Tilapia Genetics in Asia 9 (Genética De La Tilapia En Asia) Graham Mair, Asian Lnstitute of Technology (AIT), Bangkok, Thailand

Total Page:16

File Type:pdf, Size:1020Kb

Tilapia Genetics in Asia 9 (Genética De La Tilapia En Asia) Graham Mair, Asian Lnstitute of Technology (AIT), Bangkok, Thailand 6to Simposio Centroamericano de Acuacultura .. -.... Memoria: Proceedings: Sesiones de Tilapia Tilapia Sessions DATE DUE .&. U Ju N lUU~ ' " . ¿¡¡~ Da ni el E. Meyer --r---·--- Editor ¡ ! -- -·- -----r--- - ·- - Fotos en la portada son todas de Honduras: Cover photos are all from Honduras: 1. Estación Acuícola de Zamorano 1. Zamorano Aquaculture Station 2. Canales de producción, Aquacorporación 2. Production raceway, Aquacorporation 3. Jaulas con tilapia, lago de Yojoa 3. Cages with tilapia in lake Yojoa 4. Ejemplares de la tilapia del Nilo 4. Two Nile tilapia 5. Ejemplar de la tilapia roja 5. A red tilapia ~ _r.;posio Centroamericano de Acuacultura Asociación Nacional de ASOCIACION NACIONAL DE ACUICULTORES DE HONDURAS Acuicultores de Honduras .-, 20G94• Global Aquaculture Alliance Escuela Agrícola Panamericana, Zamorano Pond Dynamics/Aquaculture Collaborative Reseach Support Program (PO/A CRSP) 6to Simposio Centroamericano de Acuacultura Program for the tilapia sessions (Programa de las sesiones sobre tilapia) ' Contents (Contenido): lntroduction 8 (Introducción) Daniel E. Meyer, Panamerican Agriculture School, Zamorano, Honduras Tilapia genetics in Asia 9 (Genética de la tilapia en Asia) Graham Mair, Asian lnstitute of Technology (AIT), Bangkok, Thailand Sex reversal: the directed control of gonadal 35 development in tilapia (Reversión sexual: el control del desarrollo de las gónadas en tilapia) Ronald Phelps, Auburn University, Alabama, USA Nutrition and feeding of tilapia 61 (Nutrición y alimentación de tilapia) Daniel Meyer, Escuela Agrícola Panamericana (Zamorano), Honduras Tilapia genetics: an American perspective 71 (Genética de la tilapia: una perspectiva americana) Greg Lutz, Louisiana State University, USA Marketing tilapias in the Americas: 2001 and beyond 72 (Mercadeo de tilapia en las Amércias: 2001 y más allá) Kevin Fitzsimmons, University of Arizona, USA Supermarket outlets for tilapia in Honduras: 82 an overview of survey results (Supermercados para la comercialización de tilapia en Honduras) Nelson Ornar Funez, lvano Neira and Carole Engle, University of Arkansas at Pine Bluff, Arkansas, USA Markets for tilapia ( Oreochromis sp.) in Nicaragua: 87 a descriptiva analysis of restaurants, supermarkets and stands in open markets (Mercados para tilapia (Oreochromis sp.) en Nicaragua: un análisis descriptivo de restaurantes, supermercados y puestos de venta en mercados públicos) lvano Neira and Carole Engle, University of Arkansas at Pine Bluff, Arkansas, USA Processing fresh tilapia fillets for export markets 92 (Procesando filetes frescos de tilapia para mercados de exportación) Jorge Maradiaga, Aqua Corporación de Honduras, Honduras Technology for for successful small-scale tilapia culture 97 (Técnicas para el cultivo exitoso de tilapia en fincas pequeñas) Daniel Meyer, Escuela Agrícola Panamericana (Zamorano) Production and marketing strategies used by small and 107 medium-scale fish farmers in Honduras (Estrategias de producción y mercadeo empleadas por productores de tilapia de escala pequeña y mediana, en Honduras) José Martínez, Escuela Agrícola Panamericana (Zamorano), Honduras, Joseph J. Molnar, Auburn University, USA, Freddy Arias, Escuela Agrícola Panamericana, Zamorano, Honduras, and Tom Popma, Auburn University, USA Levee pond design model 116 (Modelo para el diseño de estanques con diques) E.William Tollner, University of Georgia, USA Training and technical assistance in warm-water fish culture 118 (Capacitación y asistencia técnica en el cultivo de peces de aguas cálidas) Thomas Popma, Auburn University, USA and Daniel Meyer, Escuela Agrícola Panamericana, Zamorano, Honduras Web-based information delivery system for tilapia for sustainable 126 development of aquaculture in Honduras (Sistem de entrega de información por el internet para la tilapia y el desarrollo sostenible de la acuacultura en