Introducing Finswimming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bod210–05/09/2020
EUROPEAN CMAS MASTER’S FINSWIMMING CHAMPIONSHIPS Version 2020 (BoD210–05/09/2020) CMAS World Underwater Federation Finswimming Commission 1. General Principles of CMAS Master’s Finswimming Championships 1.1. The CMAS General Rules and CMAS Finswimming Rules will be applied. 1.2. The participants shall register only individually or as persons representing clubs. No swimmer or team may be designated as representing a country, but a label of Federal Team is authorized. 1.3. Since federal or club teams are not national ones, a club or a federation can present more than one relay teams in each age group. 1.4. Masters Competitors must be aware of the need of being well prepared and medically fit before entering master’s Competitions. They shall assume full responsibility for the risks included in competing in such competitions. In consideration of their entry, they must agree to waive and release CMAS, the Organising National Federation and the Organising Committee from any kind of liability for accidents, which may cause death, injury or property loss. Entry Forms containing a warning of the risks, an Accident Waiver and Release of Liability must be signed by each master’s competitor. 1.5. Anti-doping test may be conducted during the championship according to the international rules of WADA and the CMAS antidoping code 1.6. Athletes belong to master only if during the current season: ✓ Haven’t participated in national championship (senior category). ✓ Have classified only in competitions with master category. ✓ Have not taken part in world’s cup competitions (senior category) 1.7. It exists two different kind of championships for Master’s: ✓ Swimming-pool Championships ✓ Open Water Championships 2. -
G at Australian Seachange Newsletter
Seachange Newsletter Edition 9 April 2010 x G at Australian Contents: Editorial Benefits 10% discounts Spearsafe and Safety Competitions State news Cover- Drew Fenney with Victorian record Yellowtail Kingfish Media Releases Membership AUF Mission: Bring Sport, Conservation and Awareness to the Underwater World Editorial Spear safe campaign Safety is a very important issue for all of us. There have been some tragic fatal accidents this year due to shallow water blackout and some nasty accidents from gear and sharks (see more below). The AUF offers our sincere condolences to the family and friends of those affected. We are also trying to prevent future incidents and accidents and there has been good progress to increase awareness of safety with a National Spearsafe campaign with website, stickers, brochure, DVD and risk assessments. We also have a goal of a single national Spearfishing training package. Nationals Congratulations to Rob Torelli for winning the Open National Spearfishing Championships (held in Victoria) for a Record 7 times and to Mary Anne Stacey for winning the women’s championships for a record 7 times. The juniors was won by Trent Crane (Vic), intermediate was Dave Scholefield (SA), veterans Gunther Pfrengle (NSW), Master John Schulter (NSW). The Superdiver (Spearfishing, finswimming and photography) was hotly contested and close and the winner was Garth Byron (NSW). The Mark Searle Interpacific Pairs trophy was won by Aaron Crocome and David Welch. A full report below. There were 33 competitors, great support from sponsors, some challenging conditions and small fish. Thank you very much to Zia Mustafa and his team for being the Competition Director. -
Monofins for Freediving
Monofins for Freediving We have been intermittently following the debate concerning the use of the monofin in freediving and would like to share some of our findings. Two years ago we put together the first experimental monofin/freedive clinic where we assembled some unique elements. We put together the leading trainers in monofin swimming, namely the Russian coaches from Tomsk university, who train both the Russian national team and their chief rivals, the Chinese, the leading specialist monofin manufacturer belonging to the same school and a group of freedivers which represented the best cross-section, from the very top of freediving competition to the very novice. This same group also represented advanced freedivers who already had experience with the monofin, advanced freedivers who had never used a monofin and a novice freediver with no experience of the monofin. Although the number of freedivers involved was small we feel that with a larger group the conclusions would have been much the same. The objectives were to find (i) What style and why? (ii) What rhythm and amplitude of movement? (iii) What kind of monofin and what stiffness of blade and if this was individual what the relevant criteria for monofin choice should be? (iv) What compromises and adaptations had to be made to suit the specific needs of the freediver? (v) What was the best training method for the monofin freediver. What style and why? We had heard a lot of talk concerning adaptations of the ‘classic ’style that freedivers should adopt. I know from personal acquaintance that some of the people recommending various adaptations were not capable of demonstrating a good classic style hence their recommendations were from lack of ability in the monofin and hence lack of choice through limited ability. -
