10 Sorting, Performance/Stress Tests

Total Page:16

File Type:pdf, Size:1020Kb

10 Sorting, Performance/Stress Tests Exercise Set 10 c 2006 Felleisen, Proulx, et. al. 10 Sorting, Performance/Stress Tests In this problem set you will examine the properties of the different algo- rithms we have seen as well as see and design new ones. The goal is to learn to understand the tradeoffs between different ways of writing the same program, and to learn some techniques that can be used to explore the algorithm behavior. Etudes: Sorting Algorithms To practice working with the ArrayList start by implementing the selection sort. Because we will work with several different sorting algorithms, yet want all of them to look the same the selection sort will be a method in the class that extends the abstract class ASortAlgo. A sorting algorithms needs to be given the data to sort, the Comparator to use to determine the ordering, and needs to provide an access to the data it produces. Additionally, the ASort class also includes a field that represents the name of the implement- ing sorting algorithm. abstract class ASortAlgo<T> { /∗∗ the comparator that determines the ordering of the elements ∗/ public Comparator<T> comp; /∗∗ the name of this sorting algorithm ∗/ public String algoName; /∗∗ ∗ Initialize a data set to be sorted ∗ with the data generated by the traversal. ∗ @param the given traversal ∗/ abstract public void initData(Traversal<T> tr); /∗∗ ∗ Sort the data set with respect to the given Comparator ∗ and produce a traversal for the sorted data. ∗ @return the traversal for the sorted data ∗/ abstract public Traversal<T> sort(); } 1 c 2006 Felleisen, Proulx, et. al. Exercise Set 10 1. Design the class ArrSortSelection that implements a selection sort and extends the class ASortAlgo using an ArrayList as the dataset to sort. The ArrayList becomes an additional field in this class. • The initData initializes the ArrayList by adding to it all the data generated by the given Traversal. • the new method selectionSort implements a mutating selection sort on this ArrayList. There are numerous lecture notes and labs from the past several years available online that guide you through the design of selection sort. The third part of you draft textbook has a section on selection sort on pages 102-112. • The sort method invokes a selection sort on this ArrayList and returns an instance of ALT the Traversal over the data in an Ar- rayList. • Do this once you include the code in the main part of your assignment. Include in the class a self test in the form of a method testSort() that provides a test for all methods in this class. There is an ex- ample of this technique in the AListSortInsertion class provided with this homework. 2. Design the class ArrSortInsertion that implements a mutating inser- tion sort for an ArrayList and extends the class ASortAlgo in that same way as was done for the selection sort. You may work on this part with your partner if you wish — or get any help you need. However, you must make sure that at the end you understand every part of the code and how the tests were designed. Sorting out Sorting We have seen by now three different ways to sort a collection of data: The insertion sort, the quicksort, and the binary tree sort. The binary tree sort was hidden — we first designed the method to in- sert data into a binary search tree, then we designed the traversal over the binary search tree that generated the elements in the desired order. The algorithms all have the same purpose, yet they do not conform to the same interface. They also deal with the data structured in different ways. However, we would like to compare these algorithms for efficiency 2 Exercise Set 10 c 2006 Felleisen, Proulx, et. al. (speed). ASortAlgo class: Reporting the results Our first task is to design wrappers for all these algorithms that will al- lows us to use them interchangeably to sort any collection of data supplied through an iterator. Of course, we want all of them to produce the data in a uniform format as well. Therefore, we want all of these algorithms to produce a traversal for the sorted list. Because the traversal of a binary search tree involes quite a lot of com- putation, to make to comparisons fari, we will conclude the binary tree sort by producing an sorted ArrayList, generated by the data produced by the traversal of the binary search tree we have constructed. ASortAlgo class: Initializing the data The abstract class ASortAlgo introduced in the Etudes provides a uni- form wrapper for all sorting algorithms. The initData method consumes the given traversal for the data to be sorted and saves the given data in a data structure appropriate for this algorithm. For