep Singh Bhatia∗ and Ajay Kumar Department of Computer Science, Thapar university, India E-mail: ∗[email protected] (Dated: November 16, 2018) With increasing advancements in technology, it is expected that the emergence of a quantum computer will potentially break many of the public-key cryptosystems currently in use. It will negotiate the confidentiality and integrity of communications. In this regard, we have privacy protectors (i.e. Post-Quantum Cryptography), which resists attacks by quantum computers, deals with cryptosystems that run on conventional computers and are secure against attacks by quantum computers. The practice of code-based cryptography is a trade-off between security and efficiency. In this chapter, we have explored The most successful McEliece cryptosystem, based on extended Golay code [24, 12, 8]. We have examined the implications of using an extended Golay code in place of usual Goppa code in McEliece cryptosystem. Further, we have implemented a McEliece cryptosystem based on extended Golay code using MATLAB. The extended Golay code has lots of practical applications. The main advantage of using extended Golay code is that it has codeword of length 24, a minimum Hamming distance of 8 allows us to detect 7-bit errors while correcting for 3 or fewer errors simultaneously and can be transmitted at high data rate. I. INTRODUCTION Over the last three decades, public key cryptosystems (Diffie-Hellman key exchange, the RSA cryptosystem, digital signature algorithm (DSA), and Elliptic curve cryptosystems) has become a crucial component of cyber security. In this regard, security depends on the difficulty of a definite number of theoretic problems (integer factorization or the discrete log problem).
    [Show full text]
  • Coded Computing Via Binary Linear Codes: Designs and Performance Limits Mahdi Soleymani∗, Mohammad Vahid Jamali∗, and Hessam Mahdavifar, Member, IEEE
    1 Coded Computing via Binary Linear Codes: Designs and Performance Limits Mahdi Soleymani∗, Mohammad Vahid Jamali∗, and Hessam Mahdavifar, Member, IEEE Abstract—We consider the problem of coded distributed processing capabilities. A coded computing scheme aims to computing where a large linear computational job, such as a divide the job to k < n tasks and then to introduce n − k matrix multiplication, is divided into k smaller tasks, encoded redundant tasks using an (n; k) code, in order to alleviate the using an (n; k) linear code, and performed over n distributed nodes. The goal is to reduce the average execution time of effect of slower nodes, also referred to as stragglers. In such a the computational job. We provide a connection between the setup, it is often assumed that each node is assigned one task problem of characterizing the average execution time of a coded and hence, the total number of encoded tasks is n equal to the distributed computing system and the problem of analyzing the number of nodes. error probability of codes of length n used over erasure channels. Recently, there has been extensive research activities to Accordingly, we present closed-form expressions for the execution time using binary random linear codes and the best execution leverage coding schemes in order to boost the performance time any linear-coded distributed computing system can achieve. of distributed computing systems [6]–[18]. However, most It is also shown that there exist good binary linear codes that not of the work in the literature focus on the application of only attain (asymptotically) the best performance that any linear maximum distance separable (MDS) codes.
    [Show full text]
  • ERROR CORRECTING CODES Definition (Alphabet)
    ERROR CORRECTING CODES Definition (Alphabet) An alphabet is a finite set of symbols. Example: A simple example of an alphabet is the set A := fB; #; 17; P; $; 0; ug. Definition (Codeword) A codeword is a string of symbols in an alphabet. Example: In the alphabet A := fB; #; 17; P; $; 0; ug, some examples of codewords of length 4 are: P 17#u; 0B$#; uBuB; 0000: Definition (Code) A code is a set of codewords in an alphabet. Example: In the alphabet A := fB; #; 17; P; $; 0; ug, an example of a code is the set of 5 words: fP 17#u; 0B$#; uBuB; 0000;PP #$g: If all the codewords are known and recorded in some dictionary then it is possible to transmit messages (strings of codewords) to another entity over a noisy channel and detect and possibly correct errors. For example in the code C := fP 17#u; 0B$#; uBuB; 0000;PP #$g if the word 0B$# is sent and received as PB$#, then if we knew that only one error was made it can be determined that the letter P was an error which can be corrected by changing P to 0. Definition (Linear Code) A linear code is a code where the codewords form a finite abelian group under addition. Main Problem of Coding Theory: To construct an alphabet and a code in that alphabet so it is as easy as possible to detect and correct errors in transmissions of codewords. A key idea for solving this problem is the notion of Hamming distance. Definition (Hamming distance dH ) Let C be a code and let 0 0 0 0 w = w1w2 : : : wn; w = w1w2 : : : wn; 0 0 be two codewords in C where wi; wj are elements of the alphabet of C.
