Tysoe(Upper Middle)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A News and Events Diary from Wildlife and Conservation Groups in the Ipswich Area
Pantaloon Bee – see page 9 © Matt Garnham September - December 2018 A news and events Produced by the diary from wildlife and conservation groups in the Ipswich area BlueSnippets alien found White Admiral Lydia Woods in town Richard Stewart On the afternoon of Friday June 22nd my wife and I were walking down Westerfield Road in Ipswich and just past the gate into Christchurch Park we saw a white admiral on the pavement. It appeared to be a newly emerged While walking through Kiln Meadow on a warm adult but had probably been caught morning in July, I was more than a little surprised to in a vehicle slipstream. I cupped my hands around it, walked across the be confronted with a bright flash of blue! road and released the butterfly over the park railings. This was one of the On closer inspection I discovered a rather battered looking blue morpho butterfly new species I predicted for the park resting on the ground - not something you’d expect to see in Suffolk. These butterflies in future years as it has steadily been are generally found in Central and South America, although they are a popular choice colonising towards Ipswich. One was for butterfly houses – it’s likely this one escaped from the butterfly house situated at seen and photographed in The Dales Jimmy’s Farm. After taking some photos of this blue alien, I left the butterfly resting in a in 2015. With this in mind more patch of bindweed. While this was a lovely sight to see, hopefully it won’t be a regular honeysuckle, the larval food plant, occurrence. -
VMG Kentucky Bluegrass Revised 2017
Vol.1, No. 28 (Rev.). Approved 05/26/2017 VEGETATION MANAGEMENT GUIDELINE Kentucky Bluegrass (Poa pratensis L.) SPECIES CHARACTER DESCRIPTION Kentucky bluegrass is a perennial grass that may form a dense mat of short creeping rhizomes. Leaves are usually smooth, 0.08-0.4 inches (2-9 mm) wide, up to 15.8 inches (40 cm) long, flat to folded, with a boat-shaped tip. Sheaths surrounding the flowering stalk are rounded or flattened with ligules 0.03-0.2 inches (1-5 mm) long. Stems are numerous in a tuft and grow 12-36 inches (30-91 cm) high. The erect panicles are up to 36 inches (1 m) tall and pyramidal at top with distinct whorls of branches in the inflorescence. Flowers occur in oval spikelets from 0.1-0.2 inches (3-6 mm long) with three to six individual flowers in each spikelet. Bluegrasses (the genus Poa) are distinguished by their flat leaf blades, 2-6 flowered panicles, 1-3 nerved glumes (sterile scales at the base of a spikelet) and a tuft of cobwebby hairs at the base of the 5-nerved lemmas (small scales at the base of a floret). Grasses, in general, are fairly difficult to identify, and Kentucky bluegrass should be accurately identified before attempting any control measures. If identification of the species is in doubt, the plant's identity should be confirmed by a knowledgeable individual and/or by consulting appropriate manuals or keys. DISTRIBUTION Kentucky bluegrass occurs throughout Canada and south to Mexico. It is widespread in the United States, occurring in all 50 states, but is less common in the South. -
Kentucky Bluegrass (Poa Pratensis) DESCRIPTION: Originally from Europe (Not Kentucky), This Plant Is the Primary Component of Most Lawns
Weed Identification and Control Sheet: www.goodoak.com/weeds Kentucky Bluegrass (Poa pratensis) DESCRIPTION: Originally from Europe (not Kentucky), this plant is the primary component of most lawns. Aside from corn, this may now be the most common grass in the eastern United States due to its dominance of our human landscape. This species often escapes cultivation and can be a problematic invasive species in our natural areas. Considerable time and resources are invested into maintaining this species in residential and corporate landscapes. Irrigating lawns uses up to 30% of municipal water supplies; this waste puts our long term supply of clean fresh water at risk. Pesticides, herbicides and petro- chemical fertilizers are spread on lawns at ten times the rate they are applied to agricultural lands. As a result, lawns are the primary source of pollution in lakes, streams and groundwater in urban and suburban areas. Exhaust from mowers and trimmers cause up to 33% of air pollution in urban areas. Lastly, these low mown lawns provide no habitat for our native wildlife, and as a result urban development is a leading cause of habitat loss. IDENTIFICATION: Though most people see this plant just about every day, few people look at it closely. Since there are often other non-native species of grasses in lawns, such as fescue, a few distinct features can help you tell Kentucky bluegrass apart when necessary. When not mown off, the leaf tips look like the front end or “keel” of a boat. Only grasses in the genus Poa have this feature. Also, when Kentucky bluegrass is not mown it will develop a distinctive panicle of small, green, wind- pollinated flowers. -
