Gene Regulatory Network Inference Using Machine Learning Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY
RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press ISSN: 1790-5125 www.wseas.org ISBN: 978-960-474-141-0 RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press www.wseas.org Copyright © 2009, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed -
Department of Energy Office of Health and Environmental Research SEQUENCING the HUMAN GENOME Summary Report of the Santa Fe Workshop March 3-4, 1986
Department of Energy Office of Health and Environmental Research SEQUENCING THE HUMAN GENOME Summary Report of the Santa Fe Workshop March 3-4, 1986 Los Alamos National Laboratory Los Alamos Los Alamos, New Mexico 87545 Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. DEPARTMENT OF ENERGY OFFICE OF HEALTH AND ENVIRONMENTAL RESEARCH SEQUENCING THE HUMAN GENOME SUMMARY REPORT ON THE SANTA FE WORKSHOP (MARCH 3-4, 1986) Executive Summary. The following is a summary of the Santa Fe Workshop held on March 3 and 4, 1986. The workshop was sponsored by the Office of Health and Environmental Research (OHER) and Los Alamos National Laboratory (LANL) and dedicated to examining the feasibility, advisability, and approaches to sequencing the human genome. The workshop considered four principal topics: I. Technologies to be employed. II. Expected benefits. III. Architecture of the enterprise. IV. Participants and funding. I . Technology The participants of the workshop foresaw extraordinary and continuing progress in the efficiency and accuracy of mapping, ordering , and sequencing technologies. They suggested that a coordinated analysis of the human genome begin with the task of ordering overlapping recombinant DNA fragments obtained from purified human chromosomes that would provide an infrastructure for sequencing activity. At the same time, they support in-depth evaluation of current and developing strategies for sequencing including possible applications of automation and robotics that would minimize the time and cost of sequencing. II. Benefits The socio-political and health benefits, and the benefit:cost ratio were seen as highly favorable not only for human health, but in addition for the development of new diagnostic, preventative and therapeutic tools, jobs, and industries. -
Mapping Our Genes—Genome Projects: How Big? How Fast?
Mapping Our Genes—Genome Projects: How Big? How Fast? April 1988 NTIS order #PB88-212402 Recommended Citation: U.S. Congress, Office of Technology Assessment, Mapping Our Genes-The Genmne Projects.’ How Big, How Fast? OTA-BA-373 (Washington, DC: U.S. Government Printing Office, April 1988). Library of Congress Catalog Card Number 87-619898 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technol- ogy, and politics. Congress is responsible for ‘(writing the rules” of what various Federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the U.S. Congress, The House Committee on Energy and Commerce requested that OTA undertake the project. The House Committee on Science, Space, and Technology, the Senate Com- mittee on Labor and Human Resources, and the Senate Committee on Energy and Natu- ral Resources also asked OTA to address specific points of concern to them. Congres- sional interest focused on several issues: ● how to assess the rationales for conducting human genome projects, ● how to fund human genome projects (at what level and through which mech- anisms), ● how to coordinate the scientific and technical programs of the several Federal agencies and private interests already supporting various genome projects, and ● how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. -
Characterizing the Dna-Binding Site Specificities of Cis2his2 Zinc Fingers
MQP-ID-DH-UM1 C H A R A C T E RI Z IN G T H E DN A-BINDIN G SI T E SPE C I F I C I T I ES O F C IS2H IS2 Z IN C F IN G E RS A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degrees of Bachelor of Science in Biochemistry and Biology and Biotechnology by _________________________ Heather Bell April 26, 2012 APPROVED: ____________________ ____________________ ____________________ Scot Wolfe, PhD Destin Heilman, PhD David Adams, PhD Gene Function and Exp. Biochemistry Biology and Biotech UMass Medical School WPI Project Advisor WPI Project Advisor MAJOR ADVISOR A BST R A C T The ability to modularly assemble Zinc Finger Proteins (ZFPs) as well as the wide variety of DNA sequences they can recognize, make ZFPs an ideal framework to design novel DNA-binding proteins. However, due to the complexity of the interactions between residues in the ZF recognition helix and the DNA-binding site there is currently no comprehensive recognition code that would allow for the accurate prediction of the