Revisiting Clinical Trials Using EGFR Inhibitor-Based
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Management of Chronic Myelogenous Leukemia in Pregnancy
ANTICANCER RESEARCH 35: 1-12 (2015) Review Management of Chronic Myelogenous Leukemia in Pregnancy AMIT BHANDARI, KATRINA ROLEN and BINAY KUMAR SHAH Cancer Center and Blood Institute, St. Joseph Regional Medical Center, Lewiston, ID, U.S.A. Abstract. Discovery of tyrosine kinase inhibitors has led to Leukemia in pregnancy is a rare condition, with an annual improvement in survival of chronic myelogenous leukemia incidence of 1-2/100,000 pregnancies (8). Since the first (CML) patients. Many young CML patients encounter administration of imatinib (the first of the TKIs) to patients pregnancy during their lifetime. Tyrosine kinase inhibitors with CML in June 1998, it is estimated that there have now inhibit several proteins that are known to have important been 250,000 patient years of exposure to the drug (mostly functions in gonadal development, implantation and fetal in patients with CML) (9). TKIs not only target BCR-ABL development, thus increasing the risk of embryo toxicities. tyrosine kinase but also c-kit, platelet derived growth factors Studies have shown imatinib to be embryotoxic in animals with receptors α and β (PDGFR-α/β), ARG and c-FMS (10). varying effects in fertility. Since pregnancy is rare in CML, Several of these proteins are known to have functions that there are no randomized controlled trials to address the may be important in gonadal development, implantation and optimal management of this condition. However, there are fetal development (11-15). Despite this fact, there is still only several case reports and case series on CML in pregnancy. At limited information on the effects of imatinib on fertility the present time, there is no consensus on how to manage and/or pregnancy. -
TARCEVA for Severe Renal These Highlights Do Not Include All the Information Needed to Use Toxicity
HIGHLIGHTS OF PRESCRIBING INFORMATION patients at risk of dehydration. Withhold TARCEVA for severe renal These highlights do not include all the information needed to use toxicity. (5.2) TARCEVA® safely and effectively. See full prescribing information for • Hepatotoxicity: Occurs with or without hepatic impairment, including TARCEVA. hepatic failure and hepatorenal syndrome: Monitor periodic liver testing. Withhold or discontinue TARCEVA for severe or worsening liver tests. (5.3) TARCEVA (erlotinib) tablets, for oral use • Gastrointestinal perforations: Discontinue TARCEVA. (5.4) Initial U.S. Approval: 2004 • Bullous and exfoliative skin disorders: Discontinue TARCEVA. (5.5) • ---------------------------RECENT MAJOR CHANGES-------------------------- Cerebrovascular accident (CVA): The risk of CVA is increased in patients with pancreatic cancer. (5.6) Indications and Usage, Non-Small Cell Lung Cancer (NSCLC) (1.1) 10/2016 • Microangiopathic hemolytic anemia (MAHA): The risk of MAHA is Dosage and Administration (2.1) 06/2016 increased in patients with pancreatic cancer. (5.7) Dosage and Administration, Dose Modifications (2.4) 05/2016 • Ocular disorders: Discontinue TARCEVA for corneal perforation, Warnings and Precautions, Cerebrovascular Accident (5.6) 10/2016 ulceration or persistent severe keratitis. (5.8) Warnings and Precautions, Embryo-fetal Toxicity (5.10) 10/2016 • Hemorrhage in patients taking warfarin: Regularly monitor INR in patients taking warfarin or other coumarin-derivative anticoagulants. (5.9) ---------------------------INDICATIONS -
Partial Response to Erlotinib in a Patient with Imatinib-Refractory
