CCBP2 (Human) Recombinant Protein

Total Page:16

File Type:pdf, Size:1020Kb

CCBP2 (Human) Recombinant Protein CCBP2 (Human) Recombinant repeated freezing and thawing. Protein Entrez GeneID: 1238 Catalog Number: H00001238-G01 Gene Symbol: CCBP2 Regulation Status: For research use only (RUO) Gene Alias: CCR10, CCR9, CMKBR9, D6, MGC126678, MGC138250, hD6 Product Description: Human CCBP2 full-length ORF (NP_001287.2) recombinant protein without tag. Gene Summary: This gene encodes a beta chemokine receptor, which is predicted to be a seven Sequence: transmembrane protein similar to G protein-coupled MAATASPQPLATEDADSENSSFYYYDYLDEVAFMLCR receptors. Chemokines and their receptor-mediated KDAVVSFGKVFLPVFYSLIFVLGLSGNLLLLMVLLRYVP signal transduction are critical for the recruitment of RRRMVEIYLLNLAISNLLFLVTLPFWGISVAWHWVFGS effector immune cells to the inflammation site. This gene FLCKMVSTLYTINFYSGIFFISCMSLDKYLEIVHAQPYH is expressed in a range of tissues and hemopoietic cells. RLRTRAKSLLLATIVWAVSLAVSIPDMVFVQTHENPKG The expression of this receptor in lymphatic endothelial VWNCHADFGGHGTIWKLFLRFQQNLLGFLLPLLAMIFF cells and overexpression in vascular tumors suggested YSRIGCVLVRLRPAGQGRALKIAAALVVAFFVLWFPYN its function in chemokine-driven recirculation of LTLFLHTLLDLQVFGNCEVSQHLDYALQVTESIAFLHC leukocytes and possible chemokine effects on the CFSPILYAFSSHRFRQYLKAFLAAVLGWHLAPGTAQAS development and growth of vascular tumors. This LSSCSESSILTAQEEMTGMNDLGERQSENYPNKEDVG receptor appears to bind the majority of beta-chemokine NKSA family members; however, its specific function remains Host: Wheat Germ (in vitro) unknown. This gene is mapped to chromosome 3p21.3, a region that includes a cluster of chemokine receptor Theoretical MW (kDa): 43.4 genes. [provided by RefSeq] Applications: AP (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Liquid Preparation Method: in vitro wheat germ expression system with proprietary liposome technology Purification: None Recommend Usage: Heating may cause protein aggregation. Please do not heat this product before electrophoresis. Storage Buffer: 25 mM Tris-HCl of pH8.0 containing 2% glycerol. Storage Instruction: Store at -80°C. Aliquot to avoid Page 1/1 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Chemokine Receptors in Allergic Diseases Laure Castan, A
    Chemokine receptors in allergic diseases Laure Castan, A. Magnan, Grégory Bouchaud To cite this version: Laure Castan, A. Magnan, Grégory Bouchaud. Chemokine receptors in allergic diseases. Allergy, Wiley, 2017, 72 (5), pp.682-690. 10.1111/all.13089. hal-01602523 HAL Id: hal-01602523 https://hal.archives-ouvertes.fr/hal-01602523 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Allergy REVIEW ARTICLE Chemokine receptors in allergic diseases L. Castan1,2,3,4, A. Magnan2,3,5 & G. Bouchaud1 1INRA, UR1268 BIA; 2INSERM, UMR1087, lnstitut du thorax; 3CNRS, UMR6291; 4Universite de Nantes; 5CHU de Nantes, Service de Pneumologie, Institut du thorax, Nantes, France To cite this article: Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72: 682–690. Keywords Abstract asthma; atopic dermatitis; chemokine; Under homeostatic conditions, as well as in various diseases, leukocyte migration chemokine receptor; food allergy. is a crucial issue for the immune system that is mainly organized through the acti- Correspondence vation of bone marrow-derived cells in various tissues. Immune cell trafficking is Gregory Bouchaud, INRA, UR1268 BIA, rue orchestrated by a family of small proteins called chemokines.
