The Spectrum of Harmful Arthropod Fauna from the Vineyard S.D. Banu Maracine – Craiova

Total Page:16

File Type:pdf, Size:1020Kb

The Spectrum of Harmful Arthropod Fauna from the Vineyard S.D. Banu Maracine – Craiova Pomology, Viticulture and Enology Original Scientific Paper The spectrum of harmful arthropod fauna from the vineyard S.D. Banu Maracine – Craiova Catalin Stan, Ovidiu Tuca, Ion Mitrea University of Craiova, str. A.I. Cuza nr. 13, cod 200585, Craiova, Romania, e_mail: [email protected] Abstract For the quantitative determination of pest population dynamics and in order to establish the necessity of control treatment , an investigation regarding the harmful arthropod fauna in the vineyard from the winegrowing center Banu Mărăcine has been made in the years 2007 and 2008. Within the viticultural ecosystem from the S.D. Banu Mărăcine a number of 68 species of harmful arthropods has been identified, sistematically framed in 9 different orders. The most numerous order has been Coleoptera with 21 species, followed by the Lepidoptera order with 16 species and Heteroptera order with 11 species. From the total of 68 harmful arthropods species a number of 47 species represent species harmful for grapevine and 21 indifferent species. Key words: harmful entomofauna, key pests, potential pests, migratory species Introduction The classification of animal pests after Smith and Van der Bosch (1967) comprises, besides the key species, the group of the secondary pests, which can produce damages in certain areas and conditions, also being known as occasional pests. Although they do not produce damages year after year, they must be monitorised and controlled, thus, they will not become key pests as a consequence of missing human activities. Usually these species are under the economically treshold (P.E.D.) due to their natural control. However, these occasional pests are represented first by the potential pests, which do not produce significant damages from the economically point of view, but in some cases they can fall into the group of secondary or key pests, and second by the migratory species, which proceed from other crops and can became dangerous for grapevine under certain conditions. Depending on the area, pedological and climatic conditions, key pests may occur in varied densities, leading to an determination of different damaging tresholds in different years, so that a standard integrate management can not be applied. Material and methods For the quantitative determination of pest population dynamics and in order to establish the necessity of control treatment , an investigation reagarding the harmful arthropod fauna , in the vineyard from the winegrowing center Banu Mărăcine has been made in the years 2007 and 2008. The aim of this work was to evaluate the structure of the biocoenosys and the critical damaging treshold. In order to evaluate the harmful entomofauna from the vineyard of the S.D. Banu Maracine during the research period (2007-2008), entomological material was collected using different means and methods: collecting with the entomological net, tests in the soil or on the soil surface (on the interval between the rows), lightning traps, coloured traps, visual 876 44th Croatian & 4th International Symposium on Agriculture Vodarstvo, vinogradarstvo i vinarstvo control, analysing the sample with magnifying glasses or microscope in the field or laboratory. The material was collected at different vegetation phases of the vine. The collected species were analysed and identified according to the determinators published in the Romanian Fauna (Panin 1951) and European Fauna (Chinery 1998). Results and discussion Within the viticultural ecosystem from the S.D. Banu Mărăcine, 68 species of harmful arthropods have been identified (table 1), sistematically framed in 9 orders. Table 1. The vine entomofauna identified in the viticultural ecosystem from S.D. Banu Mărăcine Nr. crt Order Scientific denomination 1 Eriophyes vitis Page. 2 Tetranychus urticae Koch. ACARI 3 Panonychus ulmi Koch. 4 Calepitrimerus vitis Nal. 1 Gryllotalpa gryllotalpa L. 2 Gryllus campestris L. 3 Gryllus desertus L. 4 Ephippiger ephippiger Fieb. ORTHOPTERA 5 Caliptamus italicus L. 6 Locusta migratoria L. 7 Dociostaurus maroccanus Thunb. 