the algorithms that are based on the ArrayList the initData method creates a new ArrayList and adds all elements generated by the given Traversal. For the AListSortInsertion class that implements the insertion sort for a recursively built AList, the initData method copied the given data into a new AList. For the quicksort algorithm that is based on recuesively build lists, this will not be necessary - as the algorithm traverses over the data and constructs two new lists - the upper and the lower partition, and does not use any properties of the lists. Finally, for the binary tree sort the task of constructing the binary tree comprises a substantial amount of work, and so should be done as a part of the sort method. Therefore, the initData method just copies the reference to the Traversal. We provide an example of a class that implements the insertion sort al- gorithm for data saved as AList<T>. ASortAlgo class: Running the timing tests To measure the time each algorithm takes to complete its task, we will invoke each algorithm in three parts. First, we provide the data to sort and invoke the initData method. Next we start the timer, invoke the sort method and stop the timer when the method returns the result. Finally, we check that the data was indeed sorted and record the result. We will test each of the several sorting algorithms on several datasets 3 c 2006 Felleisen, Proulx, et. al. Exercise Set 10 (varying the dataset size and whether the data is in the original order as received from the database, or is randomized). For each dataset we will use several different Comparators — by name and state, by latitude, and by zip code. The results will be recorded in a uniform way, so that we may then look for patterns of behavior. Here is a summary of the algorithms you will implement. Please, use the names given below: • ArrSortSelection — done as a Part 1 of the Etudes • ArrSortInsertion — done as Part 2 of the Etudes • AListSortInsertion — provided • ABinaryTreeSort — modify the solution to homework 5 • AListSortQuickSort — to be done (modify 8.1 part 9 of homework 8) • ArrSortQuickSort — to be done 10.1 Problem Design the method in the Tests class that determines whether the data gen- erated by the given Traversal iterator is sorted, with regard to the given Comparator. Later, you will need the same method in the class TimerTests. 10.2 Problem Complete the design the classes AListSortSelection and AListSortInsertion. Include in each class a self test in the form of a method testSort(Tests tests) that provides a test for all methods in this class. 10.3 Problem Design the class ABinaryTreeSort that that extends the ASortAlgo class. It performs the binary tree sort on the data supplied by the Traversal iterator. The sort method first builds the binary search tree from the data pro- vided by the iterator, then saves the data generated by the inorder traversal in an ArrayList or in an AListOfCities data structure. 4 Exercise Set 10 c 2006 Felleisen, Proulx, et. al. Include in each class a self test in the form of a method testSort(Tests tests) that provides a test for all methods in this class. 10.4 Problem Design the class AListSortQuickSort that performs the recursively defined quicksort on the data supplied by the Traversal iterator and producing an AListOfCities data structure. You will need a helper method to append two lists together. HtDP has a good explanation of quicksort. Include in each class a self test in the form of a method testSort(Tests tests) that provides a test for all methods in this class. 10.5 Problem Design the class ArrSortQuickSort that that extends the ASortAlgo class. It performs the quicksort sort on an ArrayList. The ArrayList is initialized from the data supplied by the Traversal iterator. You may use any textbook or the web to find an implementation of this algorithm, but you are responsible for the correctness of your implementa- tion. Include in each class a self test in the form of a method testSort(Tests tests) that provides a test for all methods in this class. Note: If you are having problems with this algorithm, go on to the Time Trials and finish this only if you have time left. Part 2: Time Trials All of the tests we designed as the part of our code sorted only very small collections of data. It is important to make sure that the programs work well for large amounts of data as well. It is possible to estimate the amount of time an algorithm should take in comparison to others. However, we would like to verify these results on real data, and learn in the process what other issues we need to take into consideration (for example, the space the algorithm uses, and whether the data is already sorted or nearly sorted).