    [Show full text]
  • Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response
    REVIEW published: 10 June 2016 doi: 10.3389/fimmu.2016.00224 Atypical Chemokine Receptors and Their Roles in the Resolution of the inflammatory Response Raffaella Bonecchi1,2 and Gerard J. Graham3* 1 Humanitas Clinical and Research Center, Rozzano, Italy, 2 Department of Biomedical Sciences, Humanitas University, Rozzano, Italy, 3 Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges Edited by: Mariagrazia Uguccioni, chemokines to either limit their spatial availability or to remove them from in vivo sites. Institute for Research in Biomedicine, Here, we provide a brief review of these ACKRs and discuss their involvement in the Switzerland resolution of inflammatory responses and the therapeutic implications of our current Reviewed by: knowledge. Mette M. M. Rosenkilde, University of Copenhagen, Keywords: chemokines, immunity, inflammation, scavenging, atypical receptors Denmark Mario Mellado, Spanish National Research Council, Spain INTRODUCTION *Correspondence: Gerard J. Graham An effective inflammatory response requires carefully regulated initiation, maintenance, and [email protected] resolution phases (1).
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Critical Roles of Chemokine Receptor CCR10 in Regulating Memory Iga
    Critical roles of chemokine receptor CCR10 in PNAS PLUS regulating memory IgA responses in intestines Shaomin Hu, KangKang Yang, Jie Yang, Ming Li, and Na Xiong1 Center for Molecular Immunology and Infectious Diseases and Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802 Edited by Rino Rappuoli, Novartis Vaccines, Siena, Italy, and approved September 12, 2011 (received for review January 5, 2011) Chemokine receptor CCR10 is expressed by all intestinal IgA-pro- specificIgA+ plasma cells could be maintained in the intestine for ducing plasma cells and is suggested to play an important role in a long time in the absence of antigenic stimulation (half-life > 16 positioning these cells in the lamina propria for proper IgA pro- wk), suggesting that unique intrinsic properties of the IgA- duction to maintain intestinal homeostasis and protect against producing plasma cells and intestinal environments might collabo- infection. However, interfering with CCR10 or its ligand did not rate to maintain the prolonged IgA production. However, mainte- impair intestinal IgA production under homeostatic conditions or nance of the antigen-specific IgA-producing plasma cells is during infection, and the in vivo function of CCR10 in the intestinal significantly affected by continuous presence of commensal bacte- IgA response remains unknown. We found that an enhanced ria, which induce generation of new IgA-producing plasma cells generation of IgA+ cells in isolated lymphoid follicles of intestines that replace the existing antigen-specificIgA+ cells in the intestine. offset defective intestinal migration of IgA+ cells in CCR10-KO mice, Molecular factors involved in the long-term IgA maintenance are resulting in the apparently normal IgA production under homeo- largely unknown and it is also not well understood how IgA memory static conditions and in primary response to pathogen infection.
    [Show full text]
  • CX3CR1) Modulator, Attenuates Mucosal Inflammation and Reduces CX3CR11 Leukocyte Trafficking in Mice with Colitis
    1521-0111/92/5/502–509$25.00 https://doi.org/10.1124/mol.117.108381 MOLECULAR PHARMACOLOGY Mol Pharmacol 92:502–509, November 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics E6130, a Novel CX3C Chemokine Receptor 1 (CX3CR1) Modulator, Attenuates Mucosal Inflammation and Reduces CX3CR11 Leukocyte Trafficking in Mice with Colitis Hisashi Wakita, Tatsuya Yanagawa, Yoshikazu Kuboi, and Toshio Imai Eisai Co., Ltd., Tsukuba Research Laboratories, Ibaraki (H.W., T.Y., Y.K.) and KAN Research Institute Inc., Hyogo (T.I.), Japan Received February 1, 2017; accepted August 16, 2017 Downloaded from ABSTRACT The chemokine fractalkine (CX3C chemokine ligand 1; CX3CL1) (IC50 4.9 nM), most likely via E6130-induced down-regulation of and its receptor CX3CR1 are involved in the pathogenesis of CX3CR1 on the cell surface. E6130 had agonistic activity via several diseases, including inflammatory bowel diseases such as CX3CR1 with respect to guanosine 59-3-O-(thio)triphosphate Crohn’s disease and ulcerative colitis, rheumatoid arthritis, hepa- binding in CX3CR1-expressing Chinese hamster ovary K1 titis, myositis, multiple sclerosis, renal ischemia, and athero- (CHO-K1) membrane and had no antagonistic activity. Orally sclerosis. There are no orally available agents that modulate the administered E6130 ameliorated several inflammatory bowel molpharm.aspetjournals.org fractalkine/CX3CR1 axis. [(3S,4R)-1-[2-Chloro-6-(trifluoromethyl) disease–related parameters in a murine CD41CD45RBhigh benzyl]-3-{[1-(cyclohex-1-en-1-ylmethyl)piperidin-4-yl]carbamoyl}- T-cell-transfer colitis model and a murine oxazolone-induced 4-methylpyrrolidin-3-yl]acetic acid (2S)-hydroxy(phenyl)acetate colitis model.