8 Tetigonia viridisima 1 DERMAPTERA Forficula auricularia L. 1 THYSANOPTERA Anaphothrips vitis Priesner 1 Lygus pabulinus L. 2 Lygus pratensis L. 3 Dolycoris bacarum L. 4 Eurygaster maura L. 5 Eurygaster austriaca Schr. 6 HETEROPTERA Aelia acuminata L. 7 Aelia rostrata Boh. 8 Eurygaster integriceps L. 9 Eurydema oleracea L. 10 Eurydema ornata L. 11 Pentatoma rufipes L. 1 Empoasca vitis Goethe 2 HOMOPTERA Ceresa bubalus L. 4 Pulvinaria vitis Targ.. 1 Vespa vulgaris L. 2 HYMENOPTERA Vespa germanica L. 3 Vespa crabro L. 1 Melolontha melolontha L 2 Amphimalon solstitialis L. 3 Rhyzothrogus aequinoctialis Herb. 4 COLEOPTERA Polyphylla fullo F. 5 Anoxia orientalis L. 6 Anomala solida Er. 7 Anomala vitis F. 877 44. hrvatski i 4. međunarodni simpozij agronoma Pomology, Viticulture and Enology 8 Anomala dubia Scop. 9 Lethrus apterus L. 10 Phyllopertha horticola L. 11 Epicometis hirta poda. 12 Cetonia aurata L. 13 Oxythyrea funesta Poda. 14 Agriotes obscurus L. 15 Agriotes ustulatus Schall. 16 Agriotes lineatus L. 17 Haltica ampelophaga Gue.-Men. 18 Byctiscus betulae L. 19 Otiorrhynchus ligustici L. 20 Ottiorrhynchus sulcatus F. 21 Opatrum sabulosum L. 1 Lobesia botrana Den et Schif. 2 Sparganotis pilleriana Den et schif. 3 Clysia ambiguelia Hb. 4 Loxostege stiticalis L. 5 Scotia segetum Schiff. 6 Plusia gamma L. 7 Scotia ypsilon Hufn. 8 Mamestra brassicae L. LEPIDOPTERA 9 Euxoa nigricans L. 10 Zeuzera pyrina L. 11 Vanessa polychloros L. 12 Pieris brassicae L. 13 Pieris rapae L. 14 Pieris napi L. 15 Aporia crataegi L. 16 Hyphantria cunea Drury. The most numerous order has been Coleoptera with 21 species, followed by the Lepidoptera order with 16 species, and Heteroptera order with 11 species. From the total number of 68 harmful Arthropods species, 47 species represent species harmful for grapevine and 21 indifferent species, for which the relationship to grapevine is not clear (table 2). Table 2. The structure of the entomofauna at S.D. Banu Mărăcine Nr. of damaging species Nr. of indiferent species Order TOTAL for the vine for the vine Acari 4 0 4 Orthoptera 8 0 8 Dermaptera 1 0 1 Thysanoptera 1 0 1 Heteroptera 4 7 11 Homoptera 3 0 3 Hymenoptera 3 0 3 Coleoptera 18 3 21 Lepidoptera 5 11 16 TOTAL 47 21 68 878 44th Croatian & 4th International Symposium on Agriculture Vodarstvo, vinogradarstvo i vinarstvo The structure of the damaging entomofauna in the viticultural ecosystem from S.D. Banu Mărăcine expressed as percentage is the following: damaging species for the grapevine represent 69%, and indifferent species for the vine represent 31%. Conclusions Following the recorded results we can conclude that the major groups of vine pests from the viticultural ecosystem at S.D. Banu Mărăcine are: Key pests: vine acarians (Eriophyes vitis Page., Tetranychus urticae Koch., Panonychus ulmi Koch., and Calepitrimerus vitis Nal.) and the vine moth (Lobesia botrana Den et Schif., Eupoecilia ambiguella Hb., and Sparganotis pilleriana Den et Schif.). Secondary pests (occasional): Genul Anomala Sam., Pulvinaria vitis Targ., Melolontha melolontha L., Polyphylla fullo F., Potential pests: Phylloxera vastatrix Planch., Vespa spp. L., Otiorrhynchus ligustici L., Agriotes spp. L., Byctiscus betulae L. Besides these species, there are series of other species frequently encountered and considered to be migratory: Haltica ampelophaga Gue., Ceresa bubalus L., Dolycoris baccarum L., Lygus pratensis L., Amphimalon soltitialis L., Rhyzotrogus aequinoctialis Herb. Zeuzera pyrina L., Hyphantria cunea Drury. etc. References Chinery M. (1998). Guida degli insetti d‘Europa. Grupo editoriale Franco Muzzio editore, Padova. Panin L. (1951). Determinatorul Coleopterelor dăunătoare şi folositoare din R.P.R. Editura de Stat, Bucureşti. Smith, R. F. & R. van den Bosch. 1967. Integrated pest management. p. 295-340. In: W. W. Kilgore & R. L. Doutt (eds.), Pest Control. Academic Press, New york. 477 p. 879 44. hrvatski i 4. međunarodni simpozij agronoma .
