Glueballs, Hybrids, Multiquarks Experimental Facts Versus QCD Inspired Concepts

Total Page:16

File Type:pdf, Size:1020Kb

Glueballs, Hybrids, Multiquarks Experimental Facts Versus QCD Inspired Concepts Physics Reports 454 (2007) 1–202 www.elsevier.com/locate/physrep Glueballs, hybrids, multiquarks Experimental facts versus QCD inspired concepts a, b Eberhard Klempt ∗, Alexander Zaitsev aHelmholtz-Institut für Strahlen-und Kernphysik der Rheinischen Friedrich-Wilhelms Universität, NuYallee 14-16, D–53115 Bonn, Germany bInstitute for High-Energy Physics, Moscow Region, RU-142284 Protvino, Russia Accepted 6 July 2007 Available online 26 September 2007 editor: W. Weise Abstract Glueballs, hybrids and multiquark states are predicted as bound states in models guided by quantum chromo dynamics (QCD), by QCD sum rules or QCD on a lattice. Estimates for the (scalar) glueball ground state are in the mass range from 1000 to 1800 MeV, followed by a tensor and a pseudoscalar glueball at higher mass. Experiments have reported evidence for an abundance of meson resonances with 0−+, 0++ and 2++ quantum numbers. In particular, the sector of scalar mesons is full of surprises starting from the elusive ! and " mesons. The a0(980) and f0(980), discussed extensively in the literature, are reviewed with emphasis on their Janus-like appearance as KK molecules, tetraquark states or qq mesons. Most exciting is the possibility that the three mesons ¯ ¯ f0(1370), f0(1500), and f0(1710) might reflect the appearance of a scalar glueball in the world of quarkonia. However, the existence of f0(1370) is not beyond doubt and there is evidence that both f0(1500) and f0(1710) are flavour octet states, possibly in a tetraquark composition. We suggest a scheme in which the scalar glueball is dissolved into the wide background into which all scalar flavour-singlet mesons collapse. There is an abundance of meson resonances with the quantum numbers of the #. Three states are reported below 1.5 GeV/c2 whereas quark models expect only one, perhaps two. One of these states, $(1440), was the prime glueball candidate for a long time. We show that $(1440) is the first radial excitation of the # meson. P C Hybrids may have exotic quantum numbers which are not accessible by qq mesons. There are several claims for J 1−+ exotics, some of them with properties as predicted from the flux tube model ¯interpreting the quark–antiquark binding by a=gluon string. The evidence for these states depends partly on the assumption that meson–meson interactions are dominated by s-channel resonances. Hybrids with non-exotic quantum numbers should appear as additional states. Light-quark mesons exhibit a spectrum of (squared) masses which are proportional to the sum of orbital angular momentum and radial quantum numbers. Two states do not fall under this classification. They are discussed as hybrid candidates. The concept of multiquark states has received revived interest due to new resonances in the spectrum of states with open and hidden charm. The new states are surprisingly narrow and their masses and their decay modes often do not agree with simple quark-model expectations. Lattice gauge theories have made strong claims that glueballs and hybrids should appear in the meson spectrum. However, the existence of a scalar glueball, at least with a reasonable width, is highly questionable. It is possible that hybrids will turn up in complex multibody final states even though so far, no convincing case has been made for them by experimental data. Lattice gauge ∗ Corresponding author. E-mail address: [email protected] (E. Klempt). 0370-1573/$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.physrep.2007.07.006 2 E. Klempt, A. Zaitsev / Physics Reports 454 (2007) 1–202 theories fail to identify the nonet of scalar mesons. Thus, at the present status of approximations, lattice gauge theories seem not to provide a trustworthy guide into unknown territory in meson spectroscopy. © 2007 Elsevier B.V. All rights reserved. PACS: 12.38. t; 12.39. x; 13.25. k; 13.75.Lb; 14.40. a − − − − Contents 1. Introduction . 5 1.1. Highlights and perspectives . 5 1.1.1. Scope of the review . 5 1.1.2. Recent outstanding achievements . 5 1.1.3. New insights . 6 1.1.4. Critique of QCD folklore . 