Verma et al. Clin Sarcoma Res (2020) 10:28 https://doi.org/10.1186/s13569-020-00149-1 Clinical Sarcoma Research CASE REPORT Open Access Partial response to erlotinib in a patient with imatinib-refractory sacral chordoma Saurav Verma1, Surya Prakash Vadlamani1, Shamim Ahmed Shamim2, Adarsh Barwad3, Sameer Rastogi4* and S. T. Arun Raj2 Abstract Background: Chordoma is a rare, slow growing and locally aggressive mesenchymal neoplasm with uncommon distant metastases. It is a chemo-resistant disease with surgery and radiotherapy being the mainstay in treatment of localized disease. In advanced disease imatinib has a role. We report a case of metastatic sacral chordoma with symp- tomatic and radiological response to erlotinib post-progression on imatinib. Case presentation: A 48-year-old male with a sacral chordoma underwent partial sacrectomy followed by post- operative radiotherapy. Upon recurrence he received palliative radiotherapy to hemipelvis and was ofered therapy with imatinib. However, the disease was refractory to imatinib and he was started on treatment with erlotinib—show- ing a partial response on imaging at two months. He is currently doing well at 13 months since start of erlotinib. Conclusions: As seen in previously reported cases, erlotinib is a therapeutic option in advanced chordoma, even in imatinib refractory cases and thus warrants exploration of its therapeutic role in prospective clinical trials. Keywords: Chordoma, EGFR, Erlotinib Background adjuvant setting after a full or subtotal resection, and as Chordoma is a rare mesenchymal neoplasm which arises the primary treatment in unresectable disease. from the remnants of primitive notochord [1]. It accounts Chordoma responds poorly to cytotoxic chemotherapy. -
Genomic Aberrations Associated with Erlotinib Resistance in Non-Small Cell Lung Cancer Cells
ANTICANCER RESEARCH 33: 5223-5234 (2013) Genomic Aberrations Associated with Erlotinib Resistance in Non-small Cell Lung Cancer Cells MASAKUNI SERIZAWA1, TOSHIAKI TAKAHASHI2, NOBUYUKI YAMAMOTO2,3 and YASUHIRO KOH1 1Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan; 2Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan; 3Third Department of Internal Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan Abstract. Background/Aim: Mechanisms of resistance to mutations develop resistance, usually within one year of epidermal growth factor receptor (EGFR)-tyrosine kinase treatment. Therefore, there is an urgent need to elucidate the inhibitors (TKIs) in non-small cell lung cancer (NSCLC) underlying mechanisms of resistance in such tumors to are not fully-understood. In this study we aimed to overcome this obstacle (11-14, 17, 24). Recent studies elucidate remaining unknown mechanisms using erlotinib- suggest that mechanisms of acquired resistance to EGFR- resistant NSCLC cells. Materials and Methods: We TKIs can be categorized into three groups: occurrence of performed array comparative genomic hybridization genetic alterations, activation of downstream pathways via (aCGH) to identify genomic aberrations associated with bypass signaling, and phenotypic transformation (15, 16, 21); EGFR-TKI resistance in erlotinib-resistant PC-9ER cells. therapeutic strategies to overcome these resistance Real-time polymerase chain reaction (PCR) and mechanisms are under development. However, although the immunoblot analyses were performed to confirm the results causes of acquired resistance to EGFR-TKIs have been of aCGH. Results: Among the five regions with copy investigated, in more than 30% of patients with acquired number gain detected in PC-9ER cells, we focused on resistance to EGFR-TKI treatment, the mechanisms remain 22q11.2-q12.1 including v-crk avian sarcoma virus CT10 unknown (15). -
Darkening and Eruptive Nevi During Treatment with Erlotinib
CASE LETTER Darkening and Eruptive Nevi During Treatment With Erlotinib Stephen Hemperly, DO; Tanya Ermolovich, DO; Nektarios I. Lountzis, MD; Hina A. Sheikh, MD; Stephen M. Purcell, DO A 70-year-old man with NSCLCA presented with PRACTICE POINTS eruptive nevi and darkening of existing nevi 3 months after • Cutaneous side effects of erlotinib include acneform starting monotherapy with erlotinib. Physical examina- eruption, xerosis, paronychia, and pruritus. tion demonstrated the simultaneous appearance of scat- • Clinicians should monitor patients for darkening tered acneform papules and pustules; diffuse xerosis; and and/or eruptive nevi as well as melanoma during numerous dark copybrown to black nevi on the trunk, arms, treatment with erlotinib. and legs. Compared to prior clinical photographs taken in our office, darkening of existing medium brown nevi was noted, and new nevi developed in areas where no prior nevi had been visible (Figure 1). To the Editor: notThe patient’s medical history included 3 invasive mel- Erlotinib is a small-molecule selective