CMAS GENERAL RULES On-Line Photo Battle and Video Battle
Confédération Mondiale des Activités Subaquatiques World Underwater Federation CMAS GENERAL RULES On-Line Photo Battle and Video Battle VERSION 2020/1 General Rules of Underwater Photo Championships / BOD XXX. XXXXX 1. INTRODUCTION 1.1. These General Rules, specifically relating to Underwater photography and videography, complete and specify the procedures and obligations applicable to all CMAS On-Line International Competitions. 1.2. The photo and video competitions will be held on-line and they will be named “CMAS Photo Battle” and “CMAS Video Battle”. 1.3. The frequency of the BATTLE will be determined by CMAS and start date of the next competition will be announced on the CMAS web page and CMAS Social nets. 2. PARTICIPATION and ENTRY 2.1. Competition is open to all participants of all ages and all nationalities. 2.2. A 3 Euros fee is to be paid online to join each “BATTLE”. 2.3. The registration form https://www.sportdata.org/cmas must be filled before entering the “BATTLE”. 3. HOW TO SUBMIT YOUR PHOTO/VIDEO For photo submission just go to battle categories section and click on “Submit your photo/video” icon for those categories you want to submit a photo. In order to submit a photo/video, you need an account and be logged in. If you have already an account on Sportdata, just log in with your Username and Password. If you don't have an account yet, please use Option 1 or 2 in order to create a new account. a) Option 1: The easiest way is to use the social login buttons. -
Using Underwater Pulse Oximetry in Freediving to Extreme Depths to Study Risk of Hypoxic Blackout and Diving Response Phases
ORIGINAL RESEARCH published: 01 April 2021 doi: 10.3389/fphys.2021.651128 Using Underwater Pulse Oximetry in Freediving to Extreme Depths to Study Risk of Hypoxic Blackout and Diving Response Phases Eric Mulder 1* and Erika Schagatay 1,2 1 Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden, 2 Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden Deep freediving exposes humans to hypoxia and dramatic changes in pressure. The effect of depth on gas exchange may enhance risk of hypoxic blackout (BO) during the last part of the ascent. Our aim was to investigate arterial oxygen saturation (SpO2) and heart rate Edited by: (HR) in shallow and deep freedives, central variables, which have rarely been studied Costantino Balestra, underwater in deep freediving. Four male elite competitive freedivers volunteered to wear Haute École Bruxelles-Brabant (HE2B), Belgium a newly developed underwater pulse oximeter for continuous monitoring of SpO2 and HR Reviewed by: during self-initiated training in the sea. Two probes were placed on the temples, connected Neal William Pollock, to a recording unit on the back of the freediver. Divers performed one “shallow” and one Laval University, Canada Kay Tetzlaff, “deep” constant weight dive with fins. Plethysmograms were recorded at 30 Hz, and University Hospital of Tübingen, SpO2 and HR were extracted. Mean ± SD depth of shallow dives was 19 ± 3 m, and Germany 73 ± 12 m for deep dives. Duration was 82 ± 36 s in shallow and 150 ± 27 s in deep Claus-Martin Muth, Universitaetsklinikum Ulm, Germany dives. All divers desaturated more during deeper dives (nadir 55 ± 10%) compared to *Correspondence: shallow dives (nadir 80 ± 22%) with a lowest SpO2 of 44% in one deep dive. -
A Kinematic and Dynamic Comparison of Surface and Underwater Displacement in High Level Monofin Swimming Guillaume Nicolas, Benoit Bideau
A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming Guillaume Nicolas, Benoit Bideau To cite this version: Guillaume Nicolas, Benoit Bideau. A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming. Human Movement Science, Elsevier, 2009, 28 (4), pp.480. 10.1016/j.humov.2009.02.004. hal-00557313 HAL Id: hal-00557313 https://hal.archives-ouvertes.fr/hal-00557313 Submitted on 19 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming Guillaume Nicolas, Benoit Bideau PII: S0167-9457(09)00026-8 DOI: 10.1016/j.humov.2009.02.004 Reference: HUMOV 1141 To appear in: Human Movement Science Please cite this article as: Nicolas, G., Bideau, B., A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming, Human Movement Science (2009), doi: 10.1016/j.humov. 2009.02.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. -