8 1.1.5. Successes and limitations of lattice QCD . 9 1.1.6. Future options . 9 1.1.7. Hints for expert readers. 12 1.1.8. Outline . 12 1.1.9. A guide to the literature . 13 1.2. Phenomenology of qq mesons . 13 ¯ 1.2.1. The A, B, C, . of meson spectroscopy: the naming scheme . 13 1.2.2. Meson nonets . 16 1.2.3. Mixing . 16 1.2.4. The Zweig rule . 18 1.2.5. Regge trajectories . 19 1.2.6. Flavour independence of forces . 20 1.2.7. The light meson spectrum and quark model assignments . 22 2. From QCD to strong interactions . 25 2.1. Quantum chromo dynamics . 25 2.1.1. The QCD Lagrangian . 25 2.1.2. Chiral symmetry . 26 2.1.3. Instantons . 26 2.2. Chiral perturbation theory %PT . 27 2.3. Lattice QCD . 28 2.3.1. Confinement . 28 2.3.2. Glueballs . 28 2.3.3. Ground-state qq mesons . 30 ¯ 2.3.4. Hybrids . 31 2.4. QCD sum rules . 31 2.5. Flux-tube model . 32 2.6. Quark models . ..
Recommended publications
  • Pos(Lattice 2010)246 Mass? W ∗ Speaker
    Dynamical W mass? PoS(Lattice 2010)246 Bernd A. Berg∗ Department of Physics, Florida State University, Tallahassee, FL 32306, USA As long as a Higgs boson is not observed, the design of alternatives for electroweak symmetry breaking remains of interest. The question addressed here is whether there are possibly dynamical mechanisms, which deconfine SU(2) at zero temperature and generate a massive vector boson triplet. Results for a model with joint local U(2) transformations of SU(2) and U(1) vector fields are presented in a limit, which does not involve any unobserved fields. The XXVIII International Symposium on Lattice Field Theory June 14-19, 2010 Villasimius, Sardinia, Italy ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Dynamical W mass? Bernd A. Berg 1. Introduction In Euclidean field theory notation the action of the electroweak gauge part of the standard model reads Z 1 1 S = d4xLew , Lew = − FemFem − TrFb Fb , (1.1) 4 µν µν 2 µν µν em b Fµν = ∂µ aν − ∂ν aµ , Fµν = ∂µ Bν − ∂ν Bµ + igb Bµ ,Bν , (1.2) 0 PoS(Lattice 2010)246 where aµ are U(1) and Bµ are SU(2) gauge fields. Typical textbook introductions of the standard model emphasize at this point that the theory contains four massless gauge bosons and introduce the Higgs mechanism as a vehicle to modify the theory so that only one gauge boson, the photon, stays massless. Such presentations reflect that the introduction of the Higgs particle in electroweak interactions [1] preceded our non-perturbative understanding of non-Abelian gauge theories.
    [Show full text]
  • BABAR Studies Matter-Antimatter Asymmetry in Τ Lepton Decays
    BABAR studies matter-antimatter asymmetry in τττ lepton decays Humans have wondered about the origin of matter since the dawn of history. Physicists address this age-old question by using particle accelerators to recreate the conditions that existed shortly after the Big Bang. At an accelerator, energy is converted into matter according to Einstein’s famous energy-mass relation, E = mc 2 , which offers an explanation for the origin of matter. However, matter is always created in conjunction with the same amount of antimatter. Therefore, the existence of matter – and no antimatter – in the universe indicates that there must be some difference, or asymmetry, between the properties of matter and antimatter. Since 1999, physicists from the BABAR experiment at SLAC National Accelerator Laboratory have been studying such asymmetries. Their results have solidified our understanding of the underlying micro-world theory known as the Standard Model. Despite its great success in correctly predicting the results of laboratory experiments, the Standard Model is not the ultimate theory. One indication for this is that the matter-antimatter asymmetry allowed by the Standard Model is about a billion times too small to account for the amount of matter seen in the universe. Therefore, a primary quest in particle physics is to search for hard evidence for “new physics”, evidence that will point the way to the more complete theory beyond the Standard Model. As part of this quest, BABAR physicists also search for cracks in the Standard Model. In particular, they study matter-antimatter asymmetries in processes where the Standard Model predicts that asymmetries should be very small or nonexistent.