Honduras) Brahm Verma, University of Georgia, USA and Raquel lsaula, Sustainable Development Network in Honduras (RDS-Hn) Marine fish culture prospects in Latin America and 135 Carribean countries: review of candidate species and technological advances (Perspectivas para el cultivo de peces marinos en Latino América y el Caribe: reseña de especies con potencial y avances tecnológicos) Daniel Benetti, University of Miami, USA, Jorge Alarcón, University of Miami, Owen Stevens, Aquaculture Center of the Florida Keys, USA, Gill Banner­ Stevens, Aquaculture Center of the Florida Keys, Federico Rotman, University of Miami, Scott Zimmermann, University of Miami, Michael Feeley, University of Miami, William Matzie, Aquaculture Center of the Florida Keys, Refik Orhun, Mediafish Aquaculture and Seafood, USA, Brian O'Hanlon, Snapperfarm, USA and Loyal Eldridge, Aquaculture Center of the Florida Keys. Recirculating systems for fish culture 140 (Sistemas de recirculación para el cultivo de peces) Greg Lutz, Louisiana State University, USA Using aquaculture waste in diets for broilers and layer hens 141 (Empleando los desperdicios acuícolas en dietas para pollos y ponedoras) Abel Gernat, Escuela Agrícola Panamericana Zamorano, Honduras Sixth Central American Aquaculture Symposium: Proceedings of the Tilapia Sessions lntroduction Welcome to the Sixth Central American Aquaculture Symposium! We hope that the technical presentations and other activities planned for this week, will contribute to enhancing your knowledge of aquaculture and provide you with ample opportunities to interact with others attending this meeting. This publication, the proceedings for the tilapia sessions, has been organizad and printed with financia! support from the Pond Dynamics/Aquaculture Collaborative Research Support Program (PO/A CRSP), which in turn is funded primarily by USAID, Washington, OC, USA Our objective has been to provide all attendees with the appropriate written materials, to complement the oral presentations on tilapia culture to be given as part of the symposium. 1 want to thank each of the authors of these papers for their cooperation and hard work. 1 would also like to thank my secretary at Zamorano, Juana Espinosa de Ayestas, for her dedication and patience, to work with me through the process of compiling and editing these documents. 1 accept full responsibility for any errors or omissions in this document. Additional copies of the proceedings can be obtained by contacting me at my address in Honduras, or at the Zamorano booth in the commercial exhibition that is part of this symposium. Sincerely; Daniel E. Meyer, Editor P.O. Box 93, Tegucigalpa, Honduras [email protected] telephone: 504-776-6140 ext. 2107 August2001 6to. Simposio Centroamericano de Acuacultura 9 Tilapia Genetics in Asia 1 Graham C. Mair. 2 School of Biological Sciences, University of Wales Swansea, Swansea SA2 BPP, Wales, U.K Abstract This paper presents and discusses major issues in the application of genetics to tilapia, with emphasis on commercially important species used in aquaculture. The paper presents past and recent advances in the development and application of genetics based technologies to tilapia, from an applied perspective describing the existing and potential impacts on tilapia culture. Following on from a discussion of tilapia genetic resources and the impacts of domestication processes, the major emphasis of the paper is on the progress in the application of selection, hybridisation, sex control, chromosome set manipulation and transgenic technologies. The uptake and impact of these technologies is discussed mainly in the context of Asian aquaculture, where more than 85% of cultured tilapia are produced. Many of the tilapia genetic resources used in aquaculture today are little different from, or in many cases inferior to, wild caught stocks. Domesticated stocks have suffered from the consequences of poor broodstock management including inbreeding, genetic drift, unconscious negative selection and hybrid introgression. However, as the species has gained in importance as an international aquaculture commodity, so has there been a considerable increase in research effort to improve tilapia stocks, particularly over the past ten years. In terms of real applications and their uptake in aquaculture, recent advances in selective breeding and sex control technologies are having the greatest impact. A large volume of research work on hybridisation and chromosome set manipulations, 1 This article is modified from one that is to be published by INFOFISH in the procecdings of Tilapia 200 l. May 28-30. 