Control Flow Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalized Jump Threading in Libfirm
Institut für Programmstrukturen und Datenorganisation (IPD) Lehrstuhl Prof. Dr.-Ing. Snelting Generalized Jump Threading in libFIRM Masterarbeit von Joachim Priesner an der Fakultät für Informatik Erstgutachter: Prof. Dr.-Ing. Gregor Snelting Zweitgutachter: Prof. Dr.-Ing. Jörg Henkel Betreuender Mitarbeiter: Dipl.-Inform. Andreas Zwinkau Bearbeitungszeit: 5. Oktober 2016 – 23. Januar 2017 KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Zusammenfassung/Abstract Jump Threading (dt. „Sprünge fädeln“) ist eine Compileroptimierung, die statisch vorhersagbare bedingte Sprünge in unbedingte Sprünge umwandelt. Bei der Ausfüh- rung kann ein Prozessor bedingte Sprünge zunächst nur heuristisch mit Hilfe der Sprungvorhersage auswerten. Sie stellen daher generell ein Performancehindernis dar. Die Umwandlung ist insbesondere auch dann möglich, wenn das Sprungziel nur auf einer Teilmenge der zu dem Sprung führenden Ausführungspfade statisch be- stimmbar ist. In diesem Fall, der den überwiegenden Teil der durch Jump Threading optimierten Sprünge betrifft, muss die Optimierung Grundblöcke duplizieren, um jene Ausführungspfade zu isolieren. Verschiedene aktuelle Compiler enthalten sehr unterschiedliche Implementierungen von Jump Threading. In dieser Masterarbeit wird zunächst ein theoretischer Rahmen für Jump Threading vorgestellt. Sodann wird eine allgemeine Fassung eines Jump- Threading-Algorithmus entwickelt, implementiert und in diverser Hinsicht untersucht, insbesondere auf Wechselwirkungen mit anderen Optimierungen wie If -
9. Optimization
9. Optimization Marcus Denker Optimization Roadmap > Introduction > Optimizations in the Back-end > The Optimizer > SSA Optimizations > Advanced Optimizations © Marcus Denker 2 Optimization Roadmap > Introduction > Optimizations in the Back-end > The Optimizer > SSA Optimizations > Advanced Optimizations © Marcus Denker 3 Optimization Optimization: The Idea > Transform the program to improve efficiency > Performance: faster execution > Size: smaller executable, smaller memory footprint Tradeoffs: 1) Performance vs. Size 2) Compilation speed and memory © Marcus Denker 4 Optimization No Magic Bullet! > There is no perfect optimizer > Example: optimize for simplicity Opt(P): Smallest Program Q: Program with no output, does not stop Opt(Q)? © Marcus Denker 5 Optimization No Magic Bullet! > There is no perfect optimizer > Example: optimize for simplicity Opt(P): Smallest Program Q: Program with no output, does not stop Opt(Q)? L1 goto L1 © Marcus Denker 6 Optimization No Magic Bullet! > There is no perfect optimizer > Example: optimize for simplicity Opt(P): Smallest ProgramQ: Program with no output, does not stop Opt(Q)? L1 goto L1 Halting problem! © Marcus Denker 7 Optimization Another way to look at it... > Rice (1953): For every compiler there is a modified compiler that generates shorter code. > Proof: Assume there is a compiler U that generates the shortest optimized program Opt(P) for all P. — Assume P to be a program that does not stop and has no output — Opt(P) will be L1 goto L1 — Halting problem. Thus: U does not exist. > There will -
Value Numbering
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 0(0), 1–18 (MONTH 1900) Value Numbering PRESTON BRIGGS Tera Computer Company, 2815 Eastlake Avenue East, Seattle, WA 98102 AND KEITH D. COOPER L. TAYLOR SIMPSON Rice University, 6100 Main Street, Mail Stop 41, Houston, TX 77005 SUMMARY Value numbering is a compiler-based program analysis method that allows redundant computations to be removed. This paper compares hash-based approaches derived from the classic local algorithm1 with partitioning approaches based on the work of Alpern, Wegman, and Zadeck2. Historically, the hash-based algorithm has been applied to single basic blocks or extended basic blocks. We have improved the technique to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine into congruence classes and removes computations when one congruent value dominates another. We have extended this technique to remove computations that define a value in the set of available expressions (AVA IL )3. Also, we are able to apply a version of Morel and Renvoise’s partial redundancy elimination4 to remove even more redundancies. The paper presents a series of hash-based algorithms and a series of refinements to the partitioning technique. Within each series, it can be proved that each method discovers at least as many redundancies as its predecessors. Unfortunately, no such relationship exists between the hash-based and global techniques. On some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques, while on others, partitioning wins. We experimentally compare the improvements made by these techniques when applied to real programs. These results will be useful for commercial compiler writers who wish to assess the potential impact of each technique before implementation. -
Language and Compiler Support for Dynamic Code Generation by Massimiliano A
Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto S.B., Massachusetts Institute of Technology (1995) M.Eng., Massachusetts Institute of Technology (1995) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A u th or ............................................................................ Department of Electrical Engineering and Computer Science June 23, 1999 Certified by...............,. ...*V .,., . .* N . .. .*. *.* . -. *.... M. Frans Kaashoek Associate Pro essor of Electrical Engineering and Computer Science Thesis Supervisor A ccepted by ................ ..... ............ ............................. Arthur C. Smith Chairman, Departmental CommitteA on Graduate Students me 2 Language and Compiler Support for Dynamic Code Generation by Massimiliano A. Poletto Submitted to the Department of Electrical Engineering and Computer Science on June 23, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Dynamic code generation, also called run-time code generation or dynamic compilation, is the cre- ation of executable code for an application while that application is running. Dynamic compilation can significantly improve the performance of software by giving the compiler access to run-time infor- mation that is not available to a traditional static compiler. A well-designed programming interface to dynamic compilation can also simplify the creation of important classes of computer programs. Until recently, however, no system combined efficient dynamic generation of high-performance code with a powerful and portable language interface. This thesis describes a system that meets these requirements, and discusses several applications of dynamic compilation. -
Transparent Dynamic Optimization: the Design and Implementation of Dynamo
Transparent Dynamic Optimization: The Design and Implementation of Dynamo Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia HP Laboratories Cambridge HPL-1999-78 June, 1999 E-mail: [email protected] dynamic Dynamic optimization refers to the runtime optimization optimization, of a native program binary. This report describes the compiler, design and implementation of Dynamo, a prototype trace selection, dynamic optimizer that is capable of optimizing a native binary translation program binary at runtime. Dynamo is a realistic implementation, not a simulation, that is written entirely in user-level software, and runs on a PA-RISC machine under the HPUX operating system. Dynamo does not depend on any special programming language, compiler, operating system or hardware support. Contrary to intuition, we demonstrate that it is possible to use a piece of software to improve the performance of a native, statically optimized program binary, while it is executing. Dynamo not only speeds up real application programs, its performance improvement is often quite significant. For example, the performance of many +O2 optimized SPECint95 binaries running under Dynamo is comparable to the performance of their +O4 optimized version running without Dynamo. Internal Accession Date Only Ó Copyright Hewlett-Packard Company 1999 Contents 1 INTRODUCTION ........................................................................................... 7 2 RELATED WORK ......................................................................................... 9 3 OVERVIEW -
Optimizing for Reduced Code Space Using Genetic Algorithms
Optimizing for Reduced Code Space using Genetic Algorithms Keith D. Cooper, Philip J. Schielke, and Devika Subramanian Department of Computer Science Rice University Houston, Texas, USA {keith | phisch | devika}@cs.rice.edu Abstract is virtually impossible to select the best set of optimizations to run on a particular piece of code. Historically, compiler Code space is a critical issue facing designers of software for embedded systems. Many traditional compiler optimiza- writers have made one of two assumptions. Either a fixed tions are designed to reduce the execution time of compiled optimization order is “good enough” for all programs, or code, but not necessarily the size of the compiled code. Fur- giving the user a large set of flags that control optimization ther, different results can be achieved by running some opti- is sufficient, because it shifts the burden onto the user. mizations more than once and changing the order in which optimizations are applied. Register allocation only com- Interplay between optimizations occurs frequently. A plicates matters, as the interactions between different op- transformation can create opportunities for other transfor- timizations can cause more spill code to be generated. The mations. Similarly, a transformation can eliminate oppor- compiler for embedded systems, then, must take care to use tunities for other transformations. These interactions also the best sequence of optimizations to minimize code space. Since much of the code for embedded systems is compiled depend on the program being compiled, and they are of- once and then burned into ROM, the software designer will ten difficult to predict. Multiple applications of the same often tolerate much longer compile times in the hope of re- transformation at different points in the optimization se- ducing the size of the compiled code. -
Peephole Optimization from Wikipedia, the Free Encyclopedia