    [Show full text]
  • Reconstruction of Semileptonic K0 Decays at Babar
    Reconstruction of Semileptonic K0 Decays at BaBar Henry Hinnefeld 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Dr. John LoSecco Abstract The oscillations observed in a pion composed of a superposition of energy states can provide a valuable tool with which to examine recoiling particles produced along with the pion in a two body decay. By characterizing these oscillation in the D+ ! π+ K0 decay we develop a technique that can be applied to other similar decays. The neutral kaons produced in the D+ ! π+ K0 decay are generated in flavor eigenstates due to their production via the weak force. Kaon flavor eigenstates differ from kaon mass eigenstates so the K0 can be equally represented as a superposition of mass 0 0 eigenstates, labelled KS and KL. Conservation of energy and momentum require that the recoiling π also be in an entangled superposition of energy states. The K0 flavor can be determined by 0 measuring the lepton charge in a KL ! π l ν decay. A central difficulty with this method is the 0 accurate reconstruction of KLs in experimental data without the missing information carried off by the (undetected) neutrino. Using data generated at the Stanford Linear Accelerator (SLAC) and software created as part of the BaBar experiment I developed a set of kinematic, geometric, 0 and statistical filters that extract lists of KL candidates from experimental data. The cuts were first developed by examining simulated Monte Carlo data, and were later refined by examining 0 + − 0 trends in data from the KL ! π π π decay.
    [Show full text]
  • A Successful Start to Preparations for the Babar Experiment
    In June this year, the first part of new collider A successful called PEP-II was commissioned. It will be used in an experiment to observe a rare effect start to in particle physics that could explain why there appears to be only matter and not antimatter in the Universe. The effect is preparations called CP violation, and the experiment will measure for the first time subtle differences in for the BaBar the way fundamental particles called B mesons and their antiparticles decay. experiment According to theory, particles and their antimatter partners should behave like exact mirror images of each other. However, the B by Professor Mike Green mesons and their antiparticles are predicted Royal Holloway, University of London to break this mirror symmetry by a tiny amount. Extract taken from the PPARC Annual Report 1996-97 The so-called BaBar experiment (so named because the symbol for the anti-B meson is a letter 'B' with a bar across the top, and permission was obtained from the author of Babar the Elephant for the use of his name!) takes advantage of the 3-kilometre-long Stanford Linear Accelerator in California which creates and accelerates beams of electrons and their antiparticles, positrons. The beams are then injected into PEP-II. This consists of two concentric rings, 2 kilometres across, which will store the separate beams of electrons and positrons. In the rings, the beams travel close to the speed of light under the influence of electric and magnetic fields which accelerate, guide and focus the beams. The ring being used to store electrons was already in existence, and that is the one which has just been commissioned.