tyrosine kinase anomas, all of which were diagnosed at least 7 years prior inhibitor that functions by blocking the intracellular por- to the initiation of erlotinib and were treated by surgical tion of the epidermal growth factor receptor (EGFR)Do1,2; excision alone. Prior treatment of NSCLCA consisted of a EGFR normally is expressed in the basal layer of the left lower lobectomy followed by docetaxel, carboplatin, epidermis, sweat glands, and hair follicles, and is over- pegfilgrastim, dexamethasone, and pemetrexed. A thor- expressed in some cancers.1,3 Normal activation of ough review of all of the patient’s medications revealed EGFR leads to signal transduction through the mitogen- no associations with changes in nevi. -
The Effects of Combination Treatments on Drug Resistance in Chronic Myeloid Leukaemia: an Evaluation of the Tyrosine Kinase Inhibitors Axitinib and Asciminib H
Lindström and Friedman BMC Cancer (2020) 20:397 https://doi.org/10.1186/s12885-020-06782-9 RESEARCH ARTICLE Open Access The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib H. Jonathan G. Lindström and Ran Friedman* Abstract Background: Chronic myeloid leukaemia is in principle a treatable malignancy but drug resistance is lowering survival. Recent drug discoveries have opened up new options for drug combinations, which is a concept used in other areas for preventing drug resistance. Two of these are (I) Axitinib, which inhibits the T315I mutation of BCR-ABL1, a main source of drug resistance, and (II) Asciminib, which has been developed as an allosteric BCR-ABL1 inhibitor, targeting an entirely different binding site, and as such does not compete for binding with other drugs. These drugs offer new treatment options. Methods: We measured the proliferation of KCL-22 cells exposed to imatinib–dasatinib, imatinib–asciminib and dasatinib–asciminib combinations and calculated combination index graphs for each case. Moreover, using the median–effect equation we calculated how much axitinib can reduce the growth advantage of T315I mutant clones in combination with available drugs. In addition, we calculated how much the total drug burden could be reduced by combinations using asciminib and other drugs, and evaluated which mutations such combinations might be sensitive to. Results: Asciminib had synergistic interactions with imatinib or dasatinib in KCL-22 cells at high degrees of inhibition. Interestingly, some antagonism between asciminib and the other drugs was present at lower degrees on inhibition. -
Pulmonary Toxicities of Tyrosine Kinase Inhibitors
Pulmonary Toxicities of Tyrosine Kinase Inhibitors Maajid Mumtaz Peerzada, MD, Timothy P. Spiro, MD, FACP, and Hamed A. Daw, MD Dr. Peerzada is a Resident in the Depart- Abstract: The incidence of pulmonary toxicities with the use of ment of Internal Medicine at Fairview tyrosine kinase inhibitors (TKIs) is not very high; however, various Hospital in Cleveland, Ohio. Dr. Spiro and case reports and studies continue to show significant variability in Dr. Daw are Staff Physicians at the Cleve- the incidence of these adverse events, ranging from 0.2% to 10.9%. land Clinic Foundation Cancer Center, in Cleveland, Ohio. Gefitinib and erlotinib are orally active, small-molecule inhibitors of the epidermal growth factor receptor tyrosine kinase that are mainly used to treat non-small cell lung cancer. Imatinib is an inhibitor of BCR-ABL tyrosine kinase that is used to treat various leukemias, gastrointestinal stromal tumors, and other cancers. In this article, we Address correspondence to: review data to identify the very rare but fatal pulmonary toxicities Maajid Mumtaz Peerzada, MD Medicor Associates of Chautauqua (mostly interstitial lung disease) caused by these drugs. Internal Medicine 12 Center Street Fredonia, NY 14063 Introduction Phone: 716-679-2233 E-mail: [email protected] Tyrosine kinases are enzymes that activate the phosphorylation of tyro- sine residues by transferring the terminal phosphate of ATP. Some of the tyrosine kinase inhibitors (TKIs) currently used in the treatment of various malignancies include imatinib (Gleevec, Novartis), erlotinib (Tarceva, Genentech/OSI), and gefitinib (Iressa, AstraZeneca). This article presents a basic introduction (mechanism of action and indi- cations of use) of these TKIs and summarizes the incidence, various clinical presentations, diagnosis, treatment options, and outcomes of patients around the world that presented with pulmonary toxicities caused by these drugs. -