Plant Fact Sheet for Pine Bluegrass (Poa Secunda)
Plant Fact Sheet secunda as it occurs west of the Cascades in the PINE BLUEGRASS Pacific Northwest. Poa secunda J. Presl Uses: Pine bluegrass is a native cool season plant symbol = POSE bunchgrass of small to moderate stature useful for restoration of upland meadows, wet prairies, and pine Contributed by: USDA NRCS Plant Materials Center, or oak savanna, depending on region. While slow to Corvallis, Oregon establish, it is drought tolerant and useful for dry, rocky outcrops as well as moist, slower draining sites. Other uses include revegetation, rehabilitation after wildfire, erosion control in mixes with other grasses, upland bird habitat (nesting cover, source of seed), and natural area landscaping. Specific information on livestock and wildlife utilization of pine bluegrass west of the Cascades is lacking. However, on drier western rangelands, ecotypes within the Poa secunda complex have value for livestock grazing and big game forage, especially in early spring. Palatability prior to dormancy and again in fall is rated fair to good for most ungulates, small mammals, and certain birds. Productivity can be low, especially in dry years. Potential uses that need further testing west of the Cascades are low input lawns and cover crops in vineyards or other horticultural crops where its early summer dormancy may be beneficial. Description: Pine bluegrass is a fine textured, short to medium lived, strongly tufted perennial grass with erect culms (stems) 40-100 cm tall. Mature clumps are typically 10-16 cm wide and the foliage is light to medium green or slightly bluish, and mostly basal. Leaf blades are numerous, 1-2 mm wide, 5-22 cm long, flat to folded or rolled inward, and lax. -
The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification. -
Phylogenetic Analyses Reveal the Shady History of C4 Grasses Erika J
Phylogenetic analyses reveal the shady history of C4 grasses Erika J. Edwardsa,1 and Stephen A. Smithb aDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; and bNational Evolutionary Synthesis Center, Durham, NC 27705 Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved December 31, 2009 (received for review August 24, 2009) Grasslands cover more than 20% of the Earth's terrestrial surface, has provided a strong selection pressure for C4 evolution in and their rise to dominance is one of the most dramatic events of eudicots (4). Grasses have long been viewed as an interesting biome evolution in Earth history. Grasses possess two main photo- exception to this pattern (9). Significant positive correlations synthetic pathways: the C3 pathway that is typical of most plants between C4 grass abundance and growing season temperature and a specialized C4 pathway that minimizes photorespiration and have been documented at both continental and regional scales thus increases photosynthetic performance in high-temperature (10–13); C4 grasses dominate tropical grasslands and savannas and/or low-CO2 environments. C4 grasses dominate tropical and but are virtually absent from cool-temperate grasslands and subtropical grasslands and savannas, and C3 grasses dominate the steppes. Furthermore, both experimental measurements of world's cooler temperate grassland regions. This striking pattern photosynthetic light use efficiency (termed “quantum yield”), has been attributed to C4 physiology, with the implication that the and predictions of leaf models of C3 and C4 photosynthesis evolution of the pathway enabled C4 grasses to persist in warmer provide strong evidence that C4 grasses outperform C3 grasses at climates than their C3 relatives. -
Invertebrates – a Forgotten Group of Animals In
