Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral

Total Page:16

File Type:pdf, Size:1020Kb

Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge This information is current as of September 28, 2021. Claire M. Tully, Senthil Chinnakannan, Caitlin E. Mullarkey, Marta Ulaszewska, Francesca Ferrara, Nigel Temperton, Sarah C. Gilbert and Teresa Lambe J Immunol 2017; 199:1333-1341; Prepublished online 19 July 2017; Downloaded from doi: 10.4049/jimmunol.1600939 http://www.jimmunol.org/content/199/4/1333 http://www.jimmunol.org/ References This article cites 42 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/199/4/1333.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge Claire M. Tully,* Senthil Chinnakannan,† Caitlin E. Mullarkey,‡ Marta Ulaszewska,* Francesca Ferrara,x Nigel Temperton,x Sarah C. Gilbert,* and Teresa Lambe* Seasonal influenza viruses are a common cause of acute respiratory illness worldwide and generate a significant socioeconomic burden. Influenza viruses mutate rapidly, necessitating annual vaccine reformulation because traditional vaccines do not typically induce broad-spectrum immunity. In addition to seasonal infections, emerging pandemic influenza viruses present a continued threat to global public health. Pandemic influenza viruses have consistently higher attack rates and are typically associated with greater mortality compared with seasonal strains. Ongoing strategies to improve vaccine efficacy typically focus on providing Downloaded from broad-spectrum immunity; although B and T cells can mediate heterosubtypic responses, typical vaccine development will augment either humoral or cellular immunity. However, multipronged approaches that target several Ags may limit the gener- ation of viral escape mutants. There are few vaccine platforms that can deliver multiple Ags and generate robust cellular and humoral immunity. In this article, we describe a novel vaccination strategy, tested preclinically in mice, for the delivery of novel bivalent viral-vectored vaccines. We show this strategy elicits potent T cell responses toward highly conserved internal Ags while simultaneously inducing high levels of Abs toward hemagglutinin. Importantly, these humoral responses generate long-lived http://www.jimmunol.org/ plasma cells and generate Abs capable of neutralizing variant hemagglutinin-expressing pseudotyped lentiviruses. Significantly, these novel viral-vectored vaccines induce strong immune responses capable of conferring protection in a stringent influenza A virus challenge. Thus, this vaccination regimen induces lasting efficacy toward influenza. Importantly, the simultaneous delivery of dual Ags may alleviate the selective pressure that is thought to potentiate antigenic diversity in avian influenza viruses. The Journal of Immunology, 2017, 199: 1333–1341. easonal influenza A virus (IAV) infections cause signifi- tensive care unit (1–3). For the past 70 y, vaccination has been the cant morbidity and mortality worldwide and remain a mainstay healthcare strategy against influenza infection (4–6). by guest on September 28, 2021 S major public health concern. The novel avian-origin in- However, traditional inactivated influenza vaccines (IIVs) confer fluenza A strain (H7N9), initially identified in 2013, is now cir- strain-specific protection and do not typically induce the broad- culating with almost annual frequency and almost one-third of all spectrum immunity needed in the face of a newly emergent IAV H7N9 cases occurred in the 2016/2017 influenza season. Most (7–9). Therefore, the possible threat of a pandemic outbreak has worringly, the case-fatality rate for this virus exceeds 40% (1–3). catalyzed the development of broadly protective IAV vaccines. In addition, H7N9 influenza viruses have recently been assessed as Recent strategies to augment and broaden vaccine efficacy have having the highest potential pandemic risk of any novel IAV; this shifted toward the development of “universal” vaccines capable of assessment is based on recent studies indicating that H7N9 viruses providing heterosubtypic protection against multiple, or possibly have increased genetic diversity and wider geographical distri- all, subtypes of IAV. Although humoral and cellular immunity can bution; additionally, in recent outbreaks, a significantly higher mediate heterosubtypic responses, inducing Abs against the more proportion of H7N9-infected patients have needed care in an in- conserved stalk domain of hemagglutinin (HA) has been the recent focus of many vaccine programs (10, 11). However, multipronged approaches that target several Ags that induce humoral and cellular *Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom; †Peter Medawar Building for Pathogen Research, University of Oxford, Oxford