2000. Kuala Lumpur, Malaysia 2 Presently based at the Aquaculture and Aquatic Resources Management Program (AARM), Asían Institute ofTechnology. PO Box 4. Klong Luang, Pathumthani 12120, Thailand. to where correspondence should be addressed. 1O Tegucigalpa, Honduras whilst providing useful research tools, is having minimal impact upon aquaculture production. There have been a number of important recent advances in the application of transgenesis, which have been demonstrated to bring about substantial improvements in growth rates and yields, under experimental conditions. However, there are sorne technical and numerous socio-política\ and environmental constraints to be overcome before this technology can be widely adopted for aquaculture although it is likely that there will be isolated cases were transgenics might be approved for aquaculture in the near term. Future prospects are promising with the advent of molecular technologies including the identification of quantitative trait loci (QTL) and their application in marker assisted selection
Recommended publications
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • A-Y4593e.Pdf
    +550 (#1 /CPCIGOGPV (+5*'4+'5 6'%*0+%#. EQOCPCIGOGPVQT 2#2'4 PQOCPCIGOGPV! /CLQTFKNGOOCUKPUQWVJGTP#HTKECP HTGUJYCVGTſUJGTKGU 5[PVJGUKUTGRQTV Cover photograph: Lake Chilwa, Paul van Zwieten, Wageningen University, the Netherlands. The set-up is by Van A tot Z. FAO Management, FISHERIES TECHNICAL co-management or PAPER no management? 426/1 Major dilemmas in southern African freshwater fisheries 1. Synthesis report by Eyolf Jul-Larsen Jeppe Kolding Ragnhild Overå Jesper Raakjær Nielsen Paul A.M. van Zwieten FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2003 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. ISBN 92-5-104919-X All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] © FAO 2003 iii PREPARATION OF THIS DOCUMENT The present report is the main result of a four years research project on freshwater fisheries development in the South Africa Development Community (SADC) area funded by the Norwegian Research Council.
    [Show full text]
  • The Effects of Introduced Tilapias on Native Biodiversity
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries.
    [Show full text]
  • The Species Composition and Distribution Patterns of Non-Native Fishes in the Main Rivers of South China
    sustainability Article The Species Composition and Distribution Patterns of Non-Native Fishes in the Main Rivers of South China Dang En Gu 1,2,3, Fan Dong Yu 1,2,3, Yin Chang Hu 2, Jian Wei Wang 1,*, Meng Xu 2, Xi Dong Mu 2, Ye Xin Yang 2, Du Luo 2, Hui Wei 2, Zhi Xin Shen 4, Gao Jun Li 4, Yan Nan Tong 4 and Wen Xuan Cao 1 1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (D.E.G.); [email protected] (F.D.Y.); [email protected] (W.X.C.) 2 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Recreational Fisheries, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China; [email protected] (Y.C.H.); [email protected] (M.X.); [email protected] (X.D.M.); [email protected] (Y.X.Y.); [email protected] (D.L.); [email protected] (H.W.) 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Hainan Academy of Ocean and Fisheries Sciences, Haikou 570100, China; [email protected] (Z.X.S.); [email protected] (G.J.L.); [email protected] (Y.N.T.) * Correspondence: [email protected]; Tel.: +86-27-6878-0033 Received: 19 April 2020; Accepted: 29 May 2020; Published: 3 June 2020 Abstract: Non-native fish invasions are among the greatest threats to the sustainability of freshwater ecosystems worldwide. Tilapia and catfish are regularly cultured in South China which is similar to their climate in native areas and may also support their invasive potential.