    [Show full text]
  • CCBP2 293 Cell Lysate Storage: Store at -80°C
    From Biology to Discovery™ CCBP2 293 Cell Lysate Storage: Store at -80°C. Minimize freeze-thaw cycles. After addition of 2X SDS Loading Buffer, the lysates can be stored Subcategory: Cell Lysate at -20°C. Product is guaranteed 6 months from the date of Cat. No.: 400521 shipment. Unit: 0.1 mg For research use only, not for diagnostic or therapeutic Description: procedures. Antigen standard for chemokine binding protein 2 (CCBP2) is a lysate prepared from HEK293T cells transiently transfected with a TrueORF gene-carrying pCMV plasmid (OriGene Technologies, Inc.) and then lysed in RIPA Buffer. Protein concentration was determined using a colorimetric assay. The antigen control carries a C-terminal Myc/DDK tag for detection. Applications: ELISA, WB, IP Format: This product includes 3 vials: 1 vial of gene-specific cell lysate, 1 vial of control vector cell lysate, and 1 vial of loading buffer. Each lysate vial contains 0.1 mg lysate in 0.1 ml (1 mg/ml) of RIPA Buffer (50 mM Tris-HCl pH7.5, 250 mM NaCl, 5 mM EDTA, 50 mM NaF, 1% NP40). The loading buffer vial contains 0.5 ml 2X SDS Loading Buffer (125 mM Tris-Cl, pH6.8, 10% glycerol, 4% SDS, 0.002% Bromophenol blue, 5% beta-mercaptoethanol). Alternate Names: CC-chemokine-binding receptor JAB61; chemokine (C-C) receptor 9; chemokine (C-C motif) receptor 9; chemokine receptor D6; chemokine receptor CCR-9; C-C chemokine receptor D6; chemokine receptor CCR-10; chemokine-binding protein D6; CCBP2; CCR10; CCR9; CMKBR9; D6; hD6; MGC126678; MGC138250 Accession No.: NP_001287 Application Notes: WB: Mix equal volume of lysates with 2X SDS Loading Buffer.
    [Show full text]
  • Ccl27/Ccl2 Ccl28
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Structural and Functional Analysis of the Chemokine CCL27 and the Expression and Purification of Silent Chemokine Receptors D6 and DARC A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry and Biochemistry by Ariane L. Jansma Committee in charge: Professor Tracy M. Handel, Chair Professor Patricia Jennings, Co-Chair Professor William Gerwick Professor Susan Taylor Asst. Professor Faik A. Tezcan 2009 This Dissertation of Ariane L. Jansma is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair iv TABLE OF CONTENTS Signature Page ................................................................................................................ iii Table of Contents............................................................................................................. iv List of Figures.................................................................................................................... x List of Tables...................................................................................................................xiii List of Abbreviations........................................................................................................xiv
    [Show full text]
  • CCR4 Is Critically Involved in Effective Antitumor Immunity in Mice Bearing Intradermal B16 Melanoma
    Cancer Letters 378 (2016) 16–22 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Original Articles CCR4 is critically involved in effective antitumor immunity in mice bearing intradermal B16 melanoma Kazuhiko Matsuo a, Tatsuki Itoh b, Atsushi Koyama a, Reira Imamura a, Shiori Kawai a, Keiji Nishiwaki c, Naoki Oiso d, Akira Kawada d, Osamu Yoshie e, Takashi Nakayama a,* a Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-osaka, Osaka, Japan b Department of Food Science and Nutrition, Kindai University Faculty of Agriculture, Nara, Japan c Division of Computational Drug Design and Discovery, Kindai University Faculty of Pharmacy, Higashi-osaka, Osaka, Japan d Department of Dermatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan e Department of Microbiology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan ARTICLE INFO ABSTRACT Article history: CCR4 is a major chemokine receptor expressed by Treg cells and Th17 cells. While Treg cells are known Received 1 March 2016 to suppress antitumor immunity, Th17 cells have recently been shown to enhance the induction of an- Received in revised form 23 April 2016 titumor cytotoxic T lymphocytes. Here, CCR4-deficient mice displayed enhanced tumor growth upon Accepted 25 April 2016 intradermal inoculation of B16-F10 melanoma cells. In CCR4-deficient mice, while IFN-γ+CD8+ effector T cells were decreased in tumor sites, IFN-γ+CD8+ T cells and Th17 cells were decreased in regional lymph Keywords: nodes. In wild-type mice, CD4+IL-17A+ cells, which were identified as CCR4+CD44+ memory Th17, were Chemokine found to be clustered around dendritic cells expressing MDC/CCL22, a ligand for CCR4, in regional lymph CCR4 Melanoma nodes.