    [Show full text]
  • Physics Potential of a High-Luminosity J/Ψ Factory Abstract
    Physics Potential of a High-luminosity J= Factory Andrzej Kupsc,1, ∗ Hai-Bo Li,2, y and Stephen Lars Olsen3, z 1Uppsala University, Box 516, SE-75120 Uppsala, Sweden 2Institute of High Energy Physics, Beijing 100049, People’s Republic of China 3Institute for Basic Science, Daejeon 34126, Republic of Korea Abstract We examine the scientific opportunities offered by a dedicated “J= factory” comprising an e+e− collider equipped with a polarized e− beam and a monochromator that reduces the center-of-mass energy spread of the colliding beams. Such a facility, which would have budget implications that are similar to those of the Fermilab muon program, would produce O(1013) J= events per Snowmass year and support tests of discrete symmetries in hyperon decays and in- vestigations of QCD confinement with unprecedented precision. While the main emphasis of this study is on searches for new sources of CP -violation in hyperon decays with sensitivities that reach the Standard Model expectations, such a facility would additionally provide unique opportunities for sensitive studies of the spectroscopy and decay − properties of glueball and QCD-hybrid mesons. Polarized e beam operation with Ecm just above the 2mτ threshold would support a search for CP violation in τ − ! π−π0ν decays with unique sensitivity. Operation at the 0 peak would enable unique probes of the Dark Sector via invisible decays of the J= and other light mesons. Keywords: Hyperons, CP violation, rare decays, glueball & QCD-hybrid spectroscopy, τ decays ∗Electronic address: [email protected] yElectronic address: [email protected] zElectronic address: [email protected] 1 Introduction In contrast to K-meson and B-meson systems, where CP violations have been extensively investigated, CP violations in hyperon decays have never been observed.
    [Show full text]
  • Glueball Searches Using Electron-Positron Annihilations with BESIII
    FAIRNESS2019 IOP Publishing Journal of Physics: Conference Series 1667 (2020) 012019 doi:10.1088/1742-6596/1667/1/012019 Glueball searches using electron-positron annihilations with BESIII R Kappert and J G Messchendorp, for the BESIII collaboration KVI-CART, University of Groningen, Groningen, The Netherlands E-mail: [email protected] Abstract. Using a BESIII-data sample of 1:31 × 109 J= events collected in 2009 and 2012, the glueball-sensitive decay J= ! γpp¯ is analyzed. In the past, an exciting near-threshold enhancement X(pp¯) showed up. Furthermore, the poorly-understood properties of the ηc resonance, its radiative production, and many other interesting dynamics can be studied via this decay. The high statistics provided by BESIII enables to perform a partial-wave analysis (PWA) of the reaction channel. With a PWA, the spin-parity of the possible intermediate glueball state can be determined unambiguously and more information can be gained about the dynamics of other resonances, such as the ηc. The main background contributions are from final-state radiation and from the J= ! π0(γγ)pp¯ channel. In a follow-up study, we will investigate the possibilities to further suppress the background and to use data-driven methods to control them. 1. Introduction The discovery of the Higgs boson has been a breakthrough in the understanding of the origin of mass. However, this boson only explains 1% of the total mass of baryons. The remaining 99% originates, according to quantum chromodynamics (QCD), from the self-interaction of the gluons. The nature of gluons gives rise to the formation of exotic hadronic matter.
    [Show full text]
  • Snowmass 2021 Letter of Interest: Hadron Spectroscopy at Belle II
    Snowmass 2021 Letter of Interest: Hadron Spectroscopy at Belle II on behalf of the U.S. Belle II Collaboration D. M. Asner1, Sw. Banerjee2, J. V. Bennett3, G. Bonvicini4, R. A. Briere5, T. E. Browder6, D. N. Brown2, C. Chen7, D. Cinabro4, J. Cochran7, L. M. Cremaldi3, A. Di Canto1, K. Flood6, B. G. Fulsom8, R. Godang9, W. W. Jacobs10, D. E. Jaffe1, K. Kinoshita11, R. Kroeger3, R. Kulasiri12, P. J. Laycock1, K. A. Nishimura6, T. K. Pedlar13, L. E. Piilonen14, S. Prell7, C. Rosenfeld15, D. A. Sanders3, V. Savinov16, A. J. Schwartz11, J. Strube8, D. J. Summers3, S. E. Vahsen6, G. S. Varner6, A. Vossen17, L. Wood8, and J. Yelton18 1Brookhaven National Laboratory, Upton, New York 11973 2University of Louisville, Louisville, Kentucky 40292 3University of Mississippi, University, Mississippi 38677 4Wayne State University, Detroit, Michigan 48202 5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 6University of Hawaii, Honolulu, Hawaii 96822 7Iowa State University, Ames, Iowa 50011 8Pacific Northwest National Laboratory, Richland, Washington 99352 9University of South Alabama, Mobile, Alabama 36688 10Indiana University, Bloomington, Indiana 47408 11University of Cincinnati, Cincinnati, Ohio 45221 12Kennesaw State University, Kennesaw, Georgia 30144 13Luther College, Decorah, Iowa 52101 14Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 15University of South Carolina, Columbia, South Carolina 29208 16University of Pittsburgh, Pittsburgh, Pennsylvania 15260 17Duke University, Durham, North Carolina 27708 18University of Florida, Gainesville, Florida 32611 Corresponding Author: B. G. Fulsom (Pacific Northwest National Laboratory), [email protected] Thematic Area(s): (RF07) Hadron Spectroscopy 1 Abstract: The Belle II experiment at the SuperKEKB energy-asymmetric e+e− collider is a substantial upgrade of the B factory facility at KEK in Tsukuba, Japan.