The Effect of Breath-Hold Diving on Selected Adaptive Mechanisms in the Circulatory-Respiratory System in Simulated Static and Dynamic Apnoea
Baltic Journal of Health and Physical Activity 2019; 11(1): 7-17 Journal of Gdansk University of Physical Education and Sport ORIGINAL e-ISSN 2080-9999 doi: 10.29359/BJHPA.11.1.01 The effect of breath-hold diving on selected adaptive mechanisms in the circulatory-respiratory system in simulated static and dynamic apnoea 1 ABDF 1 D 2 C Authors’ Contribution: Magdalena Solich-Talanda , Rafał Mikołajczyk , Robert Roczniok , Aleksandra A Study Design Żebrowska1 ADEF B Data Collection C Statistical Analysis 1 D Data Interpretation Department of Physiological and Medical Sciences, E Manuscript Preparation The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland F Literature Search G Funds Collection 2 Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland abstract Background: Current research results indicate high adaptation of an organism to long-term apnoea. Breathing techniques allow increasing the volume of the inhaled air and thus prolong the breath-hold time at rest and during physical effort. The purpose of this study was to assess the impact of breath-hold on adaptations of the respiratory and circulatory systems and cardiopulmonary-respiratory reactions at rest and during physical effort in persons practising freediving. Material and methods: The study involved 17 athletes practising breath-hold diving, at the mean age of 38.4 ±8.4 years. Spirometry tests to evaluate static and dynamic lung indicators were conducted. The heart rate (HR), oxygen saturation (SpO2), and the apnoea time in three breath-hold trials were measured: static dry STA-D, static with face immersed in water STA-I and dynamic (DYN-D). -
WSF Freediver - Environment
WSF Freediver - Environment World Series Freediving™ www.freedivingRAID.com ENVIRONMENT WSF Freediver - Environment INTRODUCTION ................................................................................................. 2 EQUIPMENT ........................................................................................................ 3 ENVIRONMENT .................................................................................................. 9 WSF ECO MESSAGE .......................................................................................... 11 UNDERWATER LIFE .......................................................................................... 11 Section 1 - Page 1 RAID WSF FREEDIVER www.freedivingRAID.com INTRODUCTION The inspiration to explore is a natural emotion. The aspiration to discover is widely experienced and very human. Our blue earth is 70% covered by water and it is beneath the surface that we find endless adventures just waiting for volunteers. The RAID “World Series Freediving” program offers anyone the chance to explore, discover and become part of their own underwater adventures, with minimal environmental impact and sleek, form fitting equipment. WSF is a mixture of challenge and maximum enjoyment. The modern WSF Freediver has an abundance of great experiences, personal goals and huge enjoyment to look forward to. The modern freediving manual is designed to make freediving success an adventure, easy, enjoyable and safe. Whether you aspire to great depths, times and distances on a single breath -
WSF Freediver - Management
WSF Freediver - Management World Series Freediving™ www.freedivingRAID.com MANAGEMENT WSF Freediver - Management THE 4 FREEDIVING ELEMENTS ....................................................................... 2 EQUALISATION .................................................................................................. 2 BREATHING FOR FREEDIVING ...................................................................... 7 RECOVERY BREATHING ................................................................................... 8 FREEDIVING TECHNIQUES ............................................................................. 9 FREEDIVING BUDDY SYSTEM ........................................................................ 12 PROPER BUOYANCY FOR DEPTH FREEDIVING ........................................... 14 ADVENTURE FREEDIVING & COMPETITION ................................................ 18 FREEDIVING ....................................................................................................... 18 TRAINING FOR FREEDIVING ........................................................................... 22 Section 4 - Page 1 RAID WSF FREEDIVER www.freedivingRAID.com THE 4 FREEDIVING ELEMENTS 1. Conserving Oxygen O2 2. Equalisation EQ 3. Flexibility FLX 4. Safety SFE The 5th Element that is key to success is you, the freediver! EQUALISATION EQ Objectives: 1. State 2 processes of equalisation for the eustachian tubes 2. Demonstrate the 5 steps of the Frenzel manoeuvre 3. State the main difference between the Valsalva and Frenzel manoeuvres -
