SSBMD Report
Total Page:16
File Type:pdf, Size:1020Kb
Design Report Ballistic Missile Defense Submarine SSBMD Ocean Engineering Design Project AOE 4066 Spring 2008 Virginia Tech Team 1 . Christopher R. Blizzard – Team Leader _________________________________ 27537 Kyle Colantonio _________________________________ 27666 Van Jones _________________________________ 25922 Mike Toris _________________________________ 25654 David Riegel _________________________________ 27540 Matt Wichgers _________________________________ 13591 SSBMD(X) Design – VT Team 1 Page 2 Executive Summary This report describes the Concept Exploration and maneuverability, an axi-symmetric hullform for Development of a Diesel/ AIP Ballistic Missile producibility, and a sonar system capable of both active Defense Submarine (SSBMD) for the United States and passive sonar ASW missions. Navy. This concept design was completed in a two- The basic cost of construction of SSBMD is $1.575 semester ship design course at Virginia Polytechnic billion. This satisfies the goal of a lead ship BCC less Institute and State University. than $1.6 billion. The final concept design satisfies key The SSBMD requirement is based on the SSBMD performance requirements in the CDD within cost and Initial Capabilities Document (ICD) and Virginia risk constraints. The basic characteristics of SSBMD Tech SSBMD Acquisition Decision Memorandum are listed in the table below. (ADM). The submarine addresses the need to provide a sea-based ballistic missile defense launch Ship Characteristic Value capability to guard against rogue and hostile nation LOA 261.2 ft missile attack. The submarine platform allows for covert Beam 32 ft positioning near potential enemy launch sites and Diameter 32 ft provides a favorable launch angle for missile Submerged Displacement 3962 lton interception with guidance from surface or air 3 bourne assets. By utilizing a diesel-electric/AIP Submerged Displaced Volume 138027 ft design, a ballistic missile defense capability is Sprint Speed 22 knt achieved without endangering US nuclear assets or Snorkel Range @ 12 knt 5356 nm incurring the diplomatic risk inherent to nuclear submarine operations in or near foreign waters. The AIP Endurance @ 5 knt 24 days submarine is expected to operate in littoral and open AIP Sprint Endurance 56 minutes (21 nm) ocean environments. Open Cycle Diesel/AIP, The primary threats expected to be encountered 2xCAT 3512 V12 + 2x500kW Propulsion and Power include operating in areas of dense contact with high PEM; 5000kW-hr Zebra levels of civilian vessels present (near international batteries, Shrouded Propeller shipping lanes). 4 KEI in sail, Reconfigurable The primary missions carried out by the submarine torpedo room, 2x21” tubes, 8 Weapon Systems are Ballistic Missile Defense (BMD), Intelligence, reloads; 24 Cell VLS (16 SM-3, Reconnaissance & Surveillance Operations, Inland 8TLAM), Missile Strike, as well as anti-submarine (ASW) and Sensors BSY-2 w/ CCSM EDO Arrays anti-surface ship (ASuW) capability (primarily for P for AIP 5knt 76 kW self defense). req SSBMD is a high effectiveness and moderate risk, Preq for Sprint Speed 6010 kW high end alternative selected from the non- Preq for Snorkel 1136 kW dominated frontier. This design was chosen to Battery Capacity 5000 kW-hr provide a ground-breaking, challenging project in which modern, innovative technologies such as PEM Diving Depth 570 ft fuel cells for air-independent propulsion, two five Total Officers 8 torpedo rotary launch systems, and four Kinetic Total Enlisted 47 Energy Interceptor (KEI) missiles contained in an advanced composite sail were utilized. SSBMD has Total Manning 55 many other attractive qualities including high Basic Cost of Construction $1.6 billion SSBMD(X) Design – VT Team 1 Page 3 Table of Contents TABLE OF CONTENTS..............................................................................................................................................................................................3 1 INTRODUCTION, DESIGN PROCESS AND PLAN..................................................................................................................................5 1.1 INTRODUCTION.............................................................................................................................................5 1.2 DESIGN PHILOSOPHY, PROCESS, AND PLAN..................................................................................................6 1.3 WORK BREAKDOWN.....................................................................................................................................7 1.4 RESOURCES ..................................................................................................................................................7 2 MISSION DEFINITION ..................................................................................................................................................................................8 2.1 CONCEPT OF OPERATIONS ............................................................................................................................8 2.2 PROJECTED OPERATIONAL ENVIRONMENT (POE) AND THREAT ..................................................................9 2.3 SPECIFIC OPERATIONS AND MISSIONS ..........................................................................................................9 2.4 MISSION SCENARIOS ....................................................................................................................................9 2.5 REQUIRED OPERATIONAL CAPABILITIES ......................................................................................................9 3 CONCEPT EXPLORATION ........................................................................................................................................................................11 3.1 TRADE-OFF STUDIES, TECHNOLOGIES, CONCEPTS AND DESIGN VARIABLES .............................................11 3.1.1 Hullform Alternatives......................................................................................................................11 3.1.2 Propulsion and Electrical Machinery Alternatives.........................................................................12 3.1.3 Automation and Manning................................................................................................................19 3.1.4 Combat System Alternatives............................................................................................................20 3.2 DESIGN SPACE............................................................................................................................................28 3.3 SHIP SYNTHESIS MODEL.............................................................................................................................31 3.4 OBJECTIVE ATTRIBUTES.............................................................................................................................33 3.4.1 Overall Measure of Effectiveness (OMOE) ....................................................................................33 3.4.2 Overall Measure of Risk (OMOR) ..................................................................................................34 3.4.3 Cost .................................................................................................................................................35 3.5 MULTI-OBJECTIVE OPTIMIZATION .............................................................................................................36 3.6 OPTIMIZATION RESULTS.............................................................................................................................39 3.7 BASELINE CONCEPT DESIGN ......................................................................................................................39 4 CONCEPT DEVELOPMENT (FEASIBILITY STUDY) ..........................................................................................................................40 4.1 HULL FORM................................................................................................................................................40 4.1.1 Final Hull Form Design..................................................................................................................40 4.2 INITIAL BALANCE AND TRIM ......................................................................................................................41 4.2.1 Displacing Volumes ........................................................................................................................44 4.2.2 Internal and External Tanks............................................................................................................45 4.2.3 Weights............................................................................................................................................46 4.2.4 Load Conditions..............................................................................................................................46 4.2.5 Initial Equilibrium Polygon ............................................................................................................47 4.2.6 Necessary Modifications and Baseline Equilibrium Polygon .........................................................47 4.2.7 Normal Surface Condition ..............................................................................................................48 4.3 STRUCTURAL DESIGN AND ANALYSIS ........................................................................................................48