Optimal Trajectories to Kuiper Belt Objects

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Trajectories to Kuiper Belt Objects Revista Mexicana de Astronomía y Astrofísica, 55, 39–54 (2019) OPTIMAL TRAJECTORIES TO KUIPER BELT OBJECTS D. M. Sanchez1, A. A. Sukhanov1,2, and A. F. B. A. Prado1 Received June 22 2018; accepted November 14 2018 ABSTRACT The present paper searches for transfers from the Earth to three of the Kuiper Belt Objects (KBO): Haumea, Makemake, and Quaoar. These trajectories are obtained considering different possibilities of intermediate planet gravity assists. The model is based on the “patched-conics” approach. The best trajectories are found by searching for the minimum total ∆V transfer for a given launch window, inside the 2023-2034 interval, and disregarding the ∆V required for the capture at the target object. The results show transfers with duration below 20 years that spend a total ∆V under 10 km/s. There is also one trajectory for each of the KBOs with ∆V under 10 km/s and duration below 10 years, using the Jupiter swingby. For the 20-year trajectories, there are also asteroids in the main belt that could be encountered with low additional ∆V , so increasing the scientific return of the mission. RESUMEN Se buscan trayectorias de transferencia entre la Tierra y tres objetos del Cin- turón de Kuiper (KBO): Haumea, Makemake y Quaoar. Las trayectorias se obienen considerando distintas posibilidades para la influencia gravitatoria de los planetas intermedios. El modelo se basa en el enfoque de “cónicas empalmadas”. Se encuen- tran las mejores trayectorias buscando la transferencia con una ∆V total mínima, para una ventana de lanzamiento en el intervalo 2023-2034, y despreciando la ∆V necesaria para la captura en la meta. Se encuentran transferencias con duración de menos de 20 años que requieren una ∆V menor que 10 km/s. También se encuentra una trayectoria para cada uno de los objetos KB con ∆V menor que 10 km/s y duración de menos de 10 años, empleando la atracción de Júpiter. Las trayecto- rias de 20 años podrían usarse también para encuentros con asteroides del cinturón central, lo cual aumentaría el valor científico de la misión. Key Words: methods: numerical — Kuiper belt objects: individual: Haumea — Kuiper belt objects: individual: Makemake — Kuiper belt objects: individual: Quaoar — space vehicles 1. INTRODUCTION However, with the advances of observational tech- © Copyright 2019: Instituto de Astronomía, Universidad Nacional Autónoma México The exploration of the Kuiper Belt Objects niques, it was discovered that several of these bod- (KBOs) is an important step to improve the theo- ies are orbited by one or more small moons, like ries of the formation of the Solar System, since these Haumea, Makemake, and Quaoar3. Another inter- bodies probably preserved material from the earlier esting point is that the New Horizons spacecraft, Solar System (Luu & Jewitt 2002). Furthermore, when passing by Pluto, discovered that Pluto has due to the large distance to these bodies from the signs of recent surface activity (less than 10 million Sun, the development of new technologies and tech- years old) (Moore et al. 2016). This fact can be niques for their exploration is required. an indication that other KBOs with sizes compa- A few years ago these objects were thought to be rable to Pluto could also present recent geological single bodies with no atmosphere, except for Pluto. activity. One example of this possibility is the po- 1 tential presence of cryovolcanism in Quaoar (Barucci National Institute for Space Research, INPE, Brazil. 2Space Research Institute of the Russian Academy of Sci- ences, IKI, Russia. 3http://www.cbat.eps.harvard.edu/minorsats.html 39 40 SANCHEZ, SUKHANOV, & PRADO et al. 2015). However, due to the large distance of during the flight.4 This was done considering var- the KBOs from the Sun, observational data were not ious possible transfer schemes for the given launch enough to significantly improve our knowledge about windows assuming that the dwarf planets will be these bodies, to carry out comparative planetology. flown by without capture. If capture is required for Spacecraft missions to one or more of these bod- these specific trajectories, a new optimization should ies beyond Pluto are necessary to provide us with be made taking into account the capture maneu- more detailed features of the KBOs. The present ver. Most of the transfer schemes considered include paper searches for optimal trajectories to (136108) various gravity assists of the planets, which lowers Haumea, (136472) Makemake, and (50000) Quaoar. the fuel consumption and/or shortens the time of These three bodies were chosen as targets because flight. Furthermore, multi-body missions are more they are good representatives of the KBOs and they