INVERTEBRATES – A FORGOTTEN GROUP OF ANIMALS IN INFRASTRUCTURE PLANNING? BUTTERFLIES AS TOOLS AND MODEL ORGANISMS IN SWEDEN John Askling (Phone: +46 13 12 25 75, Email: [email protected]), Calluna AB, Linköpings slot, SE-582 28 Linköping, Sweden, Fax: +46 13 12 65 95, and Karl-Olof Bergman, (Phone: +46 13 28 26 85, Email: [email protected]), Department of Biology, Linköping University, SE-581 82 Linköping, Sweden, Fax: +46 13 28 13 99 Abstract: There is a growing concern about the ecological effects of roads and railways on animals. There is increased mortality due to road kills, changes in movement patterns and changes in the physical environment in areas affected by infrastructure. A majority of all studies have been on larger mammals. There are also a growing number of studies on smaller animals like birds, amphibians and small mammals. However, the studies of invertebrates are few in comparison with vertebrates, and the knowledge of the effects of infrastructure on this group is limited. The importance of also including invertebrates in the studies of infrastructure is evident. First of all, this group of animals is the richest of species that exists. They are also ecologically important. In Sweden, a majority of the red-listed species are invertebrates. Of 4,120 red-listed species, fully 2,337 are invertebrates. Their generation times are fast, which also makes the response on changes in their environment fast, compared to mammals and birds. For that reason, invertebrates can be expected to give an indication earlier than mammals if an area is negatively affected by infrastructure. -
Phylogenetic Relatedness of Erebia Medusa and E. Epipsodea (Lepidoptera: Nymphalidae) Confirmed
Eur. J. Entomol. 110(2): 379–382, 2013 http://www.eje.cz/pdfs/110/2/379 ISSN 1210-5759 (print), 1802-8829 (online) Phylogenetic relatedness of Erebia medusa and E. epipsodea (Lepidoptera: Nymphalidae) confirmed 1 2, 3 4 MARTINA ŠEMELÁKOVÁ , PETER PRISTAŠ and ĽUBOMÍR PANIGAJ 1 Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia; e-mail: [email protected] 2 Institute of Animal Physiology, Slovak Academy of Science, Soltesovej 4–6, 040 01 Košice, Slovakia 3 Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, 841 04 Banská Bystrica, Slovakia 4 Institute of Biology and Ecology, Department of Zoology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia Key words. Lepidoptera, Nymphalidae, Erebia medusa, E. epipsodea, mtDNA, COI, ND1 Abstract. The extensive genus Erebia is divided into several groups of species according to phylogenetic relatedness. The species Erebia medusa was assigned to the medusa group and E. epipsodea to the alberganus group. A detailed study of the morphology of their copulatory organs indicated that these species are closely related and based on this E. epipsodea was transferred to the medusa group. Phylogenetic analyses of the gene sequences of mitochondrial cytochrome C oxidase subunit I (COI) and mitochondrial NADH dehydrogenase subunit 1 (ND1) confirm that E. medusa and E. epipsodea are closely related. A possible scenario is that the North American species, E. episodea, evolved after exclusion/isolation from E. medusa, whose current centre of distribution is in Europe. -
Arthropods in Linear Elements
Arthropods in linear elements Occurrence, behaviour and conservation management Thesis committee Thesis supervisor: Prof. dr. Karlè V. Sýkora Professor of Ecological Construction and Management of Infrastructure Nature Conservation and Plant Ecology Group Wageningen University Thesis co‐supervisor: Dr. ir. André P. Schaffers Scientific researcher Nature Conservation and Plant Ecology Group Wageningen University Other members: Prof. dr. Dries Bonte Ghent University, Belgium Prof. dr. Hans Van Dyck Université catholique de Louvain, Belgium Prof. dr. Paul F.M. Opdam Wageningen University Prof. dr. Menno Schilthuizen University of Groningen This research was conducted under the auspices of SENSE (School for the Socio‐Economic and Natural Sciences of the Environment) Arthropods in linear elements Occurrence, behaviour and conservation management Jinze Noordijk Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 3 November 2009 at 1.30 PM in the Aula Noordijk J (2009) Arthropods in linear elements – occurrence, behaviour and conservation management Thesis, Wageningen University, Wageningen NL with references, with summaries in English and Dutch ISBN 978‐90‐8585‐492‐0 C’est une prairie au petit jour, quelque part sur la Terre. Caché sous cette prairie s’étend un monde démesuré, grand comme une planète. Les herbes folles s’y transforment en jungles impénétrables, les cailloux deviennent montagnes et le plus modeste trou d’eau prend les dimensions d’un océan. Nuridsany C & Pérennou M 1996. -
Species Identification the 20Th in a Series by R
