Oracle Database Upgrade: Quick Start Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blockchain Database for a Cyber Security Learning System
Session ETD 475 Blockchain Database for a Cyber Security Learning System Sophia Armstrong Department of Computer Science, College of Engineering and Technology East Carolina University Te-Shun Chou Department of Technology Systems, College of Engineering and Technology East Carolina University John Jones College of Engineering and Technology East Carolina University Abstract Our cyber security learning system involves an interactive environment for students to practice executing different attack and defense techniques relating to cyber security concepts. We intend to use a blockchain database to secure data from this learning system. The data being secured are students’ scores accumulated by successful attacks or defends from the other students’ implementations. As more professionals are departing from traditional relational databases, the enthusiasm around distributed ledger databases is growing, specifically blockchain. With many available platforms applying blockchain structures, it is important to understand how this emerging technology is being used, with the goal of utilizing this technology for our learning system. In order to successfully secure the data and ensure it is tamper resistant, an investigation of blockchain technology use cases must be conducted. In addition, this paper defined the primary characteristics of the emerging distributed ledgers or blockchain technology, to ensure we effectively harness this technology to secure our data. Moreover, we explored using a blockchain database for our data. 1. Introduction New buzz words are constantly surfacing in the ever evolving field of computer science, so it is critical to distinguish the difference between temporary fads and new evolutionary technology. Blockchain is one of the newest and most developmental technologies currently drawing interest. -
Oracle Nosql Database
An Oracle White Paper November 2012 Oracle NoSQL Database Oracle NoSQL Database Table of Contents Introduction ........................................................................................ 2 Technical Overview ............................................................................ 4 Data Model ..................................................................................... 4 API ................................................................................................. 5 Create, Remove, Update, and Delete..................................................... 5 Iteration ................................................................................................... 6 Bulk Operation API ................................................................................. 7 Administration .................................................................................... 7 Architecture ........................................................................................ 8 Implementation ................................................................................... 9 Storage Nodes ............................................................................... 9 Client Driver ................................................................................. 10 Performance ..................................................................................... 11 Conclusion ....................................................................................... 12 1 Oracle NoSQL Database Introduction NoSQL databases -
An Introduction to Cloud Databases a Guide for Administrators
Compliments of An Introduction to Cloud Databases A Guide for Administrators Wendy Neu, Vlad Vlasceanu, Andy Oram & Sam Alapati REPORT Break free from old guard databases AWS provides the broadest selection of purpose-built databases allowing you to save, grow, and innovate faster Enterprise scale at 3-5x the performance 14+ database engines 1/10th the cost of vs popular alternatives - more than any other commercial databases provider Learn more: aws.amazon.com/databases An Introduction to Cloud Databases A Guide for Administrators Wendy Neu, Vlad Vlasceanu, Andy Oram, and Sam Alapati Beijing Boston Farnham Sebastopol Tokyo An Introduction to Cloud Databases by Wendy A. Neu, Vlad Vlasceanu, Andy Oram, and Sam Alapati Copyright © 2019 O’Reilly Media Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more infor‐ mation, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Development Editor: Jeff Bleiel Interior Designer: David Futato Acquisitions Editor: Jonathan Hassell Cover Designer: Karen Montgomery Production Editor: Katherine Tozer Illustrator: Rebecca Demarest Copyeditor: Octal Publishing, LLC September 2019: First Edition Revision History for the First Edition 2019-08-19: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. An Introduction to Cloud Databases, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The views expressed in this work are those of the authors, and do not represent the publisher’s views. -