    [Show full text]
  • Annotated Checklist of the Freshwater Fishes of Kenya (Excluding the Lacustrine Haplochromines from Lake Victoria) Author(S): Lothar Seegers, Luc De Vos, Daniel O
    Annotated Checklist of the Freshwater Fishes of Kenya (excluding the lacustrine haplochromines from Lake Victoria) Author(s): Lothar Seegers, Luc De Vos, Daniel O. Okeyo Source: Journal of East African Natural History, 92(1):11-47. 2003. Published By: Nature Kenya/East African Natural History Society DOI: http://dx.doi.org/10.2982/0012-8317(2003)92[11:ACOTFF]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.2982/0012-8317%282003%2992%5B11%3AACOTFF %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of East African Natural History 92: 11–47 (2003) ANNOTATED CHECKLIST OF THE FRESHWATER FISHES OF KENYA (excluding the lacustrine haplochromines from Lake Victoria) Lothar Seegers Hubertusweg, 11, D 46535 Dinslaken, Germany [email protected] Luc De Vos1 National Museums of Kenya, Department of Ichthyology P.O.
    [Show full text]
  • Influence of Changes in Food Web on the Population of Purple Herons
    Driving forces influencing the fluctuation of the number of Purple Herons (Ardea purpurea) at Bung Khong Long Ramsar Site, Thailand A thesis approved by the Faculty of Environmental Sciences and Process Engineering at the Brandenburg University of Technology in Cottbus in partial fulfillment of the requirement for the award of the academic degree of Doctor of Philosophy (Ph.D.) in Environmental Sciences. by Master of Science Kamalaporn Kanongdate from Yala, Thailand Supervisor: Prof. Dr. rer. nat. habil. Gerhard Wiegleb Supervisor: PD Dr. rer. nat. habil. Udo Bröring Day of the oral examination: 06.12.2012 i Dedication This thesis is dedicated to my beloved parents, Mr. Peerasak Kanongdate and Mrs. Kamolrat Kanongdate for their priceless sacrifices that has brought me so far. ii Acknowledgement Firstly, I would like to extend my sincere gratitude to my supervisor, Prof. Dr. rer. nat. habil. Gerhard Wiegleb, who supported me throughout my thesis with his patience and always encourages me to be successful, I am also highly indebted to PD Dr. rer. nat. habil. Udo Bröring, my co-supervisor for his invaluable assistance, particularly for statistical analysis. Throughout this study, I have been blessed to have friendly and nice colleagues at the chair of general ecology and in the university, which provide me with opportunities to expand both my academic and cultural horizon. These good memories would forever remain with me. It is an honor for me to thank Mr. Chareon Bumrungsaksanti, chief of Bung Khong Long Non- Hunting Area office, for allowing and providing all facilities for the field investigation at Bung Khong Long Lake.
    [Show full text]
  • The Feeding and Growth of Tilapia Rendalli in Relation to Its Aquaculture Potential
    THE FEEDING AND GROWTH OF TILAPIA RENDALLI IN RELATION TO ITS AQUACULTURE POTENTIAL by SAMKELISIWE NOSIPHO HLOPHE RESEARCH DISSERTATION Submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE in AQUACULTURE in the FACULTY OF SCIENCE AND AGRICULTURE (School of Agricultural and Environmental Sciences) at the UNIVERSITY OF LIMPOPO SUPERVISOR: Prof. NAG Moyo CO-SUPERVISOR: Dr. JR Sara 2011 DEDICATION To my mother, my hero and inspiration. ii DECLARATION I declare that THE FEEDING AND GROWTH OF TILAPIA RENDALLI IN RELATION TO ITS AQUACULTURE POTENTIAL is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references and that this work has not been submitted before for any other degree at any other institution. _________________________ __________________ Hlophe Samkelisiwe Nosipho Date iii ACKNOWLEDGEMENTS A prayerful expression of gratitude is sent to my merciful and loving God who supplies all my needs according to His riches in glory. I would like to sincerely thank the following people and institutions, this study could not have been possible without their help and support. My main supervisor, Prof N.A.G. Moyo, for his time, criticism, encouragement, fatherly understanding and guidance in conducting the experiments, preparing and revising the manuscript. Dr. J. R. Sara, my co-supervisor, for his motivation and knowledge shared throughout the course of this work. Mr. J. Theron, for guidance, and patience in reading the drafts of this manuscript. Mr. G. Geldenhuys, the chief technician at the Aquaculture Research Unit, without whom the running of the experiments, fieldwork and data collection would have been impossible.