DNA ZFP binding motifs or the design of novel ZFPs for a desired target site. Through the analysis of the DNA-binding site specificities of 98 ZFP clones, determined through a bacterial one-hybrid selection system, a predictive model was created that can accurately predict the binding site motifs of novel ZFPs. 2 T A B L E O F C O N T E N TS Signature Page ««««««««««««««««««««««««««« $EVWUDFW«««««««««««««««««««««««««««««« 7DEOHRI&RQWHQWV«««««««««««««««««««««««««« $FNQRZOHGJHPHQWV««««««««««««««««««««««««« %DFNJURXQG«««««««««««««««««««««««««««« Project Purpose «««««««««««««««««««««««««««15 0HWKRGV««««««««««««««««««««««««««««««16 5HVXOWV««««««««««««««««««««««««««««««21 'LVFXVVLRQ«««««««««««««««««««««««««««««28 Bibliograph\«««««««««««««««««««««««««««« 6XSSOHPHQWDO««««««««««««««««««««««««««« 3 A C K N O W L E D G E M E N TS I would like to thank Dr. -
2015 Wattiezm Memoire
Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be THESIS / THÈSE MASTER IN COMPUTER SCIENCE Design of a support system for modelling gene regulatory networks Author(s) - Auteur(s) : Wattiez, Morgan Award date: 2015 Awarding institution: University of Namur Supervisor - Co-Supervisor / Promoteur - Co-Promoteur : Link to publication Publication date - Date de publication : Permanent link - Permalien : Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. BibliothèqueDownload date: Universitaire 04. oct.. 2021 Moretus Plantin University of Namur Faculty of Computer Science Academic Year 2014{2015 Design of a support system for modelling gene regulatory networks Morgan WATTIEZ Supervisor: (Signed for Release Approval Jean-Marie JACQUET Study Rules art. 40) Thesis submitted in partial fulfillment of the requirements for the degree of Master in Computer Science at the University of Namur Abstract The understanding of gene regulatory networks depends upon the solving of ques- tions related to the interactions in those networks. -
ISMB 99 August 6 – 10, 1999 Heidelberg, Germany the Seventh
______________________________________ Welcome to ISMB 99 August 6 – 10, 1999 Heidelberg, Germany The Seventh International Conference on Intelligent Systems for Molecular Biology ______________________________________ Final Program and Detailed Schedule Friday, August 6, 1999 Tutorial Day The tutorials will take place in the following rooms: 8:30 – 12:30 (Coffee break around 10:30) Tutorial #1 Trübnersaal Piere Baldi Probabilistic graphical models Tutorial #2 Robert-Schumann-Zimmer Douglas L. Brutlag Bioinformatics and Molecular Biology Tutorial #3 Ballsaal Martin Reese The challenge of annotating a complete eukaryotic genome: A case study in Drosophila melanogaster Tutorial #4 Gustav-Mahler-Zimmer Tandy Warnow Computational and statistical Junhyong Kim challenges involved in reconstructing evolutionary trees Tutorial #5 Sebastian-Münster-Saal Thomas Werner The biology and bioinformatics of regulatory regions in genomes Lunch (on this day served in "Grosser Saal" on the ground floor) 13:30 – 17:30 (Coffee break around 15:30) Tutorial #6 Sebastian-Münster-Saal Rob Miller EST Clustering Alan Christoffels Winston Hide Tutorial #7 Trübnersaal Kevin Karplus Getting the most out of hidden Markov Melissa Cline models Christian Barrett Tutorial #8 Robert-Schumann-Zimmer Arthur Lesk Sequence-structure relationships and evolutionary structure changes in proteins Tutorial #9 Gustav-Mahler-Zimmer David States PERL abstractions for databases and Brian Dunford distributed computing Shore Tutorial # 10 Ballsaal Zoltan Szallasi Genetic network analysis -
Download File
Topics in Signal Processing: applications in genomics and genetics Abdulkadir Elmas Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 c 2016 Abdulkadir Elmas All Rights Reserved ABSTRACT Topics in Signal Processing: applications in genomics and genetics Abdulkadir Elmas The information in genomic or genetic data is influenced by various complex processes and appropriate mathematical modeling is required for studying the underlying processes and the data. This dissertation focuses on the formulation of mathematical models for certain problems in genomics and genetics studies and the development of algorithms for proposing efficient solutions. A Bayesian approach for the transcription factor (TF) motif discovery is examined and the extensions are proposed to deal with many interdependent parameters of the TF-DNA binding. The problem is described by statistical terms and a sequential Monte Carlo sampling method is employed for the estimation of unknown param- eters. In particular, a class-based resampling approach is applied for the accurate estimation of a set of intrinsic properties of the DNA binding sites. Through statistical analysis of the gene expressions, a motif-based computational approach is developed for the inference of novel regulatory networks in a given bacterial genome. To deal with high false-discovery rates in the genome-wide TF binding predictions, the discriminative learning approaches are examined in the context of sequence classification, and a novel mathematical model is introduced to the family of kernel-based Support Vector Machines classifiers. Furthermore, the problem of haplotype phasing is examined based on the genetic data obtained from cost-effective genotyping technologies. -