    [Show full text]
  • Improved List-Decodability of Random Linear Binary Codes
    Improved list-decodability of random linear binary codes∗ Ray Li† and Mary Wootters‡ November 26, 2020 Abstract There has been a great deal of work establishing that random linear codes are as list- decodable as uniformly random codes, in the sense that a random linear binary code of rate 1 H(p) ǫ is (p, O(1/ǫ))-list-decodable with high probability. In this work, we show that such codes− are− (p,H(p)/ǫ + 2)-list-decodable with high probability, for any p (0, 1/2) and ǫ > 0. In addition to improving the constant in known list-size bounds, our argument—which∈ is quite simple—works simultaneously for all values of p, while previous works obtaining L = O(1/ǫ) patched together different arguments to cover different parameter regimes. Our approach is to strengthen an existential argument of (Guruswami, H˚astad, Sudan and Zuckerman, IEEE Trans. IT, 2002) to hold with high probability. To complement our up- per bound for random linear codes, we also improve an argument of (Guruswami, Narayanan, IEEE Trans. IT, 2014) to obtain an essentially tight lower bound of 1/ǫ on the list size of uniformly random codes; this implies that random linear codes are in fact more list-decodable than uniformly random codes, in the sense that the list sizes are strictly smaller. To demonstrate the applicability of these techniques, we use them to (a) obtain more in- formation about the distribution of list sizes of random linear codes and (b) to prove a similar result for random linear rank-metric codes.
    [Show full text]
  • Coding Theory and Applications Solved Exercises and Problems Of
    Coding Theory and Applications Solved Exercises and Problems of Linear Codes Enes Pasalic University of Primorska Koper, 2013 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a collection of solved exercises and problems of linear codes for students who have a working knowledge of coding theory. Its aim is to achieve a balance among the computational skills, theory, and applications of cyclic codes, while keeping the level suitable for beginning students. The contents are arranged to permit enough flexibility to allow the presentation of a traditional introduction to the subject, or to allow a more applied course. Enes Pasalic [email protected] 3 2 Problems In these exercises we consider some basic concepts of coding theory, that is we introduce the redundancy in the information bits and consider the possible improvements in terms of improved error probability of correct decoding. 1. (Error probability): Consider a code of length six n = 6 defined as, (a1; a2; a3; a2 + a3; a1 + a3; a1 + a2) where ai 2 f0; 1g. Here a1; a2; a3 are information bits and the remaining bits are redundancy (parity) bits. Compute the probability that the decoder makes an incorrect decision if the bit error probability is p = 0:001. The decoder computes the following entities b1 + b3 + b4 = s1 b1 + b3 + b5 == s2 b1 + b2 + b6 = s3 where b = (b1; b2; : : : ; b6) is a received vector. We represent the error vector as e = (e1; e2; : : : ; e6) and clearly if a vector (a1; a2; a3; a2+ a3; a1 + a3; a1 + a2) was transmitted then b = a + e, where '+' denotes bitwise mod 2 addition.
    [Show full text]
  • Reed-Solomon Encoding and Decoding
    Bachelor's Thesis Degree Programme in Information Technology 2011 León van de Pavert REED-SOLOMON ENCODING AND DECODING A Visual Representation i Bachelor's Thesis | Abstract Turku University of Applied Sciences Degree Programme in Information Technology Spring 2011 | 37 pages Instructor: Hazem Al-Bermanei León van de Pavert REED-SOLOMON ENCODING AND DECODING The capacity of a binary channel is increased by adding extra bits to this data. This improves the quality of digital data. The process of adding redundant bits is known as channel encod- ing. In many situations, errors are not distributed at random but occur in bursts. For example, scratches, dust or fingerprints on a compact disc (CD) introduce errors on neighbouring data bits. Cross-interleaved Reed-Solomon codes (CIRC) are particularly well-suited for detection and correction of burst errors and erasures. Interleaving redistributes the data over many blocks of code. The double encoding has the first code declaring erasures. The second code corrects them. The purpose of this thesis is to present Reed-Solomon error correction codes in relation to burst errors. In particular, this thesis visualises the mechanism of cross-interleaving and its ability to allow for detection and correction of burst errors. KEYWORDS: Coding theory, Reed-Solomon code, burst errors, cross-interleaving, compact disc ii ACKNOWLEDGEMENTS It is a pleasure to thank those who supported me making this thesis possible. I am thankful to my supervisor, Hazem Al-Bermanei, whose intricate know- ledge of coding theory inspired me, and whose lectures, encouragement, and support enabled me to develop an understanding of this subject.
    [Show full text]
  • Decoding Algorithms of Reed-Solomon Code
    Master’s Thesis Computer Science Thesis no: MCS-2011-26 October 2011 Decoding algorithms of Reed-Solomon code Szymon Czynszak School of Computing Blekinge Institute of Technology SE – 371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute o f Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Szymon Czynszak E-mail: [email protected] University advisor(s): Mr Janusz Biernat, prof. PWR, dr hab. in ż. Politechnika Wrocławska E-mail: [email protected] Mr Martin Boldt, dr Blekinge Institute of Technology E-mail: [email protected] Internet : www.bth.se/com School of Computing Phone : +46 455 38 50 00 Blekinge Institute of Technology Fax : +46 455 38 50 57 SE – 371 79 Karlskrona Sweden ii Abstract Reed-Solomon code is nowadays broadly used in many fields of data trans- mission. Using of error correction codes is divided into two main operations: information coding before sending information into communication channel and decoding received information at the other side. There are vast of decod- ing algorithms of Reed-Solomon codes, which have specific features. There is needed knowledge of features of algorithms to choose correct algorithm which satisfies requirements of system. There are evaluated cyclic decoding algo- rithm, Peterson-Gorenstein-Zierler algorithm, Berlekamp-Massey algorithm, Sugiyama algorithm with erasures and without erasures and Guruswami- Sudan algorithm. There was done implementation of algorithms in software and in hardware.
