Class 11 Biology Chapter- 13 Respiration in Plants

Total Page:16

File Type:pdf, Size:1020Kb

Class 11 Biology Chapter- 13 Respiration in Plants CLASS 11 BIOLOGY CHAPTER- 13 RESPIRATION IN PLANTS CELLULAR RESPIRATION: The process of conversion of the chemical energy of organic substances into a metabolically usable energy within living cells is called cellular respiration. TYPES OF CELLULAR RESPIRATION: (i) Aerobic respiration: The process of respiration which requires molecular oxygen. (ii) Anaerobic respiration: The process of respiration which does not require molecular oxygen and occurs in the cytoplasm. MECHANISM OF RESPIRATION: Following are the steps- 1. GLYCOLYSIS / EMP Pathway: It involves a series of closely integrated reactions in which hexose sugars(usually glucose) are converted into pyruvic acid. It is common in both aerobic and anaerobic reactions. It occurs in the cytoplasm. It does not require oxygen. Gollowing are the steps of GLYCLOLYSIS: (i) Conversion of glucose to Fructose-1,6-diphosphate: First phosphorylation: Glucose is converted to Glucose -6-phosphate in the presence of enzyme hexokinase and Mg++ ions and energy in the form of ATP. Isomerization: Glucose-6-phosphate is converted to Fructose-6-phosphate in the presence of phosphohexoisomerase. Second phosphorylation: Fructose-6-phosphate is converted to Fructose-1,6- diphosphate by the use of energy in the form of ATP. (ii) Formation of pyruvic acid from fructose -1,6-diphosphate: Cleavage: Fructose-1,6-diphosphate splits into 3-phosphoglyceraldehyde and Dihydroxyacetone phosphate in the presence of enzyme aldolase. Phosphorylation and oxidative dehydrogenase: 3-phosphoglyceraldehyde is converted to 1,3-biphosphoglyceric acid. ATP generation(first): 1,3-biphosphoglyceric acid is converted to 3-phosphoglyceric acid in the presence of Mg++ and phosphoglycerokinase . Isomerization: 3-phosphoglyceric acid is converted to 2-phosphoglyceric acid in the presence of Mg++. Dehydration: 2-phosphoglyceric acid is converted to 2-phosphoenolpyruvic acid. ATP generation(second): 2-phosphoenolpyruvic acid is converted to pyruvic acid in the presence of ADP, pyruvate kinase and Mg++. 2. KREBS CYCLE CYCLE / TCA( Tricarboxylic Acid Cycle) / Citric Acid Cycle: Formation of citric acid: Acetyl CoA reacts with Oxaloacetic acid to form Citric acid in the presence of citrate synthase. Dehydration: Citric acid is converted to cis-aconitic acid in the presence of aconitase. Hydration I: Cis-aconitic acid is converted to Isocitric acid in the presence of acotinase. Dehydriogenation I: Isocitric acid is converted to Oxalosuccinic acid in the presence of CoA and NAD+ . Decarboxylation I: Oxalosuccinic acid is converted to alpha-ketoglutaric acid in the presence of carboxylase. Dehydrogenation II and decarboxylation II: (i) alpha-ketoglutaric acid is converted to Succinyl-CoA in the presence of NAD+ and CoA . (ii) Succinyl-CoA is converted to Succinic acid in the presence of succinic thiokinase and GDP. (iii) Dehydrogenation III: Succinic acid is converted to Fumaric acid in the presence of succinic dehydrogenase and FAD. Hydration II: Fumaric acid is converted to Malic acid in the presence of fumarase. Dehydrogenation IV: Malic acid is converted to Oxaloacetic acid by the use of NAD+. ELECTRON TRANSPORT SYSTEM /ETS: It is a chain of carriers located in the F1 particles of mitochondria .It consists of the following components : (i) NAD (Nicotinamide adenine dinucleotide) (ii) FAD and FMN (flavin nucleotides) (iii) Coenzyme Q (CoQ or Ubiquinone) (iv) Cytochromes (cyt b, c, a, a3) OXIDATIVE PHOSPHORYLATION: The synthesis of ATP by electron flow through the ETS, with oxygen as the terminal electron acceptor. (i) At three sites along the chain each electron pair loses so much of free energy that each site a phosphate utilizes this energy in binding with an ADP. (ii) An electron pair which originates from NADH yields three molecules of ATP. (iii) An electron pair which originates from FADH2 yields two molecules of ATP. (iv) ATP synthesis in mitochondria is brought about by ATP-synthesizing enzyme complexes. (v) Each complex has two major components-F0 