responses may limit the generation of viral escape mutants com- OX1 3SY, United Kingdom; ‡Department of Microbiology, Icahn School of Medicine pared with vaccines that target a limited number of protective at Mount Sinai, New York, NY 10029; and xPseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, United Kingdom epitopes on the HA stalk. There are few vaccine technologies that ORCIDs: 0000-0002-4404-0229 (S.C.); 0000-0002-4973-1520 (F.F.); 0000-0002- will facilitate the delivery of multiple Ags to generate robust 6823-9750 (S.C.G.); 0000-0001-7711-897X (T.L.). cellular and humoral immunity toward infectious disease Ags. Received for publication June 1, 2016. Accepted for publication June 14, 2017. Viral-vectored vaccines have been developed for the induction This work was supported by Wellcome Trust Grant 097113/Z/11/ BVRVBZO. of strong humoral and potent cellular immunity toward encoded Address correspondence and reprint requests to Dr. Teresa Lambe, Jenner Institute, Ags. An added benefit of this platform is that viral vectors can University of Oxford, Old Road Campus Research Building, Oxford, Oxfordshire accommodate more than one Ag (12). Typically, for heterologous OX3 7DQ, United Kingdom. E-mail address: [email protected] prime-boost vaccination strategies, one viral vector (e.g., Chim- Abbreviations used in this article: ASC, Ab-secreting cell; BEI Resources, Biode- panzee adenovirus [ChAd]) encoding the target Ag(s) is used for fense and Emerging Infections Research Resources Repository; ChAd, chimpanzee adenovirus; HA, hemagglutinin; IAV, influenza A virus; IIV, inactivated influenza the priming vaccination, and a different platform, most often vaccine; i.m., intramuscularly; LLPC, long-lived plasma cell; MVA, modified vac- modified vaccinia Ankara (MVA), is used for the boost or repeat cinia Ankara; SFU, spot-forming unit. vaccination. In the current study, we describe novel ChAd- and Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 MVA-vectored vaccines that are designed to simultaneously www.jimmunol.org/cgi/doi/10.4049/jimmunol.1600939 1334 BIVALENT VACCINES PROTECT AGAINST INFLUENZA CHALLENGE induce heterosubtypic and protective B and T cell responses against alone was used as a negative control, and pools of overlapping peptides three influenza A Ags: HA, NP, and M1. Using a heterologous prime- (H7HA) and NP147–158 (TYQRTRALV) were typically added at 2 mg/ml. boost strategy, we induce high levels of heterosubtypic and homol- ELISA ogous immune responses targeting the major virion surface protein HA and the conserved internal viral Ags NP and M1. We dem- ELISA was performed essentially as described (14). Nunc MaxiSorp 96- well plates were coated with 0.1 mg of recombinant protein [H7HA protein onstrate protection, after prime-boost vaccination, in a stringent was produced in-house, as described (16)] and recombinant H5HA protein challenge model of mouse-adapted avian IAV. (A/Vietnam/1203/2004 [H5N1], recombinant from baculovirus, BEI Re- sources NR-10510) per well, and plates were washed until the fifth dilution of the reference standard (1:1600 dilution) reached an approximate OD450 Materials and Methods value of 1. This point was defined as one relative ELISA Unit, and relative Recombinant ChAd and MVA vaccines ELISA units of test sera were calculated, essentially as described (14, 17). The construction of ChAdOx1 NP+M1 has been described previously IgG Ab-secreting cell ELISPOT assay (13). Details of the viral-vectored vaccines used in these studies are as described in Table I. A bone marrow IgG Ab-secreting cell (ASC) ELISPOT assay was per- formed as described (18, 19) using ∼1
Recommended publications
  • Assessment Report COVID-19 Vaccine Astrazeneca EMA/94907/2021
    29 January 2021 EMA/94907/2021 Committee for Medicinal Products for Human Use (CHMP) Assessment report COVID-19 Vaccine AstraZeneca Common name: COVID-19 Vaccine (ChAdOx1-S [recombinant]) Procedure No. EMEA/H/C/005675/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ..................................................................................... 7 1.2. Steps taken for the assessment of the product ........................................................ 9 2. Scientific discussion .............................................................................. 12 2.1. Problem statement ............................................................................................. 12 2.1.1. Disease or condition ........................................................................................ 12 2.1.2. Epidemiology and risk factors ........................................................................... 12 2.1.3. Aetiology and pathogenesis .............................................................................