Oracle Database Vault Overview
Oracle Database Vault Oracle Database Vault provides controls to prevent unauthorized privileged users from accessing sensitive data, prevent unauthorized database changes, and helps customers meet industry, regulatory, or corporate security standards. March 23, 2020 Copyright © 2020, Oracle and/or its affiliates Public Purpose Statement This document provides an overview of features and enhancements included in the latest releases of Oracle Database Vault. It is intended solely to help you assess the business benefits of using Oracle Database Vault preventive controls and to plan your Data Security / I.T. projects. Disclaimer This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has been executed and with which you agree to comply. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of -
Oracle Big Data SQL Release 4.1
ORACLE DATA SHEET Oracle Big Data SQL Release 4.1 The unprecedented explosion in data that can be made useful to enterprises – from the Internet of Things, to the social streams of global customer bases – has created a tremendous opportunity for businesses. However, with the enormous possibilities of Big Data, there can also be enormous complexity. Integrating Big Data systems to leverage these vast new data resources with existing information estates can be challenging. Valuable data may be stored in a system separate from where the majority of business-critical operations take place. Moreover, accessing this data may require significant investment in re-developing code for analysis and reporting - delaying access to data as well as reducing the ultimate value of the data to the business. Oracle Big Data SQL enables organizations to immediately analyze data across Apache Hadoop, Apache Kafka, NoSQL, object stores and Oracle Database leveraging their existing SQL skills, security policies and applications with extreme performance. From simplifying data science efforts to unlocking data lakes, Big Data SQL makes the benefits of Big Data available to the largest group of end users possible. KEY FEATURES Rich SQL Processing on All Data • Seamlessly query data across Oracle Oracle Big Data SQL is a data virtualization innovation from Oracle. It is a new Database, Hadoop, object stores, architecture and solution for SQL and other data APIs (such as REST and Node.js) on Kafka and NoSQL sources disparate data sets, seamlessly integrating data in Apache Hadoop, Apache Kafka, • Runs all Oracle SQL queries without modification – preserving application object stores and a number of NoSQL databases with data stored in Oracle Database. -
Oracle Database Advanced Application Developer's Guide, 11G Release 2 (11.2) E17125-03
Oracle® Database Advanced Application Developer's Guide 11g Release 2 (11.2) E17125-03 August 2010 Oracle Database Advanced Application Developer's Guide, 11g Release 2 (11.2) E17125-03 Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved. Primary Author: Sheila Moore Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R. Strohm, R. Ward Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, B. Cheng, M. Davidson, R. Day, R. Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu, J. Huang, C. Iyer, N. Jain, R. Jenkins Jr., S. Kotsovolos, V. Krishnaswamy, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K. Muthukkaruppan, V. Moore, J. Muller, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S. -
Oracle Database Sharding Infographic
Oracle Database Sharding Oracle Sharding : Scale-out Rela7onal Database Sharding = Distributed Par77oning + Replica7on One giant database par66oned into many small databases (shards) Built on shared-nothing hardware architecture • Some web-scale OLTP applicaons use database sharding to avoid • Horizontal par66oning of data using a sharding key (e.g. scalability or availability edge cases of a single large database customer_id) across a farm of independent Oracle Databases • Oracle 12cR2 is the first full-featured RDBMS that provides nave • Shards can be hosted on commodity servers or engineered systems database sharding while suppor6ng enterprise capabili6es • Data automacally replicated with Data Guard or Oracle GoldenGate for high availability and disaster recovery Benefits Linear Scalability Fault Isola7on Geographic Distribuon Flexible Deployment 12,000,000 CPU CA On-Premises Hybrid Cloud 10,000,000 CA CA 8,000,000 … TPS 6,000,000 CA Vector Register 4,000,000 … 2,000,000 0 50 100 150 200 # of Shards Add shards online to Shared-nothing Data Sovereignty - for Flexible On-Premises, Cloud or Hybrid linearly scale - architecture. data privacy regulaons. Deployments. transac6ons, users and Fault of one shard Data Proximity - to bring Supports Cloud bursng database capacity has no impact on data closer to the users other shards Salient Features • Auto deployment of up to 1000 shards • Direct Rou6ng – Supports Data Guard and Oracle GoldenGate – Direct fast path SQL access via sharding key from smart topology- • Mul6ple sharding methods aware -