Peephole optimization From Wikipedia, the free encyclopedia In compiler theory, peephole optimization is a kind of optimization performed over a very small set of instructions in a segment of generated code. The set is called a "peephole" or a "window". It works by recognising sets of instructions that can be replaced by shorter or faster sets of instructions. Contents 1 Replacement rules 2 Examples 2.1 Replacing slow instructions with faster ones 2.2 Removing redundant code 2.3 Removing redundant stack instructions 3 Implementation 4 See also 5 References 6 External links Replacement rules Common techniques applied in peephole optimization:[1] Constant folding – Evaluate constant subexpressions in advance. Strength reduction – Replace slow operations with faster equivalents. Null sequences – Delete useless operations. Combine operations – Replace several operations with one equivalent. Algebraic laws – Use algebraic laws to simplify or reorder instructions. Special case instructions – Use instructions designed for special operand cases. Address mode operations – Use address modes to simplify code. There can, of course, be other types of peephole optimizations involving simplifying the target machine instructions, assuming that the target machine is known in advance. Advantages of a given architecture and instruction sets can be exploited, and disadvantages avoided in this case. Examples Replacing slow instructions with faster ones The following Java bytecode ... aload 1 aload 1 mul ... can be replaced by ... aload 1 dup mul ... This kind of optimization, like most peephole optimizations, makes certain assumptions about the efficiency of instructions. For instance, in this case, it is assumed that the dup operation (which duplicates and pushes the top of the stack) is more efficient than the aload X operation (which loads a local variable identified as X and pushes it on the stack). -
Code Optimizations Recap Peephole Optimization
7/23/2016 Program Analysis Recap https://www.cse.iitb.ac.in/~karkare/cs618/ • Optimizations Code Optimizations – To improve efficiency of generated executable (time, space, resources …) Amey Karkare – Maintain semantic equivalence Dept of Computer Science and Engg • Two levels IIT Kanpur – Machine Independent Visiting IIT Bombay [email protected] – Machine Dependent [email protected] 2 Peephole Optimization Peephole optimization examples… • target code often contains redundant Redundant loads and stores instructions and suboptimal constructs • Consider the code sequence • examine a short sequence of target instruction (peephole) and replace by a Move R , a shorter or faster sequence 0 Move a, R0 • peephole is a small moving window on the target systems • Instruction 2 can always be removed if it does not have a label. 3 4 1 7/23/2016 Peephole optimization examples… Unreachable code example … Unreachable code constant propagation • Consider following code sequence if 0 <> 1 goto L2 int debug = 0 print debugging information if (debug) { L2: print debugging info } Evaluate boolean expression. Since if condition is always true the code becomes this may be translated as goto L2 if debug == 1 goto L1 goto L2 print debugging information L1: print debugging info L2: L2: The print statement is now unreachable. Therefore, the code Eliminate jumps becomes if debug != 1 goto L2 print debugging information L2: L2: 5 6 Peephole optimization examples… Peephole optimization examples… • flow of control: replace jump over jumps • Strength reduction -
Improving the Compilation Process Using Program Annotations
POLITECNICO DI MILANO Corso di Laurea Magistrale in Ingegneria Informatica Dipartimento di Elettronica, Informazione e Bioingegneria Improving the Compilation process using Program Annotations Relatore: Prof. Giovanni Agosta Correlatore: Prof. Lenore Zuck Tesi di Laurea di: Niko Zarzani, matricola 783452 Anno Accademico 2012-2013 Alla mia famiglia Alla mia ragazza Ai miei amici Ringraziamenti Ringrazio in primis i miei relatori, Prof. Giovanni Agosta e Prof. Lenore Zuck, per la loro disponibilità, i loro preziosi consigli e il loro sostegno. Grazie per avermi seguito sia nel corso della tesi che della mia carriera universitaria. Ringrazio poi tutti coloro con cui ho avuto modo di confrontarmi durante la mia ricerca, Dr. Venkat N. Venkatakrishnan, Dr. Rigel Gjomemo, Dr. Phu H. H. Phung e Giacomo Tagliabure, che mi sono stati accanto sin dall’inizio del mio percorso di tesi. Voglio ringraziare con tutto il cuore la mia famiglia per il prezioso sup- porto in questi anni di studi e Camilla per tutto l’amore che mi ha dato anche nei momenti più critici di questo percorso. Non avrei potuto su- perare questa avventura senza voi al mio fianco. Ringrazio le mie amiche e i miei amici più cari Ilaria, Carolina, Elisa, Riccardo e Marco per la nostra speciale amicizia a distanza e tutte le risate fatte assieme. Infine tutti i miei conquilini, dai più ai meno nerd, per i bei momenti pas- sati assieme. Ricorderò per sempre questi ultimi anni come un’esperienza stupenda che avete reso memorabile. Mi mancherete tutti. Contents 1 Introduction 1 2 Background 3 2.1 Annotated Code . .3 2.2 Sources of annotated code . -
Compiler-Based Code-Improvement Techniques