and F1 . (vi) F1 protudes like a knob into the matrix from inner membrane of mitochondria. (vii) F1 is attached by a stalk which is embedded in the membrane. ANAEROBIC RESPIRATION : FERMENTATION: (i) In fermentation, carbohydrates are degraded into two or more simpler molecules without the utilization of oxygen. (ii) Micro-organisms involved in fermentation are called anaerobes. (iii) During the process of fermentation, glucose is first converted to pyruvic acid. (iv) In the next step pyruvic acid is converted to ethanol and CO2 /lactic acid. (v) Lactic acid bacteria convert pyruvic acid to lactic acid.In this process , NADH produced by glycolysis is reoxidised to NAD+ donating one hydrogen ion and two electrons to pyruvic acid which yields lactic acid. (vi) No ATP is produced by this process. (vii) Alcoholic fermentation by yeast. Pyruvic acid is further changed to acetaldehyde by releasing a molecule of CO2. Acetaldehyde oxidizes NADH and is reduced tio ethanol. The net gain of ATP per molecule of glucose fermented is two. AMPHIBOLIC PATHWAY: (i) All carbohydrates convert into glucose and other substances like fats, proteins act as respiratory substrates but they do not enter the respiratory pathway. (ii) If fatty acids are to be respired they are degraded to acetyl CoA to enter trhe pathway. (iii) Glycerol enter the pathway by converting to PGAL. (iv) Proteins are degraded by proteases and the individual amino acids enter the pathway (kreb’s cycle) as pyruvate/acetyl CoA. (v) Since the respiratory process involves the breakdown of substrates therefore it is also called catabolic pathway. (vi) Now when the organism need to synthesise fatty acids, acetyl CoA is withdrawn from the respiratory pathway. (vii) As both catabolic and anabolic process occurs in respiratory pathway, it is called amphibolic pathway. RESPIRATORY QUOTIENT: The molar ratio of CO2 evolved to O2 absorbed in respiration is known as respiratory quotient. (i) When carbohydrates are completely oxidized the value of R.Q. is unity(one). (ii) When fats and proteins are the substrates , the value of R.Q. is less than unity(0.5-0.9). (iii) When the substrates are organic compounds ,the value is more than unity(1.3 –4.0). (iv) In succulents likeOpuntia and Bryophyllum where there is incomplete oxidation of carbohydrates, no CO2 is produced and hence the value of R.Q is zero. (v) R.Q is measured by Ganong’s respirometer . (vi) R.Q in humans is 0.85. QUESTIONS-ANSWERS: Q1. What are respiratory substrates? Name the most common respiratory substrate. A1. The compounds that are oxidized during the process of respoiration are known as respiratory substrates, Carbohydrates are the most common respiratory substrate. Q2. Name the connecting link between glycolysis and the kreb’s cycle. A2. Formation of acetyl coenzyme A. Q3. What is the other name of glycolytic pathway? A3. Embden-Meyerhof-Parnas(EMP) pathway. Q4. Where are the enzymes of the electron transport system found? A4. In cristae of mitochondria. Q5. What is used and produced in glycolysis? A5. Used : 1 Glucose, 4 ADP, 4 phosphate groups, 2 ATP, 2NAD+. Produced: 2 pyruvic acid, 4 ATP, 2 phosphate groups, 2 ADP, 2 NADH+H+, 2H20. Q6. Explain the major steps of glycolysis. A6. Q7. Explain amphibolic pathway. A7. (i) All carbohydrates convert into glucose and other substances like fats, proteins act as respiratory substrates but they do not enter the respiratory pathway. (ii) If fatty acids are to be respired they are degraded to acetyl CoA to enter trhe pathway. (iii) Glycerol enter the pathway by converting to PGAL. (iv) Proteins are degraded by proteases and the individual amino acids enter the pathway (kreb’s cycle) as pyruvate/acetyl CoA. (v) Since the respiratory process involves the breakdown of substrates therefore it is also called catabolic pathway. (vi) Now when the organism need to synthesise fatty acids, acetyl CoA is withdrawn from the respiratory pathway. (vii) As both catabolic and anabolic process occurs in respiratory pathway, it is called amphibolic pathway. ACTIVITIES: 1. LEARN THE CHAPTER THOROUGHLY. 2. DRAW THE FLOW CHARTS OF KREB’ CYCLE, EMP PATHWAY ETC. .