    [Show full text]
  • Biodiversity Risk and Benefit Assessment for Nile Tilapia (Oreochromis Niloticus) in South Africa
    Biodiversity Risk and Benefit Assessment for Nile Tilapia (Oreochromis niloticus) in South Africa Prepared in Accordance with Section 14 of the Alien and Invasive Species Regulations, 2014 (Government Notice R 598 of 01 August 2014), promulgated in terms of the National Environmental Management: Biodiversity Act (Act No. 10 of 2004). September 2019 Biodiversity Risk and Benefit Assessment for Nile Tilapia (Oreochromis niloticus) in South Africa Document Title Biodiversity Risk and Benefit Assessment for Nile tilapia (Oreochromis niloticus) in South Africa. Edition Date September 2019 Prepared For Directorate: Sustainable Aquaculture Management Department of Environment, Forestry and Fisheries Private Bag X2 Roggebaai, 8001 www.daff.gov.za/daffweb3/Branches/Fisheries- Management/Aquaculture-and-Economic- Development Originally Prepared By Dr B. Clark (2012) Anchor Environmental Consultants Reviewed, Updated and Mr. E. Hinrichsen Recompiled By AquaEco as commisioned by Aquaculture (2019) Innovations 1 | P a g e Biodiversity Risk and Benefit Assessment for Nile Tilapia (Oreochromis niloticus) in South Africa CONTENT SUMMARY .............................................................................................................................................. 4 LIST OF FIGURES .................................................................................................................................. 7 LIST OF TABLES...................................................................................................................................
    [Show full text]
  • Vital but Vulnerable: Climate Change Vulnerability and Human Use of Wildlife in Africa’S Albertine Rift
    Vital but vulnerable: Climate change vulnerability and human use of wildlife in Africa’s Albertine Rift J.A. Carr, W.E. Outhwaite, G.L. Goodman, T.E.E. Oldfield and W.B. Foden Occasional Paper for the IUCN Species Survival Commission No. 48 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the compilers concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2013 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Carr, J.A., Outhwaite, W.E., Goodman, G.L., Oldfield, T.E.E. and Foden, W.B. 2013. Vital but vulnerable: Climate change vulnerability and human use of wildlife in Africa’s Albertine Rift. Occasional Paper of the IUCN Species Survival Commission No. 48. IUCN, Gland, Switzerland and Cambridge, UK. xii + 224pp. ISBN: 978-2-8317-1591-9 Front cover: A Burundian fisherman makes a good catch. © R. Allgayer and A. Sapoli. Back cover: © T. Knowles Available from: IUCN (International Union for Conservation of Nature) Publications Services Rue Mauverney 28 1196 Gland Switzerland Tel +41 22 999 0000 Fax +41 22 999 0020 [email protected] www.iucn.org/publications Also available at http://www.iucn.org/dbtw-wpd/edocs/SSC-OP-048.pdf About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges.
    [Show full text]
  • Identifying Current and Potential Threats to Aquatic Biodiversity Using Fishbase, Sealifebase and Aquamaps
    Advancing databases for global biodiversity assessments Owen Glenn Building, University of Auckland, New Zealand Dec. 4, 2011 Predicting species distribution using FishBase, SeaLifeBase and AquaMaps Christine Marie V. Casal, Kathleen Kesner-Reyes, Ma. Lourdes D. Palomares, Nicolas Bailly and Rainer Froese FishBase Information and Research Group, Inc. (FIN) G. S. Khush Hall, IRRI College, Los Baños 4031 Laguna Information Systems 32,100 species and subspecies (finfish), 291,300 common names, 52,600 pictures, 45,750 references,1,850 collaborators (version 05/2011) www.fishbase.org 117,300 species (marine non-finfish, 25,400 common names, 9,700 pictures, 15,350 references, 207 collaborators (version 05/2011) www.sealifebase.org At least 11,500 species mapped, 8,631 for finfish and 2,871 for non-finfish (marine invertebrates, all marine mammals, turtles, snakes), 47 algae (ver. 08/2010) www.aquamaps.org Information collated in FishBase and SeaLifeBase Morphology & Physiology Metabolism ● Gill area Vision ● Disease Distribution Brain ● Abnormalities Occurrence ● FAO areas Ecotoxicology ● Swim mode Country ● Ecosystem Reproduction & Genetics & Aquaculture Life History Electrophoresis Maturity ● Spawning ● Eggs Heritability ● Strains Larvae ● Broodstock ● Fry nursery Introductions Larval dynamics ● Larval speed Trophic Ecology Fish as Food Ecology ● Predators Food items Processing ● Ciguatera Diet composition FAO catches Food consumption Aquaculture Ration (production) Population Dynamics Other Tables Growth/Mortality ● L/W relations Pictures ● References Maximum sizes ● Recruitment Biblio ● Keys ● Sounds L/L relations ● Length frequency Information in FishBase Species introductions (~4500 records) Natural distribution Establishment Use (aquaculture or ornamental) Biological characteristics The Invasiveness page reports species which may be able to establish in natural waters of a country. excludes species which are native or endemic to the country.