    [Show full text]
  • Chadox1 Ncov-19 Vaccine Prevents SARS-Cov-2 Pneumonia in Rhesus Macaques
    Article ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques https://doi.org/10.1038/s41586-020-2608-y Neeltje van Doremalen1,4, Teresa Lambe2,4, Alexandra Spencer2, Sandra Belij-Rammerstorfer2, Jyothi N. Purushotham1,2, Julia R. Port1, Victoria A. Avanzato1, Trenton Bushmaker1, Received: 13 May 2020 Amy Flaxman2, Marta Ulaszewska2, Friederike Feldmann3, Elizabeth R. Allen2, Hannah Sharpe2, Accepted: 24 July 2020 Jonathan Schulz1, Myndi Holbrook1, Atsushi Okumura1, Kimberly Meade-White1, Lizzette Pérez-Pérez1, Nick J. Edwards2, Daniel Wright2, Cameron Bissett2, Ciaran Gilbride2, Published online: 30 July 2020 Brandi N. Williamson1, Rebecca Rosenke3, Dan Long3, Alka Ishwarbhai2, Reshma Kailath2, Check for updates Louisa Rose2, Susan Morris2, Claire Powers2, Jamie Lovaglio3, Patrick W. Hanley3, Dana Scott3, Greg Saturday3, Emmie de Wit1, Sarah C. Gilbert2,5 ✉ & Vincent J. Munster1,5 ✉ Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime–boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques.
    [Show full text]
  • Transcriptomic Profiling of Dromedary Camels Immunised with a MERS
    veterinary sciences Article Transcriptomic Profiling of Dromedary Camels Immunised with a MERS Vaccine Candidate Sharif Hala 1,2,3, Paolo Ribeca 4 , Haya A. Aljami 1,2, Suliman A. Alsagaby 5 , Ibrahim Qasim 6, Sarah C. Gilbert 7 and Naif Khalaf Alharbi 1,2,* 1 Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia; [email protected] (S.H.); [email protected] (H.A.A.) 2 King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia 3 Pathogen Genomics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia 4 Biomathematics and Statistics Scotland, The James Hutton Institute, Edinburgh EH9 3FD, UK; [email protected] 5 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; [email protected] 6 Ministry of Environment, Water and Agriculture (MEWA), Riyadh 11481, Saudi Arabia; [email protected] 7 The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK; [email protected] * Correspondence: [email protected] Abstract: Middle East Respiratory Syndrome coronavirus (MERS-CoV) infects dromedary camels and zoonotically infects humans, causing a respiratory disease with severe pneumonia and death. With no approved antiviral or vaccine interventions for MERS, vaccines are being developed for Citation: Hala, S.; Ribeca, P.; Aljami, camels to prevent virus transmission into humans. We have previously developed a chimpanzee H.A.; Alsagaby, S.A.; Qasim, I.; adenoviral vector-based vaccine for MERS-CoV (ChAdOx1 MERS) and reported its strong humoral Gilbert, S.C.; Alharbi, N.K.
    [Show full text]
  • Clinical Advances in Viral-Vectored Influenza Vaccines
    vaccines Review Clinical Advances in Viral-Vectored Influenza Vaccines Sarah Sebastian and Teresa Lambe * The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 DQ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1865-617621 Received: 19 April 2018; Accepted: 21 May 2018; Published: 24 May 2018 Abstract: Influenza-virus-mediated disease can be associated with high levels of morbidity and mortality, particularly in younger children and older adults. Vaccination is the primary intervention used to curb influenza virus infection, and the WHO recommends immunization for at-risk individuals to mitigate disease. Unfortunately, influenza vaccine composition needs to be updated annually due to antigenic shift and drift in the viral immunogen hemagglutinin (HA). There are a number of alternate vaccination strategies in current development which may circumvent the need for annual re-vaccination, including new platform technologies such as viral-vectored vaccines. We discuss the different vectored vaccines that have been or are currently in clinical trials, with a forward-looking focus on immunogens that may be protective against seasonal and pandemic influenza infection, in the context of viral-vectored vaccines. We also discuss future perspectives and limitations in the field that will need to be addressed before new vaccines can significantly impact disease levels. Keywords: viral vectors; influenza; clinical trials 1. Introduction Influenza virus is a respiratory pathogen that causes annual influenza epidemics affecting an estimated 15% of the global population with up to 645,000 deaths annually [1,2]. In addition, pandemic variants of the Influenza A virus (IAV) have been associated with upwards of 50 million deaths worldwide [3].