    [Show full text]
  • The Binary Golay Code and the Leech Lattice
    The binary Golay code and the Leech lattice Recall from previous talks: Def 1: (linear code) A code C over a field F is called linear if the code contains any linear combinations of its codewords A k-dimensional linear code of length n with minimal Hamming distance d is said to be an [n, k, d]-code. Why are linear codes interesting? ● Error-correcting codes have a wide range of applications in telecommunication. ● A field where transmissions are particularly important is space probes, due to a combination of a harsh environment and cost restrictions. ● Linear codes were used for space-probes because they allowed for just-in-time encoding, as memory was error-prone and heavy. Space-probe example The Hamming weight enumerator Def 2: (weight of a codeword) The weight w(u) of a codeword u is the number of its nonzero coordinates. Def 3: (Hamming weight enumerator) The Hamming weight enumerator of C is the polynomial: n n−i i W C (X ,Y )=∑ Ai X Y i=0 where Ai is the number of codeword of weight i. Example (Example 2.1, [8]) For the binary Hamming code of length 7 the weight enumerator is given by: 7 4 3 3 4 7 W H (X ,Y )= X +7 X Y +7 X Y +Y Dual and doubly even codes Def 4: (dual code) For a code C we define the dual code C˚ to be the linear code of codewords orthogonal to all of C. Def 5: (doubly even code) A binary code C is called doubly even if the weights of all its codewords are divisible by 4.
    [Show full text]
  • OPTIMIZING SIZES of CODES 1. Introduction to Coding Theory Error
    OPTIMIZING SIZES OF CODES LINDA MUMMY Abstract. This paper shows how to determine if codes are of optimal size. We discuss coding theory terms and techniques, including Hamming codes, perfect codes, cyclic codes, dual codes, and parity-check matrices. 1. Introduction to Coding Theory Error correcting codes and check digits were developed to counter the effects of static interference in transmissions. For example, consider the use of the most basic code. Let 0 stand for \no" and 1 stand for \yes." A mistake in one digit relaying this message can change the entire meaning. Therefore, this is a poor code. One option to increase the probability that the correct message is received is to send the message multiple times, like 000000 or 111111, hoping that enough instances of the correct message get through that the receiver is able to comprehend the original meaning. This, however, is an inefficient method of relaying data. While some might associate \coding theory" with cryptography and \secret codes," the two fields are very different. Coding theory deals with transmitting a codeword, say x, and ensuring that the receiver is able to determine the original message x even if there is some static or interference in transmission. Cryptogra- phy deals with methods to ensure that besides the sender and the receiver of the message, no one is able to encode or decode the message. We begin by discussing a real life example of the error checking codes (ISBN numbers) which appear on all books printed after 1964. We go on to discuss different types of codes and the mathematical theories behind their structures.
    [Show full text]
  • Linear Codes
    Coding Theory and Applications Linear Codes Enes Pasalic University of Primorska Koper, 2013 2 Contents 1 Preface 5 2 Shannon theory and coding 7 3 Coding theory 31 4 Decoding of linear codes and MacWilliams identity 53 5 Coding theory - Constructing New Codes 77 6 Coding theory - Bounds on Codes 107 7 Reed-Muller codes 123 8 Fast decoding of RM codes and higher order RM codes 141 3 4 CONTENTS Chapter 1 Preface This book has been written as lecture notes for students who need a grasp of the basic principles of linear codes. The scope and level of the lecture notes are considered suitable for under- graduate students of Mathematical Sciences at the Faculty of Mathematics, Natural Sciences and Information Technologies at the University of Primorska. It is not possible to cover here in detail every aspect of linear codes, but I hope to provide the reader with an insight into the essence of the linear codes. Enes Pasalic [email protected] 5 6 CHAPTER 1. PREFACE Chapter 2 Shannon theory and coding Contents of the chapter: Mariners • Course description • Decoding problem • Hamming distance • Error correction • Shannon • 7 Mariners Course description Decoding problem Hamming distance Error correction Shannon Coding theory - introduction Coding theory is fun (to certain extent :) Can we live without error correction codes? – Probably not !! What would you miss : You would not be able to listen CD-s, retrieve correct data from your hard disk, would not be able to have a quality communication over telephone etc. Communication, storage errors, authenticity of ISBN numbers and much more is protected by means of error-correcting codes.
    [Show full text]