Recommended publications
  • Anaerobic Performance and Metabolism of the Hyperthyroid Heart
    Anaerobic Performance and Metabolism of the Hyperthyroid Heart Rum A. ALTSCHULD, ALAN WEISS, FRED A. KRUGER, and ARNOLD M. WEISSLER From the Department of Medicine, Ohio State University College of Medicine, Columbus, Ohio 43210 A B S T R A C T Anaerobically perfused hearts from rats all consequences of hyperthyroilism (7-9). These with experimentally induced hyperthyroidism exhibited changes are accompanied by increased cardiac oxygen accelerated deterioration of pacemaker activity and ven- consumption and free fatty acid utilization, whereas tricular performance. The diminished anaerobic per- glucose uptake and oxidation are decreased (10, 11). formance of hyperthyroid hearts was associated with In view of the recent demonstration in our laboratory decreased adenosine triphosphate (ATP) levels and a of the importance of glucose metabolism in preserving reduced rate of anaerobic glycolysis as reflected in de- structure and function of the anoxic heart (12) and the creased lactic acid production during 30 min of anoxic reported inhibition of glucose metabolism in hyperthy- perfusion. roid hearts (6), it seemed desirable to determine whether Studies on whole heart homogenates demonstrated in- anaerobic metabolism is altered in the intact hearts hibition at the phosphofructokinase (PFK) step of the from hyperthyroid animals and to ascertain what effects glycolytic pathway. Such inhibition was not demonstrated these metabolic alterations have on anoxic performance in the hyperthyroid heart cytosol. It is postulated that of the heart. an inhibitor of PFK which resides dominantly in the particulate fraction is probably responsible for the di- METHODS minished anaerobic glvcolvsis and performance of the Male Wistar rats fed ad lib. with Purina laboratory chow hyperthyroid heart.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Phosphoenolpyruvic Acid (potassium salt) Item No. 19192 CAS Registry No.: 4265-07-0 Formal Name: 2-(phosphonooxy)-2-propenoic acid, O HO monopotassium salt Synonym: PEP-K P OH - MF: C H O P • K O O 3 4 6 + FW: 206.1 • K O Purity: ≥95% Supplied as: A crystalline solid Storage: -20°C Stability: As supplied, 2 years from the QC date provided on the Certificate of Analysis, when stored properly Laboratory Procedures Phosphoenolpyruvic acid (potassium salt) is supplied as a crystalline solid. Phosphoenolpyruvic acid (potassium salt) is sparingly soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide. For biological experiments, we suggest that organic solvent-free aqueous solutions of phosphoenolpyruvic acid (potassium salt) be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of phosphoenolpyruvic acid (potassium salt) in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Phosphoenolpyruvic acid plays a role in both glycolysis and gluconeogenesis. During glycolysis, it is formed by the action of enolase on 2-phosphoglycerate and is metabolized to pyruvate by pyruvate kinase.1 One molecule of ATP is formed during its metabolism in this pathway. During gluconeogenesis, it is formed from phosphoenolpyruvate carboxykinase-catalyzed oxaloacetate decarboxylation and GTP hydrolysis.1-3 In plants, it is metabolized to form aromatic amino acids and also serves as a substrate for phosphoenolpyruvate carboxylase-catalyzed carbon fixation.4 References 1. Muñoz, M.E. and Ponce, E. Pyruvate kinase: Current status of regulatory and functional properties.
