Advances in Microbiology, 2014, 4, 934-944 Published Online October 2014 in SciRes. http://www.scirp.org/journal/aim http://dx.doi.org/10.4236/aim.2014.413104 Nitrogen Source Affects Glycolipid Production and Lipid Accumulation in the Phytopathogen Fungus Ustilago maydis Ariana Zavala-Moreno1, Roberto Arreguin-Espinosa2, Juan Pablo Pardo3, Lucero Romero-Aguilar1, Guadalupe Guerra-Sánchez1* 1Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, IPN, México D.F., Mexico 2Departamento de Química de Biomacromoléculas, Instituto de Química, UNAM, Ciudad Universitaria, México D.F., Mexico 3Departamento de Bioquímica, Facultad de Medicina, UNAM, Ciudad Universitaria, México D.F., Mexico Email: *
[email protected] Received 3 August 2014; revised 2 September 2014; accepted 5 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract When cultured in medium limited of nitrogen sources, the phytopathogen Ustilago maydis pro- duces two amphipathic glycolipids: Ustilagic acid (UA) and Mannosylerythritol lipid (MEL), which in addition to the hydrophilic moiety, contain di- or tri-hydroxylated C16 fatty acids (UA), or C8 and C16 saturated fatty acids (MEL). We compared the growth and morphology of cells in YPD and in minimum media containing glucose and nitrogen sources such as nitrate or urea and those de- prived of nitrogen. Nitrogen-starved cells showed a dramatic accumulation of internal lipids iden- tified as lipid droplets when stained with the hydrophobic probe BODIPY; these lipid droplets were enriched in unsaturated fatty acids. Fatty acids in YPD or medium containing nitrate as ni- trogen source showed a combination of saturated/unsaturated lipids, but when urea was the ni- trogen source, cells only contained saturated fatty acids.