Bridging from Preclinical to Clinical Studies for Tyrosine Kinase Inhibitors Based on Pharmacokinetics/Pharmacodynamics and Toxicokinetics/Toxicodynamics
Drug Metab. Pharmacokinet. 26 (6): 612620 (2011). Copyright © 2011 by the Japanese Society for the Study of Xenobiotics (JSSX) Regular Article Bridging from Preclinical to Clinical Studies for Tyrosine Kinase Inhibitors Based on Pharmacokinetics/Pharmacodynamics and Toxicokinetics/Toxicodynamics Azusa HOSHINO-YOSHINO1,2,MotohiroKATO2,KohnosukeNAKANO2, Masaki ISHIGAI2,ToshiyukiKUDO1 and Kiyomi ITO1,* 1Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan 2Pre-clinical Research Department, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: The purpose of this study was to provide a pharmacokinetics/pharmacodynamics and toxi- cokinetics/toxicodynamics bridging of kinase inhibitors by identifying the relationship between their clinical and preclinical (rat, dog, and monkey) data on exposure and efficacy/toxicity. For the eight kinase inhibitors approved in Japan (imatinib, gefitinib, erlotinib, sorafenib, sunitinib, nilotinib, dasatinib, and lapatinib), the human unbound area under the concentration-time curve at steady state (AUCss,u) at the clinical dose correlated well with animal AUCss,u at the no-observed-adverse-effect level (NOAEL) or maximum tolerated dose (MTD). The best correlation was observed for rat AUCss,u at the MTD (p < 0.001). Emax model analysis was performed using the efficacy of each drug in xenograft mice, and the efficacy at the human AUC of the clinical dose was evaluated. The predicted efficacy at the human AUC of the clinical dose varied from far below Emax to around Emax even in the tumor for which use of the drugs had been accepted. These results suggest that rat AUCss,u attheMTD,butnottheefficacy in xenograft mice, may be a useful parameter to estimate the human clinical dose of kinase inhibitors, which seems to be currently determined by toxicity rather than efficacy. -
Combinatorial Efficacy of Entospletinib and Chemotherapy in Patient-Derived Xenograft Models of Infant Acute Lymphoblastic Leukemia
Acute Lymphoblastic Leukemia SUPPLEMENTARY APPENDIX Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia Joseph P. Loftus, 1* Anella Yahiaoui, 2* Patrick A Brown, 3 Lisa M. Niswander, 1 Asen Bagashev, 1 Min Wang, 2 Allyson Shauf, 2 Stacey Tannheimer 2 and Sarah K. Tasian 1,4 1Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA; 2Gilead Sci - ences, Foster City, CA; 3Department of Pediatrics, Division of Pediatric Hematology/Oncology, Johns Hopkins University and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD and 4Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA *JPL and AY contributed equally as co-first authors. ©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.241729 Received: October 28, 2019. Accepted: May 8, 2020. Pre-published: May 15, 2020. Correspondence: SARAH K. TASIAN - [email protected] SUPPLEMENTAL DATA SUPPLEMENTAL METHODS Cell Titer Glo viability assays The human B-acute lymphoblastic leukemia (B-ALL) cell lines NALM-6 (non-KMT2A- rearranged) and HB11;19, KOPN-8, and HB11;19 (all KMT2A-rearranged) were obtained from the German Collection of Microorganisms and Cell Cultures GmbH (Deutsche Sammlung von Mikroorganismen und Zellkulturen; DSMZ), validated by short tandem repeat identity testing, and confirmed to be Mycoplasma-free. ALL cells were incubated in vitro with dimethyl sulfoxide or increasing concentrations of entospletinib (Gilead Sciences), fostamatinib (Selleckchem), dasatinib (LC Labs), selumetinib (LC Labs), and/or dexamethasone as indicated in Supplemental Figure 1 for 72 hours, then assessed for cell viability via Cell Titer Glo luminescent assays (Promega) according to manufacturer’s instructions using an IVIS Spectrum bioluminescent imaging instrument and Living Image software (PerkinElmer) (1, 2). -
Activity of Lapatinib Is Independent of EGFR Expression Level in HER2-Overexpressing Breast Cancer Cells