Recommended publications
  • Overview of Sorting Algorithms
    Unit 7 Sorting Algorithms Simple Sorting algorithms Quicksort Improving Quicksort Overview of Sorting Algorithms Given a collection of items we want to arrange them in an increasing or decreasing order. You probably have seen a number of sorting algorithms including ¾ selection sort ¾ insertion sort ¾ bubble sort ¾ quicksort ¾ tree sort using BST's In terms of efficiency: ¾ average complexity of the first three is O(n2) ¾ average complexity of quicksort and tree sort is O(n lg n) ¾ but its worst case is still O(n2) which is not acceptable In this section, we ¾ review insertion, selection and bubble sort ¾ discuss quicksort and its average/worst case analysis ¾ show how to eliminate tail recursion ¾ present another sorting algorithm called heapsort Unit 7- Sorting Algorithms 2 Selection Sort Assume that data ¾ are integers ¾ are stored in an array, from 0 to size-1 ¾ sorting is in ascending order Algorithm for i=0 to size-1 do x = location with smallest value in locations i to size-1 swap data[i] and data[x] end Complexity If array has n items, i-th step will perform n-i operations First step performs n operations second step does n-1 operations ... last step performs 1 operatio. Total cost : n + (n-1) +(n-2) + ... + 2 + 1 = n*(n+1)/2 . Algorithm is O(n2). Unit 7- Sorting Algorithms 3 Insertion Sort Algorithm for i = 0 to size-1 do temp = data[i] x = first location from 0 to i with a value greater or equal to temp shift all values from x to i-1 one location forwards data[x] = temp end Complexity Interesting operations: comparison and shift i-th step performs i comparison and shift operations Total cost : 1 + 2 + ..
    [Show full text]
  • The Analysis and Synthesis of a Parallel Sorting Engine Redacted for Privacy Abstract Approv, John M
    AN ABSTRACT OF THE THESIS OF Byoungchul Ahn for the degree of Doctor of Philosophy in Electrical and Computer Engineering, presented on May 3. 1989. Title: The Analysis and Synthesis of a Parallel Sorting Engine Redacted for Privacy Abstract approv, John M. Murray / Thisthesisisconcerned withthe development of a unique parallelsort-mergesystemsuitablefor implementationinVLSI. Two new sorting subsystems, a high performance VLSI sorter and a four-waymerger,werealsorealizedduringthedevelopment process. In addition, the analysis of several existing parallel sorting architectures and algorithms was carried out. Algorithmic time complexity, VLSI processor performance, and chiparearequirementsfortheexistingsortingsystemswere evaluated.The rebound sorting algorithm was determined to be the mostefficientamongthoseconsidered. The reboundsorter algorithm was implementedinhardware asasystolicarraywith external expansion capability. The second phase of the research involved analyzing several parallel merge algorithms andtheirbuffer management schemes. The dominant considerations for this phase of the research were the achievement of minimum VLSI chiparea,design complexity, and logicdelay. Itwasdeterminedthattheproposedmerger architecture could be implemented inseveral ways. Selecting the appropriate microarchitecture for the merger, given the constraints of chip area and performance, was the major problem.The tradeoffs associated with this process are outlined. Finally,apipelinedsort-merge system was implementedin VLSI by combining a rebound sorter
    [Show full text]
  • Sorting Algorithms Correcness, Complexity and Other Properties
    Sorting Algorithms Correcness, Complexity and other Properties Joshua Knowles School of Computer Science The University of Manchester COMP26912 - Week 9 LF17, April 1 2011 The Importance of Sorting Important because • Fundamental to organizing data • Principles of good algorithm design (correctness and efficiency) can be appreciated in the methods developed for this simple (to state) task. Sorting Algorithms 2 LF17, April 1 2011 Every algorithms book has a large section on Sorting... Sorting Algorithms 3 LF17, April 1 2011 ...On the Other Hand • Progress in computer speed and memory has reduced the practical importance of (further developments in) sorting • quicksort() is often an adequate answer in many applications However, you still need to know your way (a little) around the the key sorting algorithms Sorting Algorithms 4 LF17, April 1 2011 Overview What you should learn about sorting (what is examinable) • Definition of sorting. Correctness of sorting algorithms • How the following work: Bubble sort, Insertion sort, Selection sort, Quicksort, Merge sort, Heap sort, Bucket sort, Radix sort • Main properties of those algorithms • How to reason about complexity — worst case and special cases Covered in: the course book; labs; this lecture; wikipedia; wider reading Sorting Algorithms 5 LF17, April 1 2011 Relevant Pages of the Course Book Selection sort: 97 (very short description only) Insertion sort: 98 (very short) Merge sort: 219–224 (pages on multi-way merge not needed) Heap sort: 100–106 and 107–111 Quicksort: 234–238 Bucket sort: 241–242 Radix sort: 242–243 Lower bound on sorting 239–240 Practical issues, 244 Some of the exercise on pp.