    [Show full text]
  • The Experimental Status of Glueballs Arxiv:0812.0600V3 [Hep-Ex]
    The Experimental Status of Glueballs V. Crede 1 and C. A. Meyer 2 1 Florida State University, Tallahassee, FL 32306 USA 2 Carnegie Mellon University, Pittsburgh, PA 15213 USA October 22, 2018 Abstract Glueballs and other resonances with large gluonic components are predicted as bound states by Quantum Chromodynamics (QCD). The lightest (scalar) glueball is estimated to have a mass in the range from 1 to 2 GeV/c2; a pseudoscalar and tensor glueball are expected at higher masses. Many different experiments exploiting a large variety of production mechanisms have presented results in recent years on light mesons with J PC = 0++, 0−+, and 2++ quantum numbers. This review looks at the experimental status of glueballs. Good evidence exists for a scalar glueball which is mixed with nearby mesons, but a full understanding is still missing. Evidence for tensor and pseudoscalar glueballs are weak at best. Theoretical expectations of phenomenological models and QCD on the lattice are briefly discussed. arXiv:0812.0600v3 [hep-ex] 2 Mar 2009 1 Contents 1 Introduction 3 2 Meson Spectroscopy 3 3 Theoretical Expectations for Glueballs 6 3.1 Historical ...........................................6 3.2 Model Calculations ......................................8 3.3 Lattice Calculations ......................................9 4 Experimental Methods and Major Experiments 11 4.1 Proton-Antiproton Annihilation ............................... 11 4.2 e+e− Annihilation Experiments and Radiative Decays of Quarkonia ........... 14 4.3 Central Production ...................................... 15 4.4 Two-Photon Fusion at e+e− Colliders ........................... 18 4.5 Other Experiments ...................................... 19 5 The Known Mesons 20 5.1 The Scalar, Pseudoscalar and Tensor Mesons ....................... 20 5.2 Results from pp¯ Annihilation: The Crystal Barrel Experiment .............
    [Show full text]
  • Arxiv:0810.4453V1 [Hep-Ph] 24 Oct 2008
    The Physics of Glueballs Vincent Mathieu Groupe de Physique Nucl´eaire Th´eorique, Universit´e de Mons-Hainaut, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, BE-7000 Mons, Belgium. [email protected] Nikolai Kochelev Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia. [email protected] Vicente Vento Departament de F´ısica Te`orica and Institut de F´ısica Corpuscular, Universitat de Val`encia-CSIC, E-46100 Burjassot (Valencia), Spain. [email protected] Glueballs are particles whose valence degrees of freedom are gluons and therefore in their descrip- tion the gauge field plays a dominant role. We review recent results in the physics of glueballs with the aim set on phenomenology and discuss the possibility of finding them in conventional hadronic experiments and in the Quark Gluon Plasma. In order to describe their properties we resort to a va- riety of theoretical treatments which include, lattice QCD, constituent models, AdS/QCD methods, and QCD sum rules. The review is supposed to be an informed guide to the literature. Therefore, we do not discuss in detail technical developments but refer the reader to the appropriate references. I. INTRODUCTION Quantum Chromodynamics (QCD) is the theory of the hadronic interactions. It is an elegant theory whose full non perturbative solution has escaped our knowledge since its formulation more than 30 years ago.[1] The theory is asymptotically free[2, 3] and confining.[4] A particularly good test of our understanding of the nonperturbative aspects of QCD is to study particles where the gauge field plays a more important dynamical role than in the standard hadrons.