Baldi Bioinformatics
Vol. 15 no. 11 1999 BIOINFORMATICS Pages 865–866 A.M. Shmatkov, A.A. Melikyan, F.L. Chernousko and Editorial M. Borodovsky’s paper, ‘Finding prokaryotic genes by the “frame-by-frame” algorithm: targeting gene starts THE SECOND GEORGIA TECH INTERNA- and overlapping genes’, addresses the important practical TIONAL CONFERENCE ON BIOINFORMATICS: problem of gene recognition in prokaryotic genomes, SEQUENCE, STRUCTURE AND FUNCTION of which over a dozen have already been completely (NOVEMBER 11–14, 1999, ATLANTA, GEORGIA, sequenced. The authors suggest an approach to one of USA) the few remaining open problems in prokaryotic gene finding: accurate prediction of gene starts allowing for Steering & Program Committee: Pierre Baldi, Mark the possibility of overlapping protein-coding regions, a Borodovsky, Soren Brunak, Chris Burge, Jim Fickett, relatively common occurrence in prokaryotic genomes Steven Henikoff, Eugene Koonin, Andrej Sali, Chris which seems to be rare in eukaryotes. Their algorithm Sander, Gary Stormo involves application of a hidden Markov model of gene structure to each of the six global reading frames (three on This issue of Bioinformatics contains reports on selected each strand) of a genome separately, followed by a simple papers presented at the international conference in At- post-processing step to remove completely overlapping lanta. The conference was held at one of the midtown genes which rarely occur in nature. Promising results are hotels offering a magnificent bird’s-eye view to the obtained in identifying gene starts, and the possibility of cosmopolitan capital of the Southeast of the USA. The systematic biases in the annotation of several bacterial conference agenda included keynote lectures by Russell genomes is raised. -
Statistic Models in Biological Network Analysis
Statistic Models in Biological Network Analysis WANLU LIU and AUSTIN QUACH, University of California, Los Angeles As the development of high throughput technology, it becomes more and more important for us to look at the behavior of genes, proteins and metabolites at whole genome level. Instead of studying a single gene, by understanding biological process at network level, we can shed light on some new mechanisms in both developmental processes and diseases. Modeling of these networks is an important challenge in the post genomic era. Several statistical models have been applied to analysis the biological networks including logic-based models, continuous models and correlation-based models. In this review, we focus on the di↵erent methods for reconstructing biological networks and analysis of their functionality. Categories and Subject Descriptors: I.5.1 [Networks Analysis]: Models—Biological Networks General Terms: Network Analysis Additional Key Words and Phrases: Biological Network, Statistic Models, Network Construction, Network Analysis 1. INTRODUCTION In the post-genomic era, genome-wide experiments have become commonplace and methods to inter- rogate such datasets are becomingly increasingly important. One approach to analyzing these large datasets is to model the experimental observations using a network approach. In a process known as (re)construction, inference, identification or reverse engineering, model parameters are fit to the data yielding a defined network that can then be analyzed to gain higher level insights into the com- plex molecular biology. Network biology is an expansive field and there are many different methods that are employed. In this survey paper we briefly review the frameworks of several popular mod- eling methods including logical models, boolean networks, Bayesian networks, weighted correlation networks, differential equations, and some basic network analysis concepts. -
Highlights (PDF)
