Probab. Theory Relat. Fields DOI 10.1007/s00440-016-0748-7 Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation Tadahiro Oh1,2 · Nikolay Tzvetkov3 Received: 4 August 2015 / Revised: 25 November 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces s(T) > 3 H , s 4 , are quasi-invariant under the flow. Keywords Fourth order nonlinear Schrödinger equation · Biharmonic nonlinear Schrödinger equation · Gaussian measure · Quasi-invariance Mathematics Subject Classification 35Q55 Contents 1 Introduction ............................................... 1.1 Background ............................................. 1.2 Cubic fourth order nonlinear Schrödinger equation ........................ 1.3 Main result ............................................. 1.4 Organization of the paper ...................................... 2 Notations ................................................. 3 Reformulation of the cubic fourth order NLS .............................. B Tadahiro Oh
[email protected] Nikolay Tzvetkov
[email protected] 1 School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK 2 The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,