Recommended publications
  • Liste Commentée Des Pentatomoidea De La Manche
    Liste commentée des Pentatomoidea de la Manche Deuxième partie : les Pentatominae Cet article constitue donc le deuxième volet de l’inventaire provisoire des pentatomoïdes de la Manche. Le premier, rappelons-le, paru dans L’Argiope 73 (LIVORY , 2011) traitait les Acanthosomatidae, les Cydnidae, les Thyreocoridae, les Scutelleridae et deux sous-familles de Pentatomidae, les Podopinae et les Asopinae. Nous terminons ce recensement avec la sous-famille des Pentatominae. Avant de poursuivre notre énumération, je voudrais rendre hommage à Jean PÉRI C ART (1928-2011) qui nous a quittés l’année passée. Cet éminent entomologiste avait rédigé la plupart des ouvrages de la Faune de France consacrés aux punaises, soit comme auteur unique soit en tant que co-auteur. Les travaux de PÉRI C ART sur les hétéroptères ont une valeur immense et une portée internationale. Les volumes sur les pentatomoïdes étaient en cours de parution et sur les cinq prévus, seuls deux actuellement ont vu le jour. Nous espérons que la disparition de cet auteur n’empêchera pas la poursuite de cette publication et qu’elle conservera le même niveau scientifique. Sous-famille des Pentatominae Ces punaises possèdent un scutellum triangulaire qui ne dépasse guère en arrière le milieu de l’abdomen, ce qui les distingue nettement des Podopinae. Le rostre est mince et atteint au moins les hanches moyennes. Son premier article est logé dans un sillon qui occupe toute la longueur de la tête. Ce caractère sépare sans ambiguïté les Pentatominae des Asopinae. La 28 Bull. trim. ass. Manche-Nature, L’Argiope N° 76-77 (2012) plupart des Pentatominae sont phytophages mais quelques-uns complètent ce régime par une nourriture animale.
    [Show full text]
  • Providing a Base for Conservation of True Bugs (Insecta, Heteroptera) and Their Saline Habitats in Vojvodina (Northern Serbia)
    Short Note Hyla VOL. 2016., No.1, pp. 19- 23 ISSN: 1848-2007 Šeat et al. Providing a base for conservation of true bugs (Insecta, Heteroptera) and their saline habitats in Vojvodina (northern Serbia) 1 1,2 1 1,2 JELENA ŠEAT , BOJANA NADAŽDIN , MARIJA CVETKOVIĆ , ALEKSANDRA JOVANOV , 1,2 & IVAN TOT 1 HabiProt, Bulevar Oslobođenja 106/34, 11040 Belgrade, Serbia; e-mail: [email protected] 2 SRSBES “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Abstract Saline habitats of the Pannonian region are recognised as conservation priorities by EU legislation, and represent rare semi-natural habitats in mostly agricultural lowland of northern Serbia. Saline habitats have a key role in conservation of numerous plant and animal species in Vojvodina, as well as characteristic communities of true bugs. These insects belong to one of the most diverse insect groups in saline habitats. Species Henestaris halophilus (BURMEISTER, 1835), Conostethus hungaricus WAGNER, 1941 and Solenoxyphus fuscovenosus (FIEBER, 1864) are saline specialists and can be found only in these habitat types. True bugs have great qualities for future biomonitoring projects concerning habitats such as saline grasslands and wetlands. During the study, species Hydrometra gracilenta HORVÁTH, 1899 and Solenoxyphus fuscovenosus (FIEBER, 1864) are recorded for the first time in Serbia. Key words: Hemiptera, salt steppes, salt marshes, alkaline lakes, Pannonian plain Saline or halophitic habitats in Serbia are floods in spring (BOROS, 2003; TÖRÖK ET AL., 2011), are mostly situated in the northern part of the country, in apparently not favourable for many groups of insects, Vojvodina Province, and these habitats are listed among but the true bugs are among the most abundant and the the priority habitats by the Annex I of the EU Habitat most diverse insects in them.