    [Show full text]
  • Jenner Institute Complementary Vaccines Platform Technologies
    WHO R&D Blueprint: Janssen Vaccines – Jenner Institute complementary Vaccines Platform Technologies Janssen Vaccines: Jenner Institute: Olga Popova Prof. Sarah Gilbert Jerome Custers WHO Geneva, 21 July 2016 Background • Jenner Institute & Janssen Vaccines presented respective proposals to WHO R&D Blueprint Workshop in April 2016, and were invited to join forces for Round 2 submission • Example of alignment, coordination and partnership between public and private sector stakeholders • Understanding nature of vaccine development, established complementary end‐to‐end skills and capabilities • Long‐term, sustainable & consistent approach and funding • High‐level flexible proposal with illustrative examples • «Bona fide»: collaborative framework to be developed JOINTLY TOWARDS TANGIBLE OUTCOMES x GLOBAL PUBLIC HEALTH 2 Success factors • Available platforms and previous experience with pathogens • Ability to invest time and resources, leverage expertise, minimise opportunity costs and ensure business continuity • Appropriate and functionable operational model, speed • Lean governance, partner alignment and milestone orientation INTERNAL • Reliable & qualified partners, durable commitments • Long‐term reliable funding (min 5‐year horizon) • Resolving vaccination indemnification / liability issue • Consistency in pathogen prioritisation and defined, consistent pre‐ established endpoint commitment • Clear and accelerated / streamlined regulatory pathways, conditions & predictability of licensure EXTERNAL • Anticipated deployment plans and community
    [Show full text]
  • Viral Vectors for COVID-19 Vaccine Development
    viruses Review Viral Vectors for COVID-19 Vaccine Development Kenneth Lundstrom PanTherapeutics, CH1095 Lutry, Switzerland; [email protected] Abstract: Vaccine development against SARS-CoV-2 has been fierce due to the devastating COVID- 19 pandemic and has included all potential approaches for providing the global community with safe and efficient vaccine candidates in the shortest possible timeframe. Viral vectors have played a central role especially using adenovirus-based vectors. Additionally, other viral vectors based on vaccinia viruses, measles viruses, rhabdoviruses, influenza viruses and lentiviruses have been subjected to vaccine development. Self-amplifying RNA virus vectors have been utilized for lipid nanoparticle-based delivery of RNA as COVID-19 vaccines. Several adenovirus-based vaccine candidates have elicited strong immune responses in immunized animals and protection against challenges in mice and primates has been achieved. Moreover, adenovirus-based vaccine candidates have been subjected to phase I to III clinical trials. Recently, the simian adenovirus-based ChAdOx1 vector expressing the SARS-CoV-2 S spike protein was approved for use in humans in the UK. Keywords: SARS-CoV-2; COVID-19; vaccines; adenovirus; preclinical immunization; clinical trials; approved vaccine 1. Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread quickly around the world, causing the COVID-19 pandemic, which has seen more than 100 million infections, 2.15 million deaths and a severely damaged global economy [1]. The severity Citation: Lundstrom, K. Viral and spread of COVID-19 were unprecedented compared to previous coronavirus outbreaks Vectors for COVID-19 Vaccine for SARS-CoV in 2004–2005 [2] and Middle East Respiratory Coronavirus (MERS-CoV) Development.
    [Show full text]
  • 'Astrazeneca' Covid-19 Vaccine
    Medicines Law & Policy How the ‘Oxford’ Covid-19 vaccine became the ‘AstraZeneca’ Covid-19 vaccine By Christopher Garrison 1. Introduction. The ‘Oxford / AstraZeneca’ vaccine is one of the world’s leading hopes in the race to end the Covid-19 pandemic. Its history is not as clear, though, as it may first seem. The media reporting about the vaccine tends to focus either on the very small (non-profit, academic) Jenner Institute at Oxford University, where the vaccine was first invented, or the very large (‘Big Pharma’ firm) AstraZeneca, which is now responsible for organising its (non-profit) world-wide development, manufacture and distribution. However, examining the intellectual property (IP) path of the vaccine from invention to manufacture and distribution reveals a more complex picture that involves other important actors (with for-profit perspectives). Mindful of the very large sums of public money being used to support Covid-19 vaccine development, section 2 of this note will therefore contextualise the respective roles of the Jenner Institute, AstraZeneca and these other actors, so that their share of risk and (potential) reward in the project can be better understood. Section 3 provides comments as well as raising some important questions about what might yet be done better and what lessons can be learned for the future. 2. History of the ‘Oxford / AstraZeneca’ vaccine. 2.1 Oxford University and Oxford University Innovation Ltd. The Bayh-Dole Act (1980) was hugely influential in the United States and elsewhere in encouraging universities to commercially exploit the IP they were generating by setting up ‘technology transfer’ offices.