    [Show full text]
  • Antibiotics As a Feed Additive Promote Growth of Chickens by Modulating the Gut Microbiome
    Antibiotics as a Feed Additive Promote Growth of Chickens by Modulating the Gut Microbiome Xiangkai Li ( [email protected] ) Lanzhou University https://orcid.org/0000-0002-5704-9791 Ying Wu Lanzhou University Liang Peng Lanzhou University Rong Han Lanzhou University pengya Feng Lanzhou University Aman Khan Lanzhou University Pu Liu Lanzhou University Research Keywords: Antibiotic, Gut microbiota, Metabonomic, Lipid and amid acid metabolism, Immune response Posted Date: June 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-571302/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/31 Abstract Background: Antibiotics widely used as growth promoters in the agricultural industry, but their mechanisms have not been fully explored. Antibiotics has a connection effect on the gut microbiome which plays a vital role in host metabolism and immune response. Here, we investigated the association of antibiotic and gut microbiome in broiler chicken. Methods: Polymyxin (PMX) and amoxicillin (AMX) were selected as feed additives in broiler chicken, and gut bacterial composition assessed by quantitative real-time PCR and high-throughput sequencing of bacterial 16S rRNA. Metabolome and lipidomic of feces and serum samples were analyzed using liquid chromatograpy-tandem mass spectrometry (LC-MS). We further assessed changes in the microbiota and metabolism which underwent antibiotics treatment. Results: The administration of antibiotic increasing, the average weight of chickens by up to 4.9% and altered number and structure of the intestinal microora compared to the un-treated group. The bacterial component of gut microbiota in antibiotic groups was showed a lower prevalence of Firmicutes and Bacteroidetes phyla and higher prevalence of a high diversity (Proteobacteria).
    [Show full text]
  • The Peculiar Glycolytic Pathway in Hyperthermophylic Archaea: Understanding Its Whims by Experimentation in Silico
    Article The Peculiar Glycolytic Pathway in Hyperthermophylic Archaea: Understanding Its Whims by Experimentation In Silico Yanfei Zhang 1, Theresa Kouril 2,3, Jacky L. Snoep 3,4,5, Bettina Siebers 2, Matteo Barberis 1 and Hans V. Westerhoff 1,4,5,* 1 Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; [email protected] (Y.Z.); [email protected] (M.B.) 2 Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environment Research (CWE), University Duisburg—Essen, Universitätsstr. 5, 45141 Essen, Germany; [email protected] (T.K.); [email protected] (B.S.) 3 Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa; [email protected] 4 The Manchester Centre for Integrative Systems Biology, Manchester Institute for Biotechnology, School for Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, UK 5 Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-598-7230 Academic Editor: Samuel De Visser Received: 12 March 2017; Accepted: 13 April 2017; Published: 20 April 2017 Abstract: Mathematical models are key to systems biology where they typically describe the topology and dynamics of biological networks, listing biochemical entities and their relationships with one another. Some (hyper)thermophilic Archaea contain an enzyme, called non- phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), which catalyzes the direct oxidation of glyceraldehyde-3-phosphate to 3-phosphoglycerate omitting adenosine 5′-triphosphate (ATP) formation by substrate-level-phosphorylation via phosphoglycerate kinase.
    [Show full text]
  • Citric Acid Cycle
    Lecture: 4 Biochemistry Anwar J Almzaiel Citric acid cycle Citric acid cycle (Krebs cycle, tricarboxylic acid cycle) is a series of reactions in mitochondria that bring about the catabolism of acetyl residues, liberating hydrogen equivalents, which upon oxidation lead to the release of most the energy of tissues fuels. The major function of cycle is to act as the final common pathway for oxidation of fatty acids, carbohydrates and proteins. It includes the electron transport system, the energy is produced in large amounts. Several of these processes are carried out in many tissues but the liver is the only tissue in which all occur to a significant extent, thus it is lethal when large numbers of hepatic cell are damaged or replaced by connective tissue, as in acute hepatitis and cirrhosis respectively. This cycle is found in the mitochondria. It starts with pyruvic acid which comes from cytoplasm to the mitochondria to be converted with coenzymes (NAD) and enzymes into acetyl COA + Pyruvic acid + COA +NAD Acetyl CoA +NADH+ CO2 The enzymes needed are found in the mitochondria close to the enzymes of the respiratory chain The oxidation of pyruvate to acetyl-CoA Before pyruvate can enter the citric acid cycle, it must be transported into the mitochondria via a special pyruvate transporter that aids its passage across the inner mitochondrial membrane. Within the mitochondria, pyruvate is oxdatively decarboxylated into acetyl COA. The conversion of pyruvic acid to acetyl COA involves 5 types of reaction and each reaction is catalysed by different enzyme system these enzymes act as a multi enzyme system (complex).