    [Show full text]
  • Molecular Phylogeny of Indonesian Zeuzera(Lepidoptera: Cossidae
    Journal of Species Research 4(1):49-56, 2015 Molecular phylogeny of Indonesian Zeuzera (Lepidoptera: Cossidae) wood borer moths based on CO I gene sequence Hari Sutrisno* Laboratory of Entomology, Division of Zoology, Research Center for Biology, The Indonesian Institute of Sciences, Jl. Raya Bogor Km 46 Cibinong 16911 *Correspondent: [email protected] Zeuzera is one of the most important wood borer pests in South East Asia. Like of most other genera of moths, the systematic of this genus is still in dispute, especially on the monophyly and the relationship within this genus due to the fact that genus is very varied. This genus was defined based on external characters only such as cross vein Sc-Rs present, humeral plate approximately triangular in shape and anal plate moderately long to moderately short. Therefore, the monophyly of this genus need to be evaluated based on more com- prehensive data. To clarify the monophyly of the genus Zeuzera, to reveal the phylogenetic relationships among the Indonesian species, and to establish the genetic characters of Indonesian Zeuzera, we analyzed seven species of Indonesian Zeuzera including three other species distributed around the world based on nucleotide sequence variation across a 580-bp region in the CO I gene. The results showed that the mono- phyly of Zeuzera was supported by bootstrap tests at the MP and ML tree building methods (¤95%). Genus Zeuzera was divided into two groups (A and B) with Z. borneana was excluded from the two groups and occupied at the basal node. Indonesian species was distributed into two different clades.
    [Show full text]
  • The Sphingidae (Lepidoptera) of the Philippines
    ©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, Suppl. 17: 17-132 (1998) 17 The Sphingidae (Lepidoptera) of the Philippines Willem H o g e n e s and Colin G. T r e a d a w a y Willem Hogenes, Zoologisch Museum Amsterdam, Afd. Entomologie, Plantage Middenlaan 64, NL-1018 DH Amsterdam, The Netherlands Colin G. T readaway, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Abstract: This publication covers all Sphingidae known from the Philippines at this time in the form of an annotated checklist. (A concise checklist of the species can be found in Table 4, page 120.) Distribution maps are included as well as 18 colour plates covering all but one species. Where no specimens of a particular spe­ cies from the Philippines were available to us, illustrations are given of specimens from outside the Philippines. In total we have listed 117 species (with 5 additional subspecies where more than one subspecies of a species exists in the Philippines). Four tables are provided: 1) a breakdown of the number of species and endemic species/subspecies for each subfamily, tribe and genus of Philippine Sphingidae; 2) an evaluation of the number of species as well as endemic species/subspecies per island for the nine largest islands of the Philippines plus one small island group for comparison; 3) an evaluation of the Sphingidae endemicity for each of Vane-Wright’s (1990) faunal regions. From these tables it can be readily deduced that the highest species counts can be encountered on the islands of Palawan (73 species), Luzon (72), Mindanao, Leyte and Negros (62 each).
    [Show full text]
  • Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
    EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Grape Insects +6134
    Ann. Rev. Entomo! 1976. 22:355-76 Copyright © 1976 by Annual Reviews Inc. All rights reserved GRAPE INSECTS +6134 Alexandre Bournier Chaire de Zoologie, Ecole Nationale Superieure Agronornique, 9 Place Viala, 34060 Montpellier-Cedex, France The world's vineyards cover 10 million hectares and produce 250 million hectolitres of wine, 70 million hundredweight of table grapes, 9 million hundredweight of dried grapes, and 2.5 million hundredweight of concentrate. Thus, both in terms of quantities produced and the value of its products, the vine constitutes a particularly important cultivation. THE HOST PLANT AND ITS CULTIVATION The original area of distribution of the genus Vitis was broken up by the separation of the continents; although numerous species developed, Vitis vinifera has been cultivated from the beginning for its fruit and wine producing qualities (43, 75, 184). This cultivation commenced in Transcaucasia about 6000 B.C. Subsequent human migration spread its cultivation, at firstaround the Mediterranean coast; the Roman conquest led to the plant's progressive establishment in Europe, almost to its present extent. Much later, the WesternEuropeans planted the grape vine wherever cultiva­ tion was possible, i.e. throughout the temperate and warm temperate regions of the by NORTH CAROLINA STATE UNIVERSITY on 02/01/10. For personal use only. world: North America, particularly California;South America,North Africa, South Annu. Rev. Entomol. 1977.22:355-376. Downloaded from arjournals.annualreviews.org Africa, Australia, etc. Since the commencement of vine cultivation, man has attempted to increase its production, both in terms of quality and quantity, by various means including selection of mutations or hybridization.