    [Show full text]
  • Safety and Immunogenicity of Chadox1 Ncov-19 Vaccine Administered in a Prime-Boost Regimen in Young and Old Adults (COV002)
    Articles Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial Maheshi N Ramasamy*, Angela M Minassian*, Katie J Ewer*, Amy L Flaxman*, Pedro M Folegatti*, Daniel R Owens*, Merryn Voysey*, Parvinder K Aley, Brian Angus, Gavin Babbage, Sandra Belij-Rammerstorfer, Lisa Berry, Sagida Bibi, Mustapha Bittaye, Katrina Cathie, Harry Chappell, Sue Charlton, Paola Cicconi, Elizabeth A Clutterbuck, Rachel Colin-Jones, Christina Dold, Katherine R W Emary, Sofiyah Fedosyuk, Michelle Fuskova, Diane Gbesemete, Catherine Green, Bassam Hallis, Mimi M Hou, Daniel Jenkin, Carina C D Joe, Elizabeth J Kelly, Simon Kerridge, Alison M Lawrie, Alice Lelliott, May N Lwin, Rebecca Makinson, Natalie G Marchevsky, Yama Mujadidi, Alasdair P S Munro, Mihaela Pacurar, Emma Plested, Jade Rand, Thomas Rawlinson, Sarah Rhead, Hannah Robinson, Adam J Ritchie, Amy L Ross-Russell, Stephen Saich, Nisha Singh, Catherine C Smith, Matthew D Snape, Rinn Song, Richard Tarrant, Yrene Themistocleous, Kelly M Thomas, Tonya L Villafana, Sarah C Warren, Marion E E Watson, Alexander D Douglas*, Adrian V S Hill*, Teresa Lambe*, Sarah C Gilbert*, Saul N Faust*, Andrew J Pollard*, and the Oxford COVID Vaccine Trial Group Summary Background Older adults (aged ≥70 years) are at increased risk of severe disease and death if they develop COVID-19 Published Online and are therefore a priority for immunisation should an efficacious vaccine be developed. Immunogenicity of vaccines November 19, 2020 https://doi.org/10.1016/ is often worse in older adults as a result of immunosenescence.
    [Show full text]
  • Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral
    Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge This information is current as of September 28, 2021. Claire M. Tully, Senthil Chinnakannan, Caitlin E. Mullarkey, Marta Ulaszewska, Francesca Ferrara, Nigel Temperton, Sarah C. Gilbert and Teresa Lambe J Immunol 2017; 199:1333-1341; Prepublished online 19 July 2017; Downloaded from doi: 10.4049/jimmunol.1600939 http://www.jimmunol.org/content/199/4/1333 http://www.jimmunol.org/ References This article cites 42 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/199/4/1333.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge Claire M.