    [Show full text]
  • The Babar Experiment at SLAC the Babar Detector Is Located at the PEP-II Electron-Positron Collider at the SLAC Laboratory in California
    The BaBar Experiment at SLAC The BaBar detector is located at the PEP-II electron-positron collider at the SLAC laboratory in California. The BaBar collaboration is studying CP violation using B mesons. CP violation allows a difference between particles and antiparticles and hence is thought to explain the matter-antimatter asymmetry of the Universe. In 2001 BaBar made the world’s first observation of this phenomenon in B decays through the measurement of the parameter sin2β of the CKM matrix. The measurement of CP violation in sin2β is done by looking for a difference between B and anti-B meson decays. These can only be different if matter and antimatter are not exactly “equal- but-opposite” and this is one of the consequences of CP violation. The figure below shows the rate of B decays to a particular final state (here J/Ψ KS) compared to anti-B decays as a function of their lifetime. This shows a very clear difference between the two and was the first measurement to demonstrate “indirect” CP violation in B meson decays. The BaBar detector was completed and started data-taking in 1999. Since that time, it has recorded around 600 million B meson decays. The detector (shown above) consists of tracking, particle identification and calorimeter subdetectors. In particular, the novel particle identification device is based on observation of Cherenkov radiation from charged particles passing through quartz bars. The Cherenkov light is detected in the large prominent ring (above) at the end of the detector. BaBar has a wide physics programme other than CP violation, for example searches for new particles.
    [Show full text]
  • A Measurement of Neutral B Meson Mixing Using Dilepton Events with the BABAR Detector
    A measurement of neutral B meson mixing using dilepton events with the BABAR detector Naveen Jeevaka Wickramasinghe Gunawardane Imperial College, London A thesis submitted for the degree of Doctor of Philosophy of the University of London and the Diploma of Imperial College December, 2000 A measurement of neutral B meson mixing using dilepton events with the BABAR detector Naveen Gunawardane Blackett Laboratory Imperial College of Science, Technology and Medicine Prince Consort Road London SW7 2BW December, 2000 ABSTRACT This thesis reports on a measurement of the neutral B meson mixing parameter, ∆md, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software. The BABAR experiment, built at the Stanford Linear Accelerator Centre, uses the PEP-II asymmetric storage ring to make precise measurements in the B meson system. Due to the high beam crossing rates at PEP-II, the DAQ system employed by BABAR plays a very crucial role in the physics potential of the experiment. The inclusion of machine backgrounds noise is an important consideration within the simulation environment. The BABAR event mixing software written for this purpose have the functionality to mix both simulated and real detector backgrounds. Due to the high energy resolution expected from the EMC, a matched digital filter is used. The performance of the filter algorithms could be improved upon by means of a polynomial fit. Application of the fit resulted in a 4-40% improvement in the energy resolution and a 90% improvement in the timing resolution. A dilepton approach was used in the measurement of ∆md where the flavour of the B was tagged using the charge of the lepton.
    [Show full text]
  • Exotic Quarks in Twin Higgs Models
    Prepared for submission to JHEP SLAC-PUB-16433, KIAS-P15042, UMD-PP-015-016 Exotic Quarks in Twin Higgs Models Hsin-Chia Cheng,1 Sunghoon Jung,2;3 Ennio Salvioni,1 and Yuhsin Tsai1;4 1Department of Physics, University of California, Davis, Davis, CA 95616, USA 2Korea Institute for Advanced Study, Seoul 130-722, Korea 3SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 4Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ∼ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks.
    [Show full text]