UNDERSTANDING TURF MANAGEMENT Species Identification The 20th in a series by R. W. Sheard, P.Ag. he management of turf often re- margins of the leaves overlapping (Fig. Kentucky bluegrass (Poa pratensis L.) Tquires we know what species of grass 1). Canada bluegrass (Poa compressa L.) we are working with. The manager may The leaf blade may be used in identify- Rough bluegrass (Poa trivialis L.) wish to know whether his sports field is ing species on the basis of the shape of the Annual bluegrass (Poa annua L.) bluegrass, ryegrass or tall fescue. His re- leaf tip. The differentiating characteristic Supina bluegrass (Poa sup ina cords may be misplaced as to what was is whether the leaf tip is boat shaped or Schreb.) seeded originally and with time a mixture pointed apex (Fig. 2). Italian ryegrass (Lolium multiflorum of species may have become dominated The leaf sheath is that tubular part of Lam.) by one species. So what is it? the leaf, arising at the node and closely Perennial ryegrass (Lolium perenne The answer is obtained through identi- clasping the stem or younger. growing L.) fying certain vegetative plant parts; then leaves upward to where the blade begins. Tall fescue (Festuca arundinaceae according to their characteristics decide The leaf sheath may be classified as split Schreb.) what species you are working with. The from the node to emergence of the blade, Meadow fescue (Festuca elatior L.) plant parts are the root system, the leaf split at the top but tube-like near the Creeping red fescue (Festuca rubra blade, the bud-shoot, the sheath, the col- node, or closed the entire distance from L.) lar, the auricle and the ligule. -
Weelsby Woods Park Management Plan 2015
WEELSBY WOODS PARK MANAGEMENT PLAN 2015 – 2020 North East Lincolnshire Council 1 FOREWORD WEELSBY WOODS PARK FIVE YEAR MANAGEMENT & MAINTENANCE PLAN 2015-2020 Parks and open spaces can be havens for wildlife, places for quiet relaxation and reflection, venues for healthy exercise, areas for play and focal points for the community. For these reasons, parks and open spaces have an important role in providing communities with a balanced and agreeable quality of life. North East Lincolnshire is therefore fortunate to have a number of high quality and accessible parks and open spaces scattered across the area. Each with its own charm; each serving its own community. Above all, parks make a key contribution to the image and identity of our local area. Our vision for parks is that by 2022, there will be a diverse network of safe, accessible and attractive green spaces that are well managed and maintained, through community participation, to enhance the quality of life, sense of well-being, health and learning opportunities for all sections of the community. The council is committed to creating spaces that are safe, clean and well maintained. In partnership with funding bodies, the Friends Group and many other partners, North East Lincolnshire Council is pleased to be able to preserve and enhance this special place for future generations to enjoy. 1 Weelsby Woods Park Management Plan 2015 - 2020 CONTENTS Contents WEELSBY WOODS PARK ........................................................................................ 1 MANAGEMENT PLAN 2015 -
Spreading Bluegrass Poa Pratensis Ssp. Irrigata (Lindm.) Lindb
Kentucky bluegrass Poa pratensis ssp. pratensis L. spreading bluegrass Poa pratensis ssp. irrigata (Lindm.) Lindb. f. rough bluegrass Poa trivialis L. Introduction Kentucky bluegrass, spreading bluegrass, and rough bluegrass are treated together here because they share similar biological and ecological attributes. Invasiveness Rank: 52 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Family: Poaceae Synonyms for Poa trivialis: Poa attica Boiss. & Heldr. Other common names: none Synonyms for Poa pratensis ssp. pratensis: Poa agassizensis Boivin & D. Löve, Poa angustifolia L., Description Poa angustiglumis Roshevitz, Poa pratensis ssp. Kentucky bluegrass and spreading bluegrass are agassizensis (Boivin & D. Löve) Taylor & MacBryde, strongly rhizomatous, mat-forming, perennial grasses Poa pratensis ssp. angustifolia (L.) Lej., Poa pratensis that grow 15 to 76 cm tall. Rough bluegrass lacks var. angustifolia (L.) Gaudin, P. pratensis var. anceps rhizomes and is tufted with decumbent bases. The culms (Gaudin) Grisebach, Poa pratensis var. domestica of rough bluegrass grow up to 91 cm tall. In all three Laestad., Poa pratensis var. gelida (Roemer & J.A. taxa, leaf blades are flat to folded and smooth with Schultes) Böcher, Poa pratensis var. iantha Wahlenb., double mid-ribs. Leaf tips are prow-shaped, as they are P. viridula Palibin. in most Poa species. Sheaths are rounded to somewhat Other common names: none keeled, partially closed, and smooth. Panicles are broadly pyramidal and compact.