Safety Induction and Guidelines for Snorkel, Freedive and Finswimming
Geelong Freedivers Inc. Safety Induction and guidelines for Snorkel, Freedive and Finswimming Training Pool Requirements Booking training sessions ● Ensure your AUF insurance and GFD membership is up to date. ● Try and book at least 1 day prior as this allows time to get additional lanes booked if required. Signing attendance log ● Upon entering please sign the attendance book. ● If you’re the first person to arrive ask for the Geelong Freedivers attendance sheet. ● We need to do this for billing and safety. Start/End Times: ● We officially have access to the lane(s) at 18:45 ● Unofficially we can use the diving pool from 18:00 onwards. ● The session ends ~ 19:45 allowing time to get changed. General approach: ● Warmup up 18:00-18:45. ● Main session 18:45-19:45 Theory Quick Note ● The majority of this safety induction is going to concentrate on potential issues that could arise and prevention of possible incidents. ● We don’t want this to detract from the positive benefits to pool training of which there are many. ● There is a significant amount of information regarding physics, physiology, and general theory that it outside of the safety induction scope. It’s strongly recommended that you undertake a more indepth course for detailed instruction on these areas. ● In this session the goal is to provide basic coverage and to ensure each participant is introduced to the the GFD safety protocols and able to train safely. ● Feel free to ask questions during the safety induction and whenever you’re training from this point forwards. The Buddy System ● Never Dive Alone. -
Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding
Journal of Human Kinetics volume 49/2015, 89-98 DOI: 10.1515/hukin-2015-0111 89 Section II- Exercise Physiology & Sports Medicine Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding by Vasileios Stavrou1,3 , Argyris G. Toubekis2 , Eleni Karetsi3 The purpose of this study was to examine the effects of training with intermittent breath holding (IBH) on respiratory parameters, arterial oxygen saturation (SpO2) and performance. Twenty-eight fin-swimming athletes were randomly divided into two groups and followed the same training for 16 weeks. About 40% of the distance of each session was performed with self-selected breathing frequency (SBF group) or IBH (IBH group). Performance time of 50 and 400 m at maximum intensity was recorded and forced expired volume in 1 s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and SpO2 were measured before and after the 50 m test at baseline and post-training. Post- training, the respiratory parameters were increased in the IBH but remained unchanged in the SBF group (FEV1: 17 ±15% vs. -1 ±11%; FVC: 22 ±13% vs. 1 ±10%; PEF: 9 ±14% vs. -4 ±15%; p<0.05). Pre compared to post-training SpO2 was unchanged at baseline and decreased post-training following the 50 m test in both groups (p<0.05). The reduction was higher in the IBH compared to the SBF group (p<0.05). Performance in the 50 and 400 m tests improved in both groups, however, the improvement was greater in the IBH compared to the SBF group in both 50 and 400 m tests (p<0.05). -
Swimming Pool 1 Swimming Pool
Swimming pool 1 Swimming pool A swimming pool, swimming bath, wading pool, paddling pool, or simply a pool, is a container filled with water intended for swimming or water-based recreation. There are many standard sizes, the largest of which is the Olympic-size swimming pool. A pool can be built either above or in the ground, and from materials such as concrete (also known as gunite), metal, plastic or fiberglass. Pools that may be used by many people or by the general public are called public, while pools used exclusively by a few people or in a home are called private. Many Backyard swimming pool health clubs, fitness centers and private clubs have public pools used mostly for exercise. Many hotels have pools available for their guests. Hot tubs and spas are pools with hot water, used for relaxation or therapy, and are common in homes, hotels, clubs and massage parlors. Swimming pools are also used for diving and other water sports, as well as for the training of lifeguards and astronauts. History The "Great Bath" at the site of Mohenjo-Daro in modern-day Pakistan was most likely the first swimming pool, dug during the 3rd millennium BC. This pool is A private swimming pool in Tagaytay, Philippines 12 by 7 meters, is lined with bricks and was covered with a tar-based sealant.[1] Ancient Greeks and Romans built artificial pools for athletic training in the palaestras, for nautical games and for military exercises. Roman emperors had private swimming pools in which fish were also kept, hence one of the Latin words for a pool, piscina.