Compiler-Based Code-Improvement Techniques KEITH D. COOPER, KATHRYN S. MCKINLEY, and LINDA TORCZON Since the earliest days of compilation, code quality has been recognized as an important problem [18]. A rich literature has developed around the issue of improving code quality. This paper surveys one part of that literature: code transformations intended to improve the running time of programs on uniprocessor machines. This paper emphasizes transformations intended to improve code quality rather than analysis methods. We describe analytical techniques and specific data-flow problems to the extent that they are necessary to understand the transformations. Other papers provide excellent summaries of the various sub-fields of program analysis. The paper is structured around a simple taxonomy that classifies transformations based on how they change the code. The taxonomy is populated with example transformations drawn from the literature. Each transformation is described at a depth that facilitates broad understanding; detailed references are provided for deeper study of individual transformations. The taxonomy provides the reader with a framework for thinking about code-improving transformations. It also serves as an organizing principle for the paper. Copyright 1998, all rights reserved. You may copy this article for your personal use in Comp 512. Further reproduction or distribution requires written permission from the authors. 1INTRODUCTION This paper presents an overview of compiler-based methods for improving the run-time behavior of programs — often mislabeled code optimization. These techniques have a long history in the literature. For example, Backus makes it quite clear that code quality was a major concern to the implementors of the first Fortran compilers [18]. -
Stan-(X-249-71 December 1971
S U326 P23-17 AN ANNOTATED BIBLIOGRAPHY ON THE CONSTRUCTION OF COMPILERS . BY BARY W. POLLACK STAN-(X-249-71 DECEMBER 1971 - COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERS II-Y An Annotated Bibliography on the Construction of Compilers* 1971 Bary W. Pollack Computer Science Department Stanford University This bibliography is divided into 9 sections: 1. General Information on Compiling Techniques 2. Syntax- and Base-Directed Parsing c 30 Brsing in General 4. Resource Allocation 59 Errors - Detection and Correction 6. Compiler Implementation in General - 79 Details of Compiler Construction 8. Additional Topics 9* Miscellaneous Related References Within each section the entries are alphabetical by author. Keywords describing the entry will be found for each entry set off by pound signs (*#). Some amount of cross-referencing has been done; e.g., entries which fall into Section 3 as well as Section 7 will generally be found in both sections. However, entries will be found listed only under the principle or first author's name. Computing Review citations are given following the annotation when available. "this research was supported by the Atomic Energy Commission, Project ~~-326~23. Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151. 0 l/03/72 16:44:58 COMPILER CONSTRUCTION TECHNIQUES PACFl 1, 1 ANNOTATED RTBLIOGRAPHY GENERAL INFORMATION ON COMP?LING TECHNIQOES Abrahams, P, W. Symbol manipulation languages. Advances in Computers, Vol 9 (196R), Sl-111, Academic Press, N. Y. ? languages Ic Anonymous. Philosophies for efficient processor construction. ICC Dull, I, 2 (July W62), 85-89. t processors t CR 4536. -
Quick Compilers Using Peephole Optimization
Quick Compilers Using Peephole Optimization JACK W. DAVIDSON AND DAVID B. WHALLEY Department of Computer Science, University of Virginia, Charlottesville, VA 22903, U.S.A. SUMMARY Abstract machine modeling is a popular technique for developing portable compilers. A compiler can be quickly realized by translating the abstract machine operations to target machine operations. The problem with these compilers is that they trade execution ef®ciency for portability. Typically the code emitted by these compilers runs two to three times slower than the code generated by compilers that employ sophisticated code generators. This paper describes a C compiler that uses abstract machine modeling to achieve portability. The emitted target machine code is improved by a simple, classical rule-directed peephole optimizer. Our experiments with this compiler on four machines show that a small number of very general hand-written patterns (under 40) yields code that is comparable to the code from compilers that use more sophisticated code generators. As an added bonus, compilation time on some machines is reduced by 10 to 20 percent. KEY WORDS: Code generation Compilers Peephole optimization Portability INTRODUCTION A popular method for building a portable compiler is to use abstract machine modeling1-3. In this technique the compiler front end emits code for an abstract machine. A compiler for a particular machine is realized by construct- ing a back end that translates the abstract machine operations to semantically equivalent sequences of machine- speci®c operations. This technique simpli®es the construction of a compiler in a number of ways. First, it divides a compiler into two well-de®ned functional unitsÐthe front and back end.