    [Show full text]
  • An Evolutionary Approach for Sorting Algorithms
    ORIENTAL JOURNAL OF ISSN: 0974-6471 COMPUTER SCIENCE & TECHNOLOGY December 2014, An International Open Free Access, Peer Reviewed Research Journal Vol. 7, No. (3): Published By: Oriental Scientific Publishing Co., India. Pgs. 369-376 www.computerscijournal.org Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms PRAMOD KADAM AND Sachin KADAM BVDU, IMED, Pune, India. (Received: November 10, 2014; Accepted: December 20, 2014) ABstract This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms (Root to Fruit (1): An Evolutionary Study of Sorting Problem) [1]and concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. Key words: Evolutionary study of sorting, History of sorting Early Sorting algorithms, list of inventors for sorting. IntroDUCTION name and their contribution may skipped from the study. Therefore readers have all the rights to In spite of plentiful literature and research extent this study with the valid proofs. Ultimately in sorting algorithmic domain there is mess our objective behind this research is very much found in documentation as far as credential clear, that to provide strength to the evolutionary concern2. Perhaps this problem found due to lack study of sorting algorithms and shift towards a good of coordination and unavailability of common knowledge base to preserve work of our forebear platform or knowledge base in the same domain. for upcoming generation. Otherwise coming Evolutionary study of sorting algorithm or sorting generation could receive hardly information about problem is foundation of futuristic knowledge sorting problems and syllabi may restrict with some base for sorting problem domain1.
    [Show full text]
  • Sorting Partnership Unless You Sign Up! Brian Curless • Homework #5 Will Be Ready After Class, Spring 2008 Due in a Week
    Announcements (5/9/08) • Project 3 is now assigned. CSE 326: Data Structures • Partnerships due by 3pm – We will not assume you are in a Sorting partnership unless you sign up! Brian Curless • Homework #5 will be ready after class, Spring 2008 due in a week. • Reading for this lecture: Chapter 7. 2 Sorting Consistent Ordering • Input – an array A of data records • The comparison function must provide a – a key value in each data record consistent ordering on the set of possible keys – You can compare any two keys and get back an – a comparison function which imposes a indication of a < b, a > b, or a = b (trichotomy) consistent ordering on the keys – The comparison functions must be consistent • Output • If compare(a,b) says a<b, then compare(b,a) must say b>a • If says a=b, then must say b=a – reorganize the elements of A such that compare(a,b) compare(b,a) • If compare(a,b) says a=b, then equals(a,b) and equals(b,a) • For any i and j, if i < j then A[i] ≤ A[j] must say a=b 3 4 Why Sort? Space • How much space does the sorting • Allows binary search of an N-element algorithm require in order to sort the array in O(log N) time collection of items? • Allows O(1) time access to kth largest – Is copying needed? element in the array for any k • In-place sorting algorithms: no copying or • Sorting algorithms are among the most at most O(1) additional temp space.
    [Show full text]
  • Meant to Provoke Thought Regarding the Current "Software Crisis" at the Time
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in DATA STRUCTURES Topic Objective: At the end of this topic student will be able to: At the end of this topic student will be able to: Learn about software engineering principles Discover what an algorithm is and explore problem-solving techniques Become aware of structured design and object-oriented design programming methodologies Learn about classes Learn about private, protected, and public members of a class Explore how classes are implemented Become aware of Unified Modeling Language (UML) notation Examine constructors and destructors Learn about the abstract data type (ADT) Explore how classes are used to implement ADT Definition/Overview: Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, and the study of these approaches. That is the application of engineering to software. The term software engineering first appeared in the 1968 NATO Software Engineering Conference and WWW.BSSVE.INwas meant to provoke thought regarding the current "software crisis" at the time. Since then, it has continued as a profession and field of study dedicated to creating software that is of higher quality, cheaper, maintainable, and quicker to build. Since the field is still relatively young compared to its sister fields of engineering, there is still much work and debate around what software engineering actually is, and if it deserves the title engineering. It has grown organically out of the limitations of viewing software as just programming. Software development is a term sometimes preferred by practitioners in the industry who view software engineering as too heavy-handed and constrictive to the malleable process of creating software.