    [Show full text]
  • Food Habits of Tilapiine Cichlids of the Upper Zambezi River and Floodplain During the Descending Phase of the Hydrologic Cycle
    Journal of Fish Biology (2003) 63, 120–128 doi:10.1046/j.1095-8649.2003.00134.x,availableonlineathttp://www.blackwell-synergy.com Food habits of tilapiine cichlids of the Upper Zambezi River and floodplain during the descending phase of the hydrologic cycle K. O. WINEMILLER*‡ AND L. C. KELSO-WINEMILLER† *Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258, U.S.A. and †Department of Biology, Texas A&M University, College Station, TX 77843-3258, U.S.A. (Received 30 August 2002, Accepted 24 April 2003) Habitat use and diets of five tilapiine populations of the Upper Zambezi River Basin in Zambia, south-central Africa, were examined during the 8 month descending phase of the annual hydrological cycle. All species occurred across a range of habitats, with most individuals captured from lagoons. Tilapia rendalli, a macrophyte feeder, was the only dietary specialist. Ontogenetic diet shifts were not observed over the size range examined (30–320 mm LS). Algae were uncommon in tilapiine diets. Tilapia ruweti, the smallest tilapiine in the region, was the only species that consumed more algae (filamentous algae) than detritus. Oreochromis andersonii, Oreochromis macrochir and Tilapia sparrmanii had high dietary overlap and occurred in the same habitats in similar relative abundances. High overlap in habitat use and diet among tilapiines contrasted with findings from a comparable analysis of predatory haplochromine cichlids of the region that revealed strong ecological segregation and niche complementarity during the annual descending-water phase. # 2003 The Fisheries Society of the British Isles Key words: diet; habitat; herbivore; Oreochromis; Tilapia; Zambia.
    [Show full text]
  • Geographic Distribution and Identification of Pathways Of
    GEOGRAPHIC DISTRIBUTION AND IDENTIFICATION OF PATHWAYS OF INTERACTIONS OF TILAPIINE SPECIES BETWEEN NATURAL AND AQUACULTURE SYSTEMS IN UPPER TANA RIVER BASIN, KENYA By Otieno Kashim Oginga (BSc. Environmental science, Kenyatta University, 2016) Thesis submitted in Partial Fulfillment of the Requirements for the award of the Degree of Master of Arts in Biodiversity and Natural Resources Management, Department of Geography and Environmental Studies, University of Nairobi. October 2020 DECLARATION This thesis is my original work, and has not been presented for award of any degree in any other university. Where other people’s work has been used, this has been properly acknowledged and referenced in accordance with the University of Nairobi’s regulations. Otieno Kashim Oginga Sign: Date: 20/11/2020 C50/10191/2018 - Department of Geography and Environmental Studies University of Nairobi Supervisors Prof. Francis Mwaura Sign: Date: 20./11/2020 Department of Geography and Environmental Studies University of Nairobi Prof. Nathan Gichuki Sign: Date: 20/11 / 2020 School Biological Sciences, University of Nairobi Dr. Wanja Dorothy Nyingi Sign: Date: 20/11/2020 Ichthyology Section, National Museums of Kenya Prof. George Turner Sign: Date: 21/11/2020 School of Natural Sciences, Bangor University, UK ii DEDICATION This work is dedicated my parents, Thomas Oginga and Pamela Akinyi for their continuous advise and encouragement since the beginning of my education and my son Thomas Hensley Otieno for inspiration. iii ACKNOWLEDGEMENT I would like to express my gratitude to God for his eternal guidance in my life. My sincere thanks to my supervisors: Prof. Francis Mwaura, Prof. Nathan Gichuki, Dr. Wanja Nyingi and Prof.
    [Show full text]