A Comprehensive Explanation of Compression Strength Differences Between Various CFRP Materials: Micro-Meso Model, Predictions, Parameter Studies
Composites: Part A 40 (2009) 376–387 Contents lists available at ScienceDirect Composites: Part A journal homepage: www.elsevier.com/locate/compositesa A comprehensive explanation of compression strength differences between various CFRP materials: Micro-meso model, predictions, parameter studies S. Pansart a,*,1, M. Sinapius a,b, U. Gabbert b a German Aerospace Center, Institute of Composite Structures and Adaptive Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany b University of Magdeburg, Department of Mechanical Engineering, Computational Mechanics, Universitätsplatz 2, 39106 Magdeburg, Germany article info abstract Article history: The present work proposes a model to predict the compression strength of CFRP as a function of various Received 26 August 2008 material characteristics: fiber properties and volume content, non-linear matrix properties, interface Received in revised form 7 December 2008 properties, residual strains, fiber misalignment, ply waviness, and interlaminar properties. For this, a Accepted 2 January 2009 three-step FE-based approach is developed considering (i) fiber microbuckling, (ii) wavy ply mesobuck- ling, and (iii) the mutual influence of these two. This approach is then applied to investigate the relative contribution of the mentioned material characteristics on compression strength deficits of NCF (Non- Keywords: crimp Fabric) CFRP with respect to prepreg, in order to identify ways to improve NCF performance. A. Fabrics/textiles Ó 2009 Elsevier Ltd. All rights reserved. B. Mechanical properties C. Finite Element Analysis (FEA) 1. Introduction microbuckling, forming the basis for a large variety of models introducing the aspects of matrix non-linearity, misalignment, Compared to classical prepreg technology, liquid composite and others. Theories describing compression failure in terms of molding technologies, in combination with non-crimp fabric kink band formation were developed in parallel (as e.g., in (NCF) dry fiber semi-finished products, offer the opportunity of [10,11]).
[Show full text]