interesting from the scientific point of view, since can also be classified as Trans-Neptunian Objects scientific data could be acquired during the flybys. (TNOs). Haumea and Makemake were recognized However, since the limited time of flight is consid- by the International Astronomical Union (IAU) as ered, the number of bodies in a single trajectory dwarf planets, but Quaoar is just a candidate to this may be limited. Thus, the number of the planets classification. Haumea is probably the most intrigu- was maximized for trajectories with 20 years of to- ing of the TNOs, because it is a triaxial ellipsoid tal time of flight, leaving a smaller number of plan- with fast rotation (3.9154 h), possesses two moons, ets for trajectories with total time of flight less than Namaka and Hi’iaka, and a recently discovered ring 20 years. The main difficulty in the design of these (Ortiz et al. 2017). The thin layer of carbon depleted trajectories is to find feasible combinations of plan- ice that surrounds the rocky core of Haumea is an- ets, within the proposed time interval, in a realistic other important characteristic of this dwarf planet time of flight. Some combinations are not always (Pinilla-Alonso et al. 2009). possible. For example, the combination used by the mission of the Voyager 2 (Kohlhase & Penzo 1977), Makemake is the third largest TNO, after Pluto Earth-Jupiter-Saturn-Uranus-Neptune-Outer space, and Eris. It also has a recently discovered moon, cannot be reproduced in this century anymore. This which has no official name yet, and its general desig- technique was widely used in missions to the outer nation is “S/2015 (136472) 1” (Parker et al. 2016). planets and outer space, such as in the Voyager 1 Quaoar also has a small moon, named Weywot. (Kohlhase & Penzo 1977), with the scheme E-J-S- This moon seems to be in an eccentric orbit. Like Outer space, Galileo (D’Amario et al. 1982), with Haumea, Quaoar has a rocky core covered by a thin the scheme E-V-E-E-A-A-J, Ulysses (Wenzel et al. layer of ice, but differently from Haumea, Quaoar 1992), with the scheme E-A-DV-E-A, Cassini (Per- has a high density and probably its core is en- alta & Flanagan 1995), with the scheme E-V-V-E-A- tirely formed by silicate material (Fraser et al. 2013). J-S, and the New Horizons (Guo & Farquhar 2005), Then, Quaoar probably is the densest TNO, which with the scheme E-A-J-P-Kuiper Belt, where E, V, makes it a good target for spacecraft exploration. J, S, U, N, P, A stand for Earth, Venus, Jupiter, Table 1 presents some orbital and physical charac- Saturn, Uranus, Neptune, and anăasteroid, respec- teristics of Haumea (Ragozzine & Brown 2009; Ortiz tively.ăDV means a deep space propulsive maneu- et al. 2017), Makemake (Brown 2013; Parker et al. ver. All of these schemes, except E-V-V-E, which 2016), and Quaoar (Fraser et al. 2013). The val- areăpossible for launch in 2023-2034 areăanalyzed in ues of the semi-major axes (a), eccentricities (e) and this paper. Also transfer schemes E-V-E-E-S andăE- © Copyright 2019: Instituto de Astronomía, Universidad Nacional Autónoma México inclinations (I) are approximate. The inclinations V-E-DV-E-S are considered. are given with respect to the ecliptic plane. Table 1 The method of patched-conics is a well-known also presents the masses (m), densities (ρ), and the technique and was used for the planning of several moons of these bodies. interplanetary missions (Kohlhase & Penzo 1977; D’Amario et al. 1982; Sukhanov 1999; Strange & We analyzed the dates of launch in the 2023- Longusky 2002; Solórzano et al. 2008). The descrip- 2034 interval. The only exception was direct flight to tion of the method can be found in several publi- Haumea with launch in 2058. The optimal transfer trajectories in terms of the minimum fuel consump- 4 tion were found. Instead of the fuel consumption In fact this is not quite correct because the launch and an equivalent parameter was considered, namely the deep space maneuvers will be made by different engines and ∆ ∆ cannot be simply summed. Although since the characteristics total V , which is the sum of the launch V in of the engines are not known in advance the sum of the ∆V s the low Earth parking orbit and all necessary ∆V s is the only way to estimate optimality of the transfers. OPTIMAL TRAJECTORIES TO KUIPER BELT OBJECTS 41 TABLE 1 SOME PHYSICAL AND ORBITAL CHARACTERISTICS OF HAUMEA, MAKEMAKE, AND QUAOAR Body m (kg) ρ (g/cm3) a (AU) e I (deg) Moon(s) Haumea 4.006 × 1021 1.885 43 0.19 28.2 Namaka, Hi’iaka Makemake < 4.4 × 1021 1.4 – 3.2 46 0.15 29.0 S/2015 (136472) 1 Quaoar 1.3 – 1.5×1021 4.2 44 0.04 8.0 Weywot cations, like Escobal (1968). The transfer trajecto- planets are considered, which increases the space- ries shown here can be useful for future missions to craft velocity and decreases the launch ∆V .