    [Show full text]
  • Chapter 7 Autocrine Regulation of Re- Epithelialization After Wounding by Chemokine Receptors CCR1, CCR10, CXCR1, CXCR2 and CXCR3
    Chapter 7 Autocrine regulation of re- epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2 and CXCR3 Kim Kroeze Mireille Boink Shakun Sampat - Sardjoepersad Taco Waaijman Rik Scheper Susan Gibbs Journal of Investigative Dermatology, 2011;132:215-225 Autocrine regulation of re-epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2 and CXCR3 ABStract This study identifies chemokine receptors involved in an autocrine regulation of re-epitheli- alization after skin tissue damage. We determined which receptors, from a panel of thirteen, are expressed in healthy human epidermis and which mono-specific chemokine ligands, se- creted by keratinocytes, were able to stimulate migration and proliferation. A reconstructed epidermis cryo-(freeze) wound model was used to assess chemokine secretion after wound- ing and the effect of pertussis toxin (chemokine receptor blocker) on re-epithelialization and differentiation. Chemokine receptors CCR1, CCR3, CCR4, CCR6, CCR10, CXCR1, CXCR2, CXCR3 and CXCR4 were expressed in epidermis. No expression of CCR2, CCR5, CCR7 and CCR8 was observed by either immunostaining or flow cytometry. Five chemokine receptors (CCR1, CCR10, CXCR1, CXCR2, CXCR3) were identified whose corresponding mono-specific ligands (CCL14, CCL27, CXCL8, CXCL1, CXCL10 respectively) were not only able to stimulate keratinocyte migration and/or proliferation but were also secreted by keratinocytes after introducing cryo-wounds into epidermal equivalents. Blocking of receptor-ligand interac- tions with pertussis toxin delayed re-epithelialization but did not influence differentiation (as assessed by formation of basal layer, spinous layer, granular layer and stratum corneum) after cryo-wounding. Taken together, these results confirm that an autocrine positive feedback loop of epithelialization exists in order to stimulate wound closure after skin injury.
    [Show full text]
  • Profiling of Transcripts and Proteins Modulated by K-Ras Oncogene in the Lung Tissues of K-Ras Transgenic Mice by Omics Approaches
    161-172 2/12/2008 12:52 ÌÌ ™ÂÏ›‰·161 INTERNATIONAL JOURNAL OF ONCOLOGY 34: 161-172, 2009 161 Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches SOJUNG LEE1*, JUNGWOO KANG1*, MINCHUL CHO1, EUNHEE SEO1, HEESOOK CHOI1, EUNJIN KIM1, JUNGHEE KIM1, HEEJONG KIM1, GUM YONG KANG2, KWANG PYO KIM2, YOUNG-HO PARK3, DAE-YEUL YU3, YOUNG NA YUM4, SUE-NIE PARK4 and DO-YOUNG YOON1 Departments of 1Bioscience and Biotechnology and 2Molecular Biotechnology, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul 143-701; 3Animal Disease Model Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333; 4Division of Genetic Toxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, #194 Tongil-Ro, Eunpyung-Gu, Seoul 122-704, Korea Received August 7, 2008; Accepted October 13, 2008 DOI: 10.3892/ijo_00000138 Abstract. The mutated K-ras gene is involved in ~30% of proteins related to phosphorylation (from 1 to 2%). ATP human cancers. In order to search for K-ras oncogene- synthase, Ras oncogene family, cytochrome c oxidase, induced modulators in lung tissues of K-ras transgenic mice, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, we performed microarray and proteomics (LC/ESI-MS/MS) fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, up-regulated by K-ras oncogene. However, integrin ·1, Ras- chemokine ligand 6, epiregulin, EGF-like domain and interacting protein (Rain), endothelin-converting enzyme-1d cathepsin) related to cancer development (Wnt signaling and splicing factor 3b were down-regulated.