    [Show full text]
  • Slides for Yuri
    Review on vectored influenza vaccines Sarah Gilbert Jenner Institute Oxford Viral Vectored Influenza Vaccines • Can be used to induce antibodies against HA – Will also boost CD4 + T cell responses against HA – Developed as replacement to inactivated virion vaccines • Can be used to boost T cell responses against internal antigens – Boost naturally acquired T cell responses in humans, which are biased towards CD8 + – Could be used with inactivated virion vaccines • Could do both at the same time 2 Overview of pre-clinical studies M2 expressed from Ad, HA expressed from Ad, Vacc MVA, Vacc, fowlpox, canarypox, NDV, Herpes Virus of Turkeys, Equine Herpes Virus, Duck Enteritis Virus M1 expressed from Ad, MVA, Vacc NA NP expressed expressed from Ad, from MVA MVA, Vacc Pax Vax Oral Replication Competent AdHu4 H5HA • 166 healthy volunteers aged 18-40 • Dose escalation from 10 7 to 10 11 vp plus placebo, 2 doses • Boost with 90 µg inactivated parenteral H5N1 • 11% of vaccinees and 7% of placebo recipients seroconverted – Following boost, 100% of the high dose cohort seroconverted, 36% of placebo group • Ad4 virus detected in rectal swabs from 46% of participants, with or without Ad4 seroconversion – Gurwith et al., Lancet ID 2013 4 VaxArt Oral Replication Deficient AdHu5 H5HA with a TLR3 ligand adjuvant (dsRNA) • 54 healthy volunteers, dose escalation 10 8 to 10 10 vp or placebo • No virus shedding detected • No significant changes in anti-Ad5 responses • No measureable HI titres, but IFN-γ and GrzB responses to HA increased – Peters et al., Vaccine
    [Show full text]
  • COVID-19 Vaccine (Chadox1-S [Recombinant]) Astrazeneca COVID-19 Vaccine Supplier: Astrazeneca COVISHIELD Supplier: Verity Pharmaceuticals
    COVID-19 Vaccine (ChAdOx1-S [recombinant]) AstraZeneca COVID-19 Vaccine Supplier: AstraZeneca COVISHIELD Supplier: Verity Pharmaceuticals INDICATIONS: • Individuals 18 years of age and older for dose 2 A, B • Effective June 7, 2021, individuals who received AstraZeneca/COVISHIELD vaccine as dose 1 will be invited to receive dose 2. For more information, go to the BCCDC COVID-19 Vaccine Eligibility page. These vaccines are not approved for use in those less than 18 years of age. C DOSES AND SCHEDULE: Adults 18 years of age and older: 2 doses given as 0.5 mL IM, 8 to 12 weeks apart. D, E For individuals 12 years of age older who are severely immunosuppressed *, a 3-dose primary series is recommended. F Moderna COVID-19 vaccine is preferentially recommended for the 3rd dose, which should be provided at least 28 days after the 2nd dose. If Moderna is unavailable, Pfizer-BioNTech can be given. * Severely immunosuppressed includes individuals who: • Have had a solid organ transplant (heart, lung, liver, kidney, pancreas or islet cells, bowel or combination organ transplant). • Since January 2021, have been treated for and/or are receiving active treatment (chemotherapy, targeted therapies, immunotherapy) for malignant hematological disorders (e.g., leukemia, lymphoma, or myeloma). • Since January 2020, have received treatment with any anti-CD20 agents (i.e., rituximab, ocrelizumab, ofatumumab, obinutuzumab, ibritumomab, tositumomab). • Since January 2020, have been treated with B-cell depleting agents (i.e., epratuzumab, MEDI-551, belimumab, BR3-Fc, AMG-623, atacicept, anti-BR3, alemtuzumab). • Have combined immune deficiencies affecting T-cells, immune dysregulation or type 1 interferon defects.
    [Show full text]
  • COVID-19 Vaccine Astrazeneca, Solution for Injection COVID-19 Vaccine (Chadox1-S [Recombinant])
    REG 174 INFORMATION FOR UK HEALTHCARE PROFESSIONALS 1 This medicinal product has been given authorisation for temporary supply by the UK Department of Health and Social Care and the Medicines & Healthcare products Regulatory Agency. It does not have a marketing authorisation, but this temporary authorisation grants permission for the medicine to be used for active immunisation of individuals aged 18 years and older for the prevention of coronavirus disease 2019 (COVID-19). As with any new medicine in the UK, this product will be closely monitored to allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT COVID-19 Vaccine AstraZeneca, solution for injection COVID-19 Vaccine (ChAdOx1-S [recombinant]) 2. QUALITATIVE AND QUANTITATIVE COMPOSITION One dose (0.5 ml) contains: COVID-19 Vaccine (ChAdOx1-S* recombinant) 5 × 1010 viral particles (vp) *Recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 Spike (S) glycoprotein. Produced in genetically modified human embryonic kidney (HEK) 293 cells. This product contains genetically modified organisms (GMOs). Excipient with known effect Each dose (0.5 ml) contains approximately 2 mg of ethanol. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection. The solution is colourless to slightly brown, clear to slightly opaque with a pH of 6.6. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications COVID-19 Vaccine AstraZeneca is indicated for active immunisation to prevent COVID-19 caused by SARS-CoV-2, in individuals ≥18 years old.
    [Show full text]