Recommended publications
  • Quaoar from Multi-Chord Stellar Occultations
    The Astrophysical Journal, 773:26 (13pp), 2013 August 10 doi:10.1088/0004-637X/773/1/26 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SIZE, SHAPE, ALBEDO, DENSITY, AND ATMOSPHERIC LIMIT OF TRANSNEPTUNIAN OBJECT (50000) QUAOAR FROM MULTI-CHORD STELLAR OCCULTATIONS F. Braga-Ribas1,2,28, B. Sicardy2,3,J.L.Ortiz4, E. Lellouch2, G. Tancredi5, J. Lecacheux2, R. Vieira-Martins1,6,7, J. I. B. Camargo1, M. Assafin7, R. Behrend8,F.Vachier6, F. Colas6, N. Morales4, A. Maury9, M. Emilio10,A.Amorim11, E. Unda-Sanzana12, S. Roland5, S. Bruzzone5, L. A. Almeida13, C. V. Rodrigues13, C. Jacques14, R. Gil-Hutton15, L. Vanzi16,A.C.Milone13, W. Schoenell4,11, R. Salvo5, L. Almenares5,E.Jehin17, J. Manfroid17, S. Sposetti18, P. Tanga19, A. Klotz20, E. Frappa21, P. Cacella22, J. P. Colque12, C. Neves10, E. M. Alvarez23, M. Gillon17, E. Pimentel14, B. Giacchini14, F. Roques2, T. Widemann2, V. S. Magalhaes˜ 13, A. Thirouin4, R. Duffard4, R. Leiva16, I. Toledo24, J. Capeche5, W. Beisker25, J. Pollock26,C.E.Cedeno˜ Montana˜ 13, K. Ivarsen27, D. Reichart27, J. Haislip27, and A. Lacluyze27 1 Observatorio´ Nacional, Rio de Janeiro, Brazil; [email protected] 2 Observatoire de Paris, LESIA, F-92195 Meudon, France 3 Universite´ Pierre et Marie Curie, F-75252 Paris, France 4 Instituto de Astrof´ısica de Andaluc´ıa-CSIC, E-18080 Granada, Spain 5 Observatorio Astronomico Los Molinos, Montevideo U-12400, Uruguay 6 Observatoire de Paris, IMCCE, F-75014 Paris, France 7 Observatorio´ do Valongo/UFRJ, Rio de Janeiro, Brazil 8 Observatoire
    [Show full text]
  • Mass of the Kuiper Belt · 9Th Planet PACS 95.10.Ce · 96.12.De · 96.12.Fe · 96.20.-N · 96.30.-T
    Celestial Mechanics and Dynamical Astronomy manuscript No. (will be inserted by the editor) Mass of the Kuiper Belt E. V. Pitjeva · N. P. Pitjev Received: 13 December 2017 / Accepted: 24 August 2018 The final publication ia available at Springer via http://doi.org/10.1007/s10569-018-9853-5 Abstract The Kuiper belt includes tens of thousands of large bodies and millions of smaller objects. The main part of the belt objects is located in the annular zone between 39.4 au and 47.8 au from the Sun, the boundaries correspond to the average distances for orbital resonances 3:2 and 2:1 with the motion of Neptune. One-dimensional, two-dimensional, and discrete rings to model the total gravitational attraction of numerous belt objects are consid- ered. The discrete rotating model most correctly reflects the real interaction of bodies in the Solar system. The masses of the model rings were determined within EPM2017—the new version of ephemerides of planets and the Moon at IAA RAS—by fitting spacecraft ranging observations. The total mass of the Kuiper belt was calculated as the sum of the masses of the 31 largest trans-neptunian objects directly included in the simultaneous integration and the estimated mass of the model of the discrete ring of TNO. The total mass −2 is (1.97 ± 0.30) · 10 m⊕. The gravitational influence of the Kuiper belt on Jupiter, Saturn, Uranus and Neptune exceeds at times the attraction of the hypothetical 9th planet with a mass of ∼ 10 m⊕ at the distances assumed for it.