    [Show full text]
  • Phosphoenolpyruvic Acid, an Intermediate of Glycolysis
    Journal of Health Science, 56(6) 727–732 (2010) 727 — Research Letter — Phosphoenolpyruvic Acid, drate with anti-oxidant properties and suggest that PEP is potentially useful as an organ preservation an Intermediate of Glycolysis, agent in clinical transplantation. Attenuates Cellular Injury Induced by Hydrogen Peroxide Key words —— Phosphoenolpyruvate, carbohydrate, oxidative stress, transplantation, cellular injury and 2-Deoxy-D-glucose in the Porcine Proximal Kidney Tubular INTRODUCTION Cell Line, LLC-PK1 Ischemia/reperfusion injury, which results from a ∗, a Yuki Kondo, Yoichi Ishitsuka, the interruption of blood flow and subsequent organ b, c a Daisuke Kadowaki, Minako Nagatome, reperfusion, contributes to graft dysfunction and a a Yusuke Saisho, Masataka Kuroda, acute graft rejection; it is, therefore, a major prob- c a Sumio Hirata, Mitsuru Irikura, lem in clinical organ transplantation.1–3) Oxidative d a, c Naotaka Hamasaki, and Tetsumi Irie stress and compromised energy metabolism are as- sociated, at least in part, with ischemia/reperfusion a Department of Clinical Chemistry and Informatics, Gradu- injury.4–7) To inhibit this, organ preservation so- ate School of Pharmaceutical Sciences, Kumamoto University, lutions such as Euro-Collins solution and Univer- 5–1 Oe-honmachi, Kumamoto 862–0973, Japan, bDepartment sity of Wisconsin solution are used.8–10) These so- of Biopharmaceutics, Graduate School of Pharmaceutical Sci- ences, Kumamoto University, 5–1 Oe-honmachi, Kumamoto lutions are generally composed of electrolytes and 862–0973,
    [Show full text]
  • FOOD ACIDS in the HUMAN BODY and Krebs Cycle
    FOOD ACIDS IN THE HUMAN through the intestinal wall into the BODY bloodstream in the form of amino acids, mono-saccharides, glycerol and emulsified The acidulants, malic acid, fumaric acid, and fatty acids. The residue passes through the citric acid, occur naturally in all living large intestine, where the main activities of organisms of both the vegetable and animal water absorption and proliferation of bacteria kingdom. They all play an integral part in the takes place, and is in due course excreted. normal respiratory processes in living cells. These compounds are formed in the A compound absorbed into the blood stream, metabolic cycles in the cells of plants and has one of three fates thereafter. animals. The acids provide the cell with energy and the carbon skeletons for the 1. It may interfere with the normal workings formation of amino acids. This takes place in of the body and will - unless it kills the the Krebs cycle. host first - be converted, probably in the liver, to some innocuous compound which Food consumption by man is essential for will be filtered out by the kidneys and providing energy to keep the engine of the excreted in the urine. human body running. A bite of food first gets broken up physically in the mouth and mixes 2. It may simply not fit any metabolic pattern with the alkaline saliva, which initiates in the body and, when it reaches the hydrolysis of starch and sugar. It is then kidneys, will be filtered out and excreted swallowed and passes into the stomach in the urine.
    [Show full text]
  • Carboxylic Acids
    13 Carboxylic Acids The active ingredients in these two nonprescription pain relievers are derivatives of arylpropanoic acids. See Chemical Connections 13A, “From Willow Bark to Aspirin and Beyond.” Inset: A model of (S)-ibuprofen. (Charles D. Winters) KEY QUESTIONS 13.1 What Are Carboxylic Acids? HOW TO 13.2 How Are Carboxylic Acids Named? 13.1 How to Predict the Product of a Fischer 13.3 What Are the Physical Properties of Esterification Carboxylic Acids? 13.2 How to Predict the Product of a B-Decarboxylation 13.4 What Are the Acid–Base Properties of Reaction Carboxylic Acids? 13.5 How Are Carboxyl Groups Reduced? CHEMICAL CONNECTIONS 13.6 What Is Fischer Esterification? 13A From Willow Bark to Aspirin and Beyond 13.7 What Are Acid Chlorides? 13B Esters as Flavoring Agents 13.8 What Is Decarboxylation? 13C Ketone Bodies and Diabetes CARBOXYLIC ACIDS ARE another class of organic compounds containing the carbonyl group. Their occurrence in nature is widespread, and they are important components of foodstuffs such as vinegar, butter, and vegetable oils. The most important chemical property of carboxylic acids is their acidity. Furthermore, carboxylic acids form numerous important derivatives, including es- ters, amides, anhydrides, and acid halides. In this chapter, we study carboxylic acids themselves; in Chapters 14 and 15, we study their derivatives. 457 458 CHAPTER 13 Carboxylic Acids 13.1 What Are Carboxylic Acids? Carboxyl group A J COOH The functional group of a carboxylic acid is a carboxyl group, so named because it is made group. up of a carbonyl group and a hydroxyl group (Section 1.7D).