    [Show full text]
  • Chemokine Receptors in T-Cell-Mediated Diseases of the Skin Anke S
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector PERSPECTIVE Chemokine Receptors in T-Cell-Mediated Diseases of the Skin Anke S. Lonsdorf1, Sam T. Hwang2 and Alexander H. Enk1 The chemokine/chemokine receptor network is an integral element of the complex system of homeostasis and immunosurveillance. Initially studied because of their role in coordinating tissue-specific migration and activation of leucocytes, chemokines have been implicated in the pathogenesis of various malignancies and diseases with strong inflammatory components. We discuss recent findings suggesting a critical involvement of chemokine receptor interactions in the immunopathogenesis of classical inflammatory skin disorders such as psoriasis and atopic dermatitis, as well as neoplastic diseases with a T-cell origin, such as mycosis fungoides. A deeper understanding of the underlying contribution of the chemokine network in the disease processes is key for the development of selective targeted immunotherapeutics that may meet the delicate balance between efficacy and safety. Journal of Investigative Dermatology (2009) 129, 2552–2566; doi:10.1038/jid.2009.122; published online 28 May 2009 INTRODUCTION dermatitis (AD), and mycosis fungoides or inducible production under homeo- In the past two decades, chemokine (MF), and discuss possible implica- static or inflammatory conditions, receptors have emerged as important tions in the development of novel chemokines can be further classified determinants for the directed trafficking targeted therapies. The structural orga- into inflammatory or homeostatic of T cells and their function in primary, nization of the skin allowing direc- chemokines. effector, and memory immune respon- tional migration of leucocytes within Chemokines interact with members ses (Sallusto et al., 2000).
    [Show full text]
  • Skin Homing T Cells + of CCR10 Immune Surveillance and Effector
    The Journal of Immunology Immune Surveillance and Effector Functions of CCR10؉ Skin Homing T Cells Susan Hudak,1 Michael Hagen, Ying Liu, Daniel Catron, Elizabeth Oldham, Leslie M. McEvoy,1 and Edward P. Bowman2 Skin homing T cells carry memory for cutaneous Ags and play an important sentinel and effector role in host defense against pathogens that enter via the skin. CCR10 is a chemokine receptor that is preferentially expressed among blood leukocytes by a subset of memory CD4 and CD8 T cells that coexpress the skin-homing receptor cutaneous lymphocyte Ag (CLA), but not the ؉ ␤ ␣ gut-homing receptor 4 7. Homing and chemokine receptor coexpression studies detailed in this study suggest that the CLA / -CCR10؉ memory CD4 T cell population contains members that have access to both secondary lymphoid organ and skin com partments; and therefore, can act as both “central” and “effector” memory T cells. Consistent with this effector phenotype, CLA؉/CCR10؉ memory CD4 T cells from normal donors secrete TNF and IFN-␥ but minimal IL-4 and IL-10 following in vitro stimulation. Interactions of CCR10 and its skin-associated ligand CC ligand 27 may play an important role in facilitating memory T cell entry into cutaneous sites during times of inflammation. The Journal of Immunology, 2002, 169: 1189–1196. aive T cells exit the thymus and enter into secondary Skin-homing cutaneous lymphocyte-associated Ag (CLAϩ)3 lymphoid organs such as lymph nodes, Peyer’s patches, memory T cells preferentially home to cutaneous sites and are N and spleen via the blood. They are endowed with a found at high frequency in inflammatory cutaneous lesions.
    [Show full text]