    [Show full text]
  • Precision Astrometry for Fundamental Physics – Gaia
    Gravitation astrometric tests in the external Solar System: the QVADIS collaboration goals M. Gai, A. Vecchiato Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo] WAG 2015 M. Gai - INAF-OATo - QVADIS 1 High precision astrometry as a tool for Fundamental Physics Micro-arcsec astrometry: Current precision goals of astrometric infrastructures: a few 10 µas, down to a few µas 1 arcsec (1) 5 µrad 1 micro-arcsec (1 µas) 5 prad Reference cases: • Gaia – space – visible range • VLTI – ground – near infrared range • VLBI – ground – radio range WAG 2015 M. Gai - INAF-OATo - QVADIS 2 ESA mission – launched Dec. 19th, 2013 Expected precision on individual bright stars: 1030 µas WAG 2015 M. Gai - INAF-OATo - QVADIS 3 Spacetime curvature around massive objects 1.5 G: Newton’s 1".74 at Solar limb 8.4 rad gravitational constant GM 1 cos d: distance Sun- 1 1 observer c2d 1 cos M: solar mass 0.5 c: speed of light Deflection [arcsec] angle : angular distance of the source to the Sun 0 0 1 2 3 4 5 6 Distance from Sun centre [degs] Light deflection Apparent variation of star position, related to the gravitational field of the Sun ASTROMETRY WAG 2015 M. Gai - INAF-OATo - QVADIS 4 Precision astrometry for Fundamental Physics – Gaia WAG 2015 M. Gai - INAF-OATo - QVADIS 5 Precision astrometry for Fundamental Physics – AGP Talk A = Apparent star position measurement AGP: G = Testing gravitation in the solar system Astrometric 1) Light deflection close to the Sun Gravitation 2) High precision dynamics in Solar System Probe P = Medium size space mission - ESA M4 (2014) Design driver: light bending around the Sun @ μas fraction WAG 2015 M.
    [Show full text]
  • Solar System Planet and Dwarf Planet Fact Sheet
    Solar System Planet and Dwarf Planet Fact Sheet The planets and dwarf planets are listed in their order from the Sun. Mercury The smallest planet in the Solar System. The closest planet to the Sun. Revolves the fastest around the Sun. It is 1,000 degrees Fahrenheit hotter on its daytime side than on its night time side. Venus The hottest planet. Average temperature: 864 F. Hotter than your oven at home. It is covered in clouds of sulfuric acid. It rains sulfuric acid on Venus which comes down as virga and does not reach the surface of the planet. Its atmosphere is mostly carbon dioxide (CO2). It has thousands of volcanoes. Most are dormant. But some might be active. Scientists are not sure. It rotates around its axis slower than it revolves around the Sun. That means that its day is longer than its year! This rotation is the slowest in the Solar System. Earth Lots of water! Mountains! Active volcanoes! Hurricanes! Earthquakes! Life! Us! Mars It is sometimes called the "red planet" because it is covered in iron oxide -- a substance that is the same as rust on our planet. It has the highest volcano -- Olympus Mons -- in the Solar System. It is not an active volcano. It has a canyon -- Valles Marineris -- that is as wide as the United States. It once had rivers, lakes and oceans of water. Scientists are trying to find out what happened to all this water and if there ever was (or still is!) life on Mars. It sometimes has dust storms that cover the entire planet.
    [Show full text]
  • The Trans-Neptunian Haumea
    Astronomy & Astrophysics manuscript no. main c ESO 2018 October 22, 2018 High-contrast observations of 136108 Haumea? A crystalline water-ice multiple system C. Dumas1, B. Carry2;3, D. Hestroffer4, and F. Merlin2;5 1 European Southern Observatory. Alonso de Cordova´ 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile e-mail: [email protected] 2 LESIA, Observatoire de Paris, CNRS. 5 place Jules Janssen, 92195 Meudon CEDEX, France e-mail: [email protected] 3 European Space Astronomy Centre, ESA. P.O. Box 78, 28691 Villanueva de la