GENETICS A PERIODICAL RECORD OF INVESTIGATIONS BEARING ON HEREDITY AND VARIATION Founded in 1916 and published by The Genetics Society of America VOLUME 179, MAY–AUGUST 2008 GENETICS VOLUME 179, MAY–AUGUST 2008 EDITORIAL BOARD Elizabeth W. Jones, Editor-in-Chief Carnegie Mellon University Mark Johnston, Acting Editor-in-Chief Washington University School of Medicine Montserrat Aguade´ Kent Golic Rasmus Nielsen Universitat de Barcelona University of Utah University of Copenhagen, Centre for Bioinformatics Eric E. Alani Susan Gottesman Cornell University National Institutes of Health-NCI Michael Nonet Washington University School of Medicine Kathryn V. Anderson David I. Greenstein Sloan-Kettering Institute University of Minnesota Magnus Nordborg University of Southern California Brenda J. Andrews David Jonah Grunwald University of Utah University of Toronto Peter J. Oefner hris aley Robert R. H. Anholt C H Stanford University Roslin Institute (Edinburgh) North Carolina State University Andrew Paterson ichael ampsey Elja Arjas M H University of Georgia University of Helsinki Robert Wood Johnson Medical School-UMDNJ David Rand orman rnheim Brown University N A awrence arshman University of Southern California L G. H University of Nebraska, Lincoln Eric J. Richards onnie artel Washington University B B ancy ollingsworth Rice University N H Stony Brook University Mark D. Rose David Begun afri umayun Princeton University University of California, Davis M. Z H UMDNJ-New Jersey Medical School Paul Russell ames irchler J A. B ancy enkins The Scripps Research Institute University of Missouri N A. J National Cancer Institute-FCRDC Matthew S. Sachs arl roman K W. B homas aufman Texas A&M University University of Wisconsin, Madison T C. -
PSB 2009 Attendees (As of January 9, 2009) Mario Albrecht Max Planck
PSB 2009 Attendees (as of January 9, 2009) Mario Albrecht Steven Brenner Max Planck Institute for Informatics University of California, Berkeley Hesham Ali Andrzej Brodzik University of Nebraska at Omaha The MITRE Corporation Gil Alterovitz Lukas Burger Harvard/MIT Institute of Bioinformatics, University of Basel Gregory Arnold Amgen Gregory Burrows OHSU Adam Asare UCSF/ITN William Bush Vanderbilt University Pierre Baldi University of California Andrea Califano Columbia University Lars Barquist UC Berkeley J. Gregory Caporaso Univeristy of Colorado Denver James Bassingthwaighte Univeristy of Washington Vincent Carey Harvard Medical School Tanya Berger-Wolf University of Illinois at Chicago Yuhui Cheng University of California, San Diego Ghislain Bidaut INSERM U891 Institut Paoli-Calmette Raymond Cheong Johns Hopkins University Marco Blanchette Stowers Institute for Medical Research Annie Chiang Stanford University Ben Blencowe Gilsoo Cho Anthony Bonner Yonsei University University of Toronto Sung Bum Cho Ingrid Borecki Seoul National University Bioinformatics Washington University Kevin Cohen John Bouck University of Colorado Denver Ceres, Inc. Dilek Colak Philip Bourne King Faisal Specialist Hospital and University of California, San Diego Research Centre PSB 2009 Attendees (as of January 9, 2009) James Costello Laura Elnitski Indiana University NHGRI Anneleen Daemen Drew Endy Dept. Electrical Engineering, KULeuven Stanford University Denise Daley Eric Fahrenthold University of British Columbia Yiping Fan Paul Davis St Jude Children's -
2014 ISCB Accomplishment by a Senior Scientist Award: Gene Myers
Message from ISCB 2014 ISCB Accomplishment by a Senior Scientist Award: Gene Myers Christiana N. Fogg1, Diane E. Kovats2* 1 Freelance Science Writer, Kensington, Maryland, United States of America, 2 Executive Director, International Society for Computational Biology, La Jolla, California, United States of America The International Society for Computa- tional Biology (ISCB; http://www.iscb. org) annually recognizes a senior scientist for his or her outstanding achievements. The ISCB Accomplishment by a Senior Scientist Award honors a leader in the field of computational biology for his or her significant contributions to the com- munity through research, service, and education. Dr. Eugene ‘‘Gene’’ Myers of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden has been selected as the 2014 ISCB Accom- plishment by a Senior Scientist Award winner. Myers (Image 1) was selected by the ISCB’s awards committee, which is chaired by Dr. Bonnie Berger of the Massachusetts Institute of Technology (MIT). Myers will receive his award and deliver a keynote address at ISCB’s 22nd Image 1. Gene Myers. Image credit: Matt Staley, HHMI. Annual Intelligent Systems for Molecular doi:10.1371/journal.pcbi.1003621.g001 Biology (ISMB) meeting. This meeting is being held in Boston, Massachusetts, on July 11–15, 2014, at the John B. Hynes guidance of his dissertation advisor, An- sequences and how to build evolutionary Memorial Convention Center (https:// drzej Ehrenfeucht, who had eclectic inter- trees. www.iscb.org/ismb2014). ests that included molecular biology. Myers landed his first faculty position in Myers was captivated by computer Myers, along with fellow graduate students the Department of Computer Science at programming as a young student.