Middleware-Based Database Replication: the Gaps Between Theory and Practice
Appears in Proceedings of the ACM SIGMOD Conference, Vancouver, Canada (June 2008) Middleware-based Database Replication: The Gaps Between Theory and Practice Emmanuel Cecchet George Candea Anastasia Ailamaki EPFL EPFL & Aster Data Systems EPFL & Carnegie Mellon University Lausanne, Switzerland Lausanne, Switzerland Lausanne, Switzerland [email protected] [email protected] [email protected] ABSTRACT There exist replication “solutions” for every major DBMS, from Oracle RAC™, Streams™ and DataGuard™ to Slony-I for The need for high availability and performance in data Postgres, MySQL replication and cluster, and everything in- management systems has been fueling a long running interest in between. The naïve observer may conclude that such variety of database replication from both academia and industry. However, replication systems indicates a solved problem; the reality, academic groups often attack replication problems in isolation, however, is the exact opposite. Replication still falls short of overlooking the need for completeness in their solutions, while customer expectations, which explains the continued interest in developing new approaches, resulting in a dazzling variety of commercial teams take a holistic approach that often misses offerings. opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. Even the “simple” cases are challenging at large scale. We deployed a replication system for a large travel ticket brokering This paper aims to characterize the gap along three axes: system at a Fortune-500 company faced with a workload where performance, availability, and administration. We build on our 95% of transactions were read-only. Still, the 5% write workload own experience developing and deploying replication systems in resulted in thousands of update requests per second, which commercial and academic settings, as well as on a large body of implied that a system using 2-phase-commit, or any other form of prior related work. -
Oracle Nosql Database EE Data Sheet
Oracle NoSQL Database 21.1 Enterprise Edition (EE) Oracle NoSQL Database is a multi-model, multi-region, multi-cloud, active-active KEY BUSINESS BENEFITS database, designed to provide a highly-available, scalable, performant, flexible, High throughput and reliable data management solution to meet today’s most demanding Bounded latency workloads. It can be deployed in on-premise data centers and cloud. It is well- Linear scalability suited for high volume and velocity workloads, like Internet of Things, 360- High availability degree customer view, online contextual advertising, fraud detection, mobile Fast and easy deployment application, user personalization, and online gaming. Developers can use a single Smart topology management application interface to quickly build applications that run in on-premise and Online elastic configuration cloud environments. Multi-region data replication Enterprise grade software Applications send network requests against an Oracle NoSQL data store to and support perform database operations. With multi-region tables, data can be globally distributed and automatically replicated in real-time across different regions. Data can be modeled as fixed-schema tables, documents, key-value pairs, and large objects. Different data models interoperate with each other through a single programming interface. Oracle NoSQL Database is a sharded, shared-nothing system which distributes data uniformly across multiple shards in a NoSQL database cluster, based on the hashed value of the primary keys. An Oracle NoSQL Database data store is a collection of storage nodes, each of which hosts one or more replication nodes. Data is automatically populated across these replication nodes by internal replication mechanisms to ensure high availability and rapid failover in the event of a storage node failure. -
Database Technology for Bioinformatics from Information Retrieval to Knowledge Systems