    [Show full text]
  • Biol. Pharm. Bull. 42(1): 123-129 (2019)
    Vol. 42, No. 1 Biol. Pharm. Bull. 42, 123–129 (2019) 123 Regular Article Targeting Pyruvate Kinase M2 and Hexokinase II, Pachymic Acid Impairs Glucose Metabolism and Induces Mitochondrial Apoptosis Guopeng Miao,* Juan Han, Jifeng Zhang, Yihai Wu, and Guanhe Tong* Department of Bioengineering, Huainan Normal University; Huainan 232038, China. Received September 20, 2018; accepted October 18, 2018; advance publication released online October 30, 2018 Pachymic acid (PA), a triterpenoid from Poria cocos, has various pharmacological effects, including anti-inflammatory, anti-cancer, anti-aging, and insulin-like properties. PA has gained considerable research attention, but the mechanism of its anti-cancer effects remains unclear. In this study, pyruvate kinase M2 (PKM2) was discovered as a PA target via the drug affinity responsive target stability. Molecular docking and enzyme assay revealed that PA is a competing activator of PKM2, and mimics the natural activator, fructose-1,6-bisphosphate. PKM2 activation should augment the flux of glycolysis. However, decreased glu- cose uptake and lactate production after PA treatment was observed in SK-BR-3 breast carcinoma cells, indicating a blockage or downregulation of glycolysis. The potential of previously reported triterpenoids in blocking hexokinase II (HK2) activity inspired us to investigate the inhibition effect of PA on HK2 activity. Molecular docking and enzyme assay confirmed that PA was an inhibitor of HK2, with an IC50 of 5.01 µM. The possible consequences of glycometabolic regulation by PA, such as dissociation of HK2 from the mito- chondria, release of mitochondrial cytochrome (Cyt) c, depletion of ATP, and generation of reactive oxygen species, were further validated.
    [Show full text]
  • Topic: :Glycolysis: Structure Class: B.Sc. Part-Iii (Hons.) Paper: I Group: A
    TOPIC: :GLYCOLYSIS: STRUCTURE CLASS: B.SC. PART-III (HONS.) PAPER: I GROUP: A FACULTY NAME: DR. KUMARI SUSHMA SAROJ DEPARTMENT: ZOOLOGY COLLEGE: DR.L.K.V.D.COLLEGE, TAJPUR, SAMASTIPUR STEP 8: PHOSPHOGLYCERATE MUTASE • THE ENZYME PHOSPHOGLYCERO MUTASE RELOCATES THE P FROM 3 PHOSPHOGLYCERATE FROM THE 3RD CARBON TO THE 2ND CARBON TO FORM 2 PHOSPHOGLYCERATE. • THIS STEP INVOLVES A SIMPLE REARRANGEMENT OF THE POSITION OF THE PHOSPHATE GROUP ON THE 3 PHOSPHOGLYCERATE MOLECULE, MAKING IT 2 PHOSPHOGLYCERATE. • THE MOLECULE RESPONSIBLE FOR CATALYZING THIS REACTION IS CALLED PHOSPHOGLYCERATE MUTASE (PGM). • A MUTASE IS AN ENZYME THAT CATALYZES THE TRANSFER OF A FUNCTIONAL GROUP FROM ONE POSITION ON A MOLECULE TO ANOTHER. • THE REACTION MECHANISM PROCEEDS BY FIRST ADDING AN ADDITIONAL PHOSPHATE GROUP TO THE 2′ POSITION OF THE 3 PHOSPHOGLYCERATE. • THE ENZYME THEN REMOVES THE PHOSPHATE FROM THE 3′ POSITION LEAVING JUST THE 2′ PHOSPHATE ,AND THUS YIELDING 2 PHSOPHOGLYCERATE. • IN THIS WAY, THE ENZYME IS ALSO RESTORED TO ITS ORIGINAL, PHOSPHORYLATED STATE. STEP 9: ENOLASE • THE ENZYME ENOLASE REMOVES A MOLECULE OF WATER FROM 2- PHOSPHOGLYCERATE TO FORM PHOSPHOENOLPYRUVIC ACID (PEP). • THIS STEP INVOLVES THE CONVERSION OF 2 PHOSPHOGLYCERATE TO PHOSPHOENOLPYRUVATE (PEP). • THE REACTION IS CATALYZED BY THE ENZYME ENOLASE. • ENOLASE WORKS BY REMOVING A WATER GROUP, OR DEHYDRATING THE 2 PHOSPHOGLYCERATE. • THE SPECIFICITY OF THE ENZYME POCKET ALLOWS FOR THE REACTION TO OCCUR THROUGH A SERIES OF STEPS TOO COMPLICATED TO COVER HERE. STEP 10: PYRUVATE KINASE • THE ENZYME PYRUVATE KINASE TRANSFERS A P FROM PHOSPHOENOLPYRUVATE(PEP) TO ADP TO FORM PYRUVIC ACID AND ATP RESULT IN STEP 10.