    [Show full text]
  • Hemiptera: Heteroptera: Pentatomoidea
    VIVIANA CAUDURO MATESCO SISTEMÁTICA DE THYREOCORIDAE AMYOT & SERVILLE (HEMIPTERA: HETEROPTERA: PENTATOMOIDEA): REVISÃO DE ALKINDUS DISTANT, MORFOLOGIA DO OVO DE DUAS ESPÉCIES DE GALGUPHA AMYOT & SERVILLE E ANÁLISE CLADÍSTICA DE CORIMELAENA WHITE, COM CONSIDERAÇÕES SOBRE A FILOGENIA DE THYREOCORIDAE, E MORFOLOGIA DO OVO DE 16 ESPÉCIES DE PENTATOMIDAE COMO EXEMPLO DO USO DE CARACTERES DE IMATUROS EM FILOGENIAS Tese apresentada ao Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do Título de Doutor em Biologia Animal. Área de concentração: Biologia Comparada Orientadora: Profa. Dra. Jocelia Grazia Co-Orientador: Prof. Dr. Cristiano F. Schwertner UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2014 “Sistemática de Thyreocoridae Amyot & Serville (Hemiptera: Heteroptera: Pentatomoidea): revisão de Alkindus Distant, morfologia do ovo de duas espécies de Galgupha Amyot & Serville e análise cladística de Corimelaena White, com considerações sobre a filogenia de Thyreocoridae, e morfologia do ovo de 16 espécies de Pentatomidae como exemplo de uso de caracteres de imaturos em filogenias” VIVIANA CAUDURO MATESCO Tese apresentada como parte dos requisitos para obtenção de grau de Doutor em Biologia Animal, área de concentração Biologia Comparada. ________________________________________ Prof. Dr. Augusto Ferrari (UFRGS) ________________________________________ Dra. Caroline Greve (CNPq ex-bolsista PDJ) ________________________________________ Prof. Dr. Cláudio José Barros de Carvalho (UFPR) ________________________________________ Profa. Dra. Jocelia Grazia (Orientadora) Porto Alegre, 05 de fevereiro de 2014. AGRADECIMENTOS À minha orientadora, Profa. Dra. Jocelia Grazia, pelos ensinamentos e por todas as oportunidades que me deu durante os treze anos em que estive no Laboratório de Entomologia Sistemática. Ao meu co-orientador, Prof.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    _____________ Mun. Ent. Zool. Vol. 4, No. 1, January 2009___________ I MUNIS ENTOMOLOGY & ZOOLOGY Ankara / Turkey II _____________ Mun. Ent. Zool. Vol. 4, No. 1, January 2009___________ Scope: Munis Entomology & Zoology publishes a wide variety of papers on all aspects of Entomology and Zoology from all of the world, including mainly studies on systematics, taxonomy, nomenclature, fauna, biogeography, biodiversity, ecology, morphology, behavior, conservation, paleobiology and other aspects are appropriate topics for papers submitted to Munis Entomology & Zoology. Submission of Manuscripts: Works published or under consideration elsewhere (including on the internet) will not be accepted. At first submission, one double spaced hard copy (text and tables) with figures (may not be original) must be sent to the Editors, Dr. Hüseyin Özdikmen for publication in MEZ. All manuscripts should be submitted as Word file or PDF file in an e-mail attachment. If electronic submission is not possible due to limitations of electronic space at the sending or receiving ends, unavailability of e-mail, etc., we will accept “hard” versions, in triplicate, accompanied by an electronic version stored in a floppy disk, a CD-ROM. Review Process: When submitting manuscripts, all authors provides the name, of at least three qualified experts (they also provide their address, subject fields and e-mails). Then, the editors send to experts to review the papers. The review process should normally be completed within 45-60 days. After reviewing papers by reviwers: Rejected papers are discarded. For accepted papers, authors are asked to modify their papers according to suggestions of the reviewers and editors. Final versions of manuscripts and figures are needed in a digital format.