Database Technology for Bioinformatics From Information Retrieval to Knowledge Systems Luis M. Rocha Complex Systems Modeling CCS3 - Modeling, Algorithms, and Informatics Los Alamos National Laboratory, MS B256 Los Alamos, NM 87545 [email protected] or [email protected] 1 Molecular Biology Databases 3 Bibliographic databases On-line journals and bibliographic citations – MEDLINE (1971, www.nlm.nih.gov) 3 Factual databases Repositories of Experimental data associated with published articles and that can be used for computerized analysis – Nucleic acid sequences: GenBank (1982, www.ncbi.nlm.nih.gov), EMBL (1982, www.ebi.ac.uk), DDBJ (1984, www.ddbj.nig.ac.jp) – Amino acid sequences: PIR (1968, www-nbrf.georgetown.edu), PRF (1979, www.prf.op.jp), SWISS-PROT (1986, www.expasy.ch) – 3D molecular structure: PDB (1971, www.rcsb.org), CSD (1965, www.ccdc.cam.ac.uk) Lack standardization of data contents 3 Knowledge Bases Intended for automatic inference rather than simple retrieval – Motif libraries: PROSITE (1988, www.expasy.ch/sprot/prosite.html) – Molecular Classifications: SCOP (1994, www.mrc-lmb.cam.ac.uk) – Biochemical Pathways: KEGG (1995, www.genome.ad.jp/kegg) Difference between knowledge and data (semiosis and syntax)?? 2 Growth of sequence and 3D Structure databases Number of Entries 3 Database Technology and Bioinformatics 3 Databases Computerized collection of data for Information Retrieval Shared by many users Stored records are organized with a predefined set of data items (attributes) Managed by a computer program: the database -
What Is a Database? Differences Between the Internet and Library
What is a Database? Library databases are mostly full-text material (in their entirety) and summaries or descriptions of articles. They are collections of articles from newspapers, magazines and journals and electronic reference sources. Databases are selected for the quality and variety of resources they offer and are accessed using the Internet. Your library pays for you to have access to a number of relevant databases. You support this with your tuition, so get the most out of your money! You can access them from home or school via the Library Webpage or use the link below. http://www.mxcc.commnet.edu/Content/Find_Articles.asp Two short videos on the benefits of using library databases: http://www.youtube.com/watch?v=VUp1P-ubOIc http://youtu.be/Q2GMtIuaNzU Differences Between the Internet and Library Databases The Internet Library Databases Examples Google, Yahoo, Bing LexisNexis, Literary Reference Center or Health and Wellness Resource Center Review process None – anyone can add Checked for accuracy by content to the Web. publishers. Chosen by your college’s library. Includes “peer-reviewed” scholarly articles. Reliability Unknown Very No quality control mechanisms! Content Anything, from pictures of a Scholarly journal articles, Book person’s pets to personal reviews, Research papers, (usually not researched and Conference papers, and other unsubstantiated) opinions on scholarly information gun control, abortion, etc. How often updated Unknown/varies. Regularly – daily, quarterly monthly Cost “Free” but some of the info Library has paid for you to you may need for your access these databases. assignment requires a fee. Organization Very little or no organization Very organized Availability Websites come and go. -
Data Quality Requirements Analysis and Modeling December 1992 TDQM-92-03 Richard Y
Published in the Ninth International Conference of Data Engineering Vienna, Austria, April 1993 Data Quality Requirements Analysis and Modeling December 1992 TDQM-92-03 Richard Y. Wang Henry B. Kon Stuart E. Madnick Total Data Quality Management (TDQM) Research Program Room E53-320 Sloan School of Management Massachusetts Institute of Technology Cambridge, MA 02139 USA 617-253-2656 Fax: 617-253-3321 Acknowledgments: Work reported herein has been supported, in part, by MITís Total Data Quality Management (TDQM) Research Program, MITís International Financial Services Research Center (IFSRC), Fujitsu Personal Systems, Inc. and Bull-HN. The authors wish to thank Gretchen Fisher for helping prepare this manuscript. To Appear in the Ninth International Conference on Data Engineering Vienna, Austria April 1993 Data Quality Requirements Analysis and Modeling Richard Y. Wang Henry B. Kon Stuart E. Madnick Sloan School of Management Massachusetts Institute of Technology Cambridge, Mass 02139 [email protected] ABSTRACT Data engineering is the modeling and structuring of data in its design, development and use. An ultimate goal of data engineering is to put quality data in the hands of users. Specifying and ensuring the quality of data, however, is an area in data engineering that has received little attention. In this paper we: (1) establish a set of premises, terms, and definitions for data quality management, and (2) develop a step-by-step methodology for defining and documenting data quality parameters important to users. These quality parameters are used to determine quality indicators, to be tagged to data items, about the data manufacturing process such as data source, creation time, and collection method.