1846 Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells Dongwei Zhang,1,2 Ashutosh Pal,3 overexpressed (i.e., HER2-positive) in 20% to 30% of breast William G. Bornmann,3 Fumiyuki Yamasaki,1,2 cancers (4, 5). EGFR and HER2 are known to drive tumor Francisco J. Esteva,1,4 Gabriel N. Hortobagyi,4 growth and progression and have emerged as promising Chandra Bartholomeusz,1,2 and Naoto T. Ueno1,2,4 targets for cancer therapy. A number of small molecules that target individual or 1Breast Cancer Translational Research Laboratory, dual ErbB receptors have been developed and tested in Departments of 2Stem Cell Transplantation and Cellular 3 4 clinical trials. Lapatinib, a dual inhibitor of EGFR and Therapy, Experimental Diagnostic Imaging, and Breast HER2 tyrosine kinases, has already been approved by the Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas US Food and Drug Administration as a treatment for HER2-positive metastatic breast cancer (6, 7). Lapatinib as a single agent or in combination with trastuzumab or Abstract capecitabine exhibited activity against HER2-positive ad- Epidermal growth factor receptor (EGFR/ErbB1) and HER2 vanced or metastatic breast cancer that has progressed after (ErbB2/neu), members of the ErbB receptor tyrosine kinase trastuzumab therapy (8–10). The activity of lapatinib in family, are frequently overexpressed in breast cancer and inflammatory breast cancer was evaluated in an interna- are known to drive tumor growth and progression, making tional Phase II trial (11). Although lapatinib showed them promisingtargetsfor cancer therapy. -
Antibody–Drug Conjugates: the Last Decade
pharmaceuticals Review Antibody–Drug Conjugates: The Last Decade Nicolas Joubert 1,* , Alain Beck 2 , Charles Dumontet 3,4 and Caroline Denevault-Sabourin 1 1 GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France; [email protected] 2 Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France; [email protected] 3 Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France; [email protected] 4 Hospices Civils de Lyon, 69000 Lyon, France * Correspondence: [email protected] Received: 17 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of. Keywords: antibody–drug conjugate; ADC; bioconjugation; linker; payload; cancer; resistance; combination therapies 1. -
Tyrosine Kinase Inhibitors Or ALK Inhibitors for the First Line Treatment of Non-Small Cell Lung Cancer
Tyrosine kinase inhibitors or ALK inhibitors for the first line treatment of Non-small cell lung cancer This application seeks the addition of tyrosine kinase inhibitor erlotinib (representative of class) and gefitinib and afatinib (alternatives) as well as ALK-inhibitor crizotinib to the list of the Essential Medicines List for the treatment of non-small cell lung cancer. Introduction In 2013, there were approximately 1.8 million incident lung cancer cases diagnosed worldwide and approximately 1.6 million deaths from the disease (1). Lung cancer had the second highest absolute incidence globally after breast cancer, and in 93 countries was the leading cause of death from malignant disease, accounting for one fifth of the total global burden of disability- adjusted life years from cancer. Men were more likely to develop lung cancer than women, with 1 in 18 men and 1 in 51 women being diagnosed between birth and age 79 years (1). Non-small cell lung cancer (NSCLC) is the most common form of the disease, accounting for 85–90% of all lung cancers (2)(43). For patients with resectable disease, adjuvant chemotherapy improves the absolute 5-year survival rates in Stage II and III NSCLC (9,13,65,44-47). Acceptable adjuvant chemotherapy options include etoposide/cisplatin, docetaxel/cisplatin, gemcitabine/cisplatin, pemetrexed/cisplatin, and carboplatin/paclitaxel for patients with comorbidities or unable to tolerate cisplatin. In patients with non-metastatic but inoperable NSCLC or Stage III disease, concurrent chemoradiotherapy has been shown to improve overall survival (OS) and median survival (47-53). However, most patients with NSCLC present with advanced stage disease – stage IV in particular – and half of all patients treated initially for potentially curable early-stage disease will experience recurrences with metastatic disease (3).