    [Show full text]
  • Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of Sorting Algorithms
    International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86 ISSN 2229-5518 Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of sorting Algorithms Sapram Choudaiah P Chandu Chowdary M Kavitha ABSTRACT:Sorting is an important data structure in many real life applications. A number of sorting algorithms are in existence till date. This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. An extensive analysis has been done compared with the traditional mathematical methods of ―Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. Observations have been obtained on comparing with the existing approaches of All Sorts. An “Empirical Analysis” consists of rigorous complexity analysis by various sorting algorithms, in which comparison and real swapping of all the variables are calculatedAll algorithms were tested on random data of various ranges from small to large. It is an attempt to compare the performance of various sorting algorithm, with the aim of comparing their speed when sorting an integer inputs.The empirical data obtained by using the program reveals that Quick sort algorithm is fastest and Bubble sort is slowest. Keywords: Bubble Sort, Insertion sort, Quick Sort, Merge Sort, Selection Sort, Heap Sort,CPU Time. Introduction In spite of plentiful literature and research in more dimension to student for thinking4. Whereas, sorting algorithmic domain there is mess found in this thinking become a mark of respect to all our documentation as far as credential concern2.
    [Show full text]
  • Comparison Sorts Name Best Average Worst Memory Stable Method Other Notes Quicksort Is Usually Done in Place with O(Log N) Stack Space
    Comparison sorts Name Best Average Worst Memory Stable Method Other notes Quicksort is usually done in place with O(log n) stack space. Most implementations on typical in- are unstable, as stable average, worst place sort in-place partitioning is case is ; is not more complex. Naïve Quicksort Sedgewick stable; Partitioning variants use an O(n) variation is stable space array to store the worst versions partition. Quicksort case exist variant using three-way (fat) partitioning takes O(n) comparisons when sorting an array of equal keys. Highly parallelizable (up to O(log n) using the Three Hungarian's Algorithmor, more Merge sort worst case Yes Merging practically, Cole's parallel merge sort) for processing large amounts of data. Can be implemented as In-place merge sort — — Yes Merging a stable sort based on stable in-place merging. Heapsort No Selection O(n + d) where d is the Insertion sort Yes Insertion number of inversions. Introsort No Partitioning Used in several STL Comparison sorts Name Best Average Worst Memory Stable Method Other notes & Selection implementations. Stable with O(n) extra Selection sort No Selection space, for example using lists. Makes n comparisons Insertion & Timsort Yes when the data is already Merging sorted or reverse sorted. Makes n comparisons Cubesort Yes Insertion when the data is already sorted or reverse sorted. Small code size, no use Depends on gap of call stack, reasonably sequence; fast, useful where Shell sort or best known is No Insertion memory is at a premium such as embedded and older mainframe applications. Bubble sort Yes Exchanging Tiny code size.
    [Show full text]
  • Efficient Algorithms and Data Structures for Massive Data Sets
    Efficient Algorithms and Data Structures for Massive Data Sets A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy by Alka arXiv:1005.3473v1 [cs.DS] 19 May 2010 Department of Computer Science and Engineering Indian Institute of Technology Guwahati March 2010. ii CERTIFICATE It is certified that the work contained in the thesis entitled Efficient Algorithms and Data Structures for Massive Data Sets by Alka, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. Dr. Sajith Gopalan Associate Professor Department of Computer Science and Engineering Indian Institute of Technology, Guwahati. March 2010. i ii Abstract For many algorithmic problems, traditional algorithms that optimise on the number of instructions executed prove expensive on I/Os. Novel and very different design techniques, when applied to these problems, can produce algorithms that are I/O efficient. This thesis adds to the growing chorus of such results. The computational models we use are the external memory model and the W-Stream model. On the external memory model, we obtain the following results. (1) An I/O efficient algorithm for computing minimum spanning trees of graphs that improves on the perfor- mance of the best known algorithm. (2) The first external memory version of soft heap, an approximate meldable priority queue. (3) Hard heap, the first meldable external memory priority queue that matches the amortised I/O performance of the known external mem- ory priority queues, while allowing a meld operation at the same amortised cost. (4) I/O efficient exact, approximate and randomised algorithms for the minimum cut problem, which has not been explored before on the external memory model.