    [Show full text]
  • 351 Section 2 General Information Concerning
    SECTION 2 GENERAL INFORMATION CONCERNING THE GENES AND THEIR ENZYMES THAT CONFER TOLERANCE TO GLYPHOSATE HERBICIDE Summary Note This document summarises the information available on the source of the genes that have been used to construct glyphosate-tolerant transgenic plants, the nature of the enzymes they encode, and the effects of the enzymes on the plant’s metabolism. Scope of this document: OECD Member countries agreed to limit this document to a discussion of the introduced genes and resulting enzymes that confer glyphosate tolerance to plants. The document is not intended to be an encyclopaedic review of all scientific experimentation with glyphosate-tolerant plants. In addition, this document does not discuss the wealth of information available on the herbicide glyphosate itself or the uses of the herbicide in agricultural and other applications. Food safety aspects of the use of glyphosate on glyphosate-tolerant transgenic plants are not discussed. Such information is available from other sources, including the respective governmental organisations which regulate the use of the herbicide. While the focus of this document is on the genes and enzymes involved in encoding glyphosate tolerance, reference is not made to specific plant species into which glyphosate tolerance might be introduced. Any issues relating to the cultivation of glyphosate-tolerant plants or to the potential for, or potential effects of, gene transfer from a glyphosate-tolerant plant to another crop plant or to a wild relative are outside the agreed scope of this document. It is intended, however, that this document should be used in conjunction with specific plant species biology Consensus Documents (see list of publications at the front of the document) when a biosafety assessment is made of plants with novel glyphosate herbicide resistance.
    [Show full text]
  • Comparative Transcriptomic Analysis of Two Saccharopolyspora Spinosa
    www.nature.com/scientificreports OPEN Comparative transcriptomic analysis of two Saccharopolyspora spinosa strains reveals the relationships between primary metabolism and spinosad production Yunpeng Zhang1,4, Xiaomeng Liu1,4, Tie Yin1, Qi Li1, Qiulong Zou1, Kexue Huang2, Dongsheng Guo3 & Xiaolin Zhang1,3* Saccharopolyspora spinosa is a well-known actinomycete for producing the secondary metabolites, spinosad, which is a potent insecticides possessing both efciency and safety. In the previous researches, great eforts, including physical mutagenesis, fermentation optimization, genetic manipulation and other methods, have been employed to increase the yield of spinosad to hundreds of folds from the low-yield strain. However, the metabolic network in S. spinosa still remained un-revealed. In this study, two S. spinosa strains with diferent spinosad production capability were fermented and sampled at three fermentation periods. Then the total RNA of these samples was isolated and sequenced to construct the transcriptome libraries. Through transcriptomic analysis, large numbers of diferentially expressed genes were identifed and classifed according to their diferent functions. According to the results, spnI and spnP were suggested as the bottleneck during spinosad biosynthesis. Primary metabolic pathways such as carbon metabolic pathways exhibited close relationship with spinosad formation, as pyruvate and phosphoenolpyruvic acid were suggested to accumulate in spinosad high-yield strain during fermentation. The addition of soybean oil in the fermentation medium activated the lipid metabolism pathway, enhancing spinosad production. Glutamic acid and aspartic acid were suggested to be the most important amino acids and might participate in spinosad biosynthesis. Spinosyns is a series of macrolide antibiotics consisted of a tetracyclic lactone decorated with an amino sugar, forosamine, and a natural sugar, 2,3,4-tri-O-methylated-rhamnose1,2.
    [Show full text]