    [Show full text]
  • Morphological Diagnosis of Sunn Pest, Eurygaster Integriceps (Heteroptera: Scutelleridae) Parasitized by Hexamermis Eurygasteri (Nematoda: Mermithidae)
    Tr. Doğa ve Fen Derg. − Tr. J. Nature Sci. 2017 Vol. 6 No. 1 Morphological diagnosis of Sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae) parasitized by Hexamermis eurygasteri (Nematoda: Mermithidae) Gülcan TARLA*1, Şener TARLA 1, Mahmut İSLAMOĞLU 1 Abstract Hexamermis eurygasteri Tarla, Poinar and Tarla (Nematoda: Mermithidae) is an important natural enemy of Sunn pest (SP), Eurygaster integriceps Put. (Heteroptera: Scutelleridae) in overwintering areas. Adults of this pest become inactive during hibernation and aestivation about nine months in overwintering areas. These areas are very important for biological control of this pest. Because the overwintering adults with entomoparasitic nematodes can be easily collected from there and they can be sent to uninfected overwintering areas for inoculation. The success of this method depends on the morphological diagnosis of individuals infected with mermithids. It is necessary recognizing the individuals that infected with nematodes collected from overwintering areas to be used as biological control agent for the pest management. As a result of the studies carried out for this purpose, it was determined that the bodies of parasitized SP individuals have a wet and greasy appearance. The movement of infected SP is slowed when near nematodes leaving from the host body. Insect head extends forward, the neck is prolonged and nematodes are usually left the body from the cervix. Before leaving from the hosts, the mean distance between the head at eye level and the thorax was measured as 419.4 ± 117.30 μm (n = 11). Keywords: Eurygaster; Hexamermis; Mermithidae; entomoparasitic nematode; Sunn pest Hexamermis eurygasteri (Nematoda: Mermithidae) tarafından parazitlenmiş Eurygaster integriceps (Heteroptera: Scutelleridae)’in morfolojik teşhisi Özet Hexamermis eurygasteri Tarla, Poinar and Tarla (Nematoda: Mermithidae) kışlak alanlarda süne, Eurygaster integriceps Put.
    [Show full text]
  • Chemical Analysis of the Metathoracic Scent Gland of Eurygaster Maura (L.) (Heteroptera: Scutelleridae)
    J. Agr. Sci. Tech. (2019) Vol. 21(6): 1473-1484 Chemical Analysis of the Metathoracic Scent Gland of Eurygaster maura (L.) (Heteroptera: Scutelleridae) E. Ogur1, and C. Tuncer2 ABSTRACT Eurygaster maura (L.) (Heteroptera: Scutelleridae) is one of the most devastating pests of wheat in Turkey. The metathoracic scent gland secretions of male and female E. maura were analyzed separately by gas chromatography-mass spectrometry. Twelve chemical compounds, namely, Octane, n-Undecane, n-Dodecane, n-Tridecane, (E)-2-Hexenal , (E)- 2-Hexen-1-ol, acetate, Cyclopropane, 1-ethyl-2-heptyl, Hexadecane, (E)-3-Octen-1-ol, acetate, (E)-5-Decen-1-ol, acetate, 2-Hexenoic acid, Butyric acid, and Tridecyl ester were detected in both males and females. These compounds, however, differed quantitatively between the sexes. In both females and males, n-Tridecane and (E)-2-Hexanal were the most abundant compounds and constituted approximately 90% of the total content. Minimal amounts of Octane were detected in males and Hexadecane in females. Keywords: (E)-2-Hexenal, GC-MS, Metathoracic scent gland, n-Tridecane, Wheat. INTRODUCTION 100% in the absence of control measures (Lodos, 1986; Özbek and Hayat, 2003). Eurygaster species (Heteroptera: In the order Heteroptera, nearly all species Scutelleridae) are the most devastating pests have scent glands and many of these are of wheat in an extensive area of the Near colloquially referred to as “stink bugs” and Middle East, Western and Central Asia, (Aldrich, 1988). Both nymphs and adults Eastern and South Central Europe, and have scent glands in Heteroptera species Northern Africa (Critchley, 1998; Vaccino (Abad and Atalay, 1994; Abad, 2000).
    [Show full text]