    [Show full text]
  • Models and Algorithms Under Asymmetric Read and Write Costs
    Models and Algorithms under Asymmetric Read and Write Costs Guy E. Blelloch*, Jeremy T. Finemany, Phillip B. Gibbons*, Yan Gu* and Julian Shunz *Carnegie Mellon University yGeorgetown University zU.C. Berkeley Abstract—In several emerging non-volatile technologies for main memory Thus the Q metric may be more relevant in practice, as it focuses on (NVRAM) the cost of reading is significantly cheaper than the cost of reads and writes to the last relevant level of the memory hierarchy. writing. Such asymmetry in memory costs leads to a desire for “write- We use a parameter ! to account for the higher cost of writes so that efficient” algorithms that minimize the number of writes to the NVRAM. While several prior works have explored write-efficient algorithms for we can study the dependence of algorithms on the gap between writes databases or for the unique properties of NAND Flash, our ongoing work and reads. We view ! as being significantly larger than 1, as factors seeks to develop a broader theory of algorithm design for asymmetric up to 1–2 orders of magnitude have been reported in the literature memories. This talk will highlight our recent progress on models, (see [1] and the references therein). algorithms, and lower bounds for asymmetric memories [1], [2], [3]. We extend the classic RAM model to the asymmetric case by defining the Prior work focusing on asymmetric read and write costs for non- (M; !)-ARAM, which consists of a large asymmetric memory and a volatile memory has explored system issues (e.g., [5]), database much smaller symmetric memory of size M, both random access, such that for the asymmetric memory, writes cost ! > 1 times more than algorithms (e.g., [6]) or the unique properties of NAND Flash (e.g., reads.
    [Show full text]
  • Big-O Algorithm Complexity Cheat Sheet
    Know Thy Complexities! www.bigocheatsheet.com Big-O Complexity Chart Excellent Good Fair Bad Horrible O(n!) O(2^n) O(n^2) s O(n log n) n o i t a r e p O O(n) O(1), O(log n) Elements Common Data Structure Operations Space Data Structure Time Complexity Complexity Average Worst Worst Access Search Insertion Deletion Access Search Insertion Deletion Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n) O(n) Stack O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) Queue O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) Singly-Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) Doubly-Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) Skip List O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n log(n)) Hash Table N/A O(1) O(1) O(1) N/A O(n) O(n) O(n) O(n) Binary Search Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n) Cartesian Tree N/A O(log(n)) O(log(n)) O(log(n)) N/A O(n) O(n) O(n) O(n) B-Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) Red-Black Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) Splay Tree N/A O(log(n)) O(log(n)) O(log(n)) N/A O(log(n)) O(log(n)) O(log(n)) O(n) AVL Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) KD Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n) Array Sorting Algorithms Algorithm Time Complexity Space Complexity Best Average Worst Worst Quicksort O(n log(n)) O(n log(n)) O(n^2) O(log(n)) Mergesort O(n log(n)) O(n log(n)) O(n log(n)) O(n)
    [Show full text]
  • Studies on Sorting Networks and Expanders
    I STUDIES ON SORTING NETWORKS AND EXPANDERS A Thesis Presented to The Faculty of the School of Electrical Engineering and Computer Science and Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirement for the Degree Master of Science Hang Xie August, 1998 Acknowledgment I would like to express my special thanks to my advisor, Dr. David W. Juedes, for the insights he has provided to accomplish this thesis and the guidance given to me. Without this, it is impossible for me to accomplish this thesis. I would like to thank Dr. Dennis Irwin, Dr. Gene Kaufman, and Dr. Liming Cai for agreeing to be members of my thesis committee and giving valuable suggestions. I would also like to thank Mr. Dana Carroll for taking time to review my thesis. Finally, I would like to thank my wife and family for the help, support, and encouragement. Contents 1 Introduction 1 1.1 Sorting Networks ..... 2 1.2 Contributions . ..... 5 1.3 Structure of this Thesis .. 6 2 Expander Graphs and Related Constructions 8 2.1 Expander Graphs .... 8 2.2 Explicit Constructions 12 3 The Construction of e -halvers 16 3.1 e-halvers . ....... 17 3.2 Matching ..... 20 3.3 Explicit Construction .. ...... 24 4 Separators 31 4.1 (,x, f, fO)- separators ........ 31 4.2 Construction of the New Separator 34 4.3 Parameter of the New Separator .. ..... 36 ii 5 Paterson's Algorithm 39 5.1 A Tree-sort Metaphor . ........ ...... 40 5.2 The Parameters and Constraints. 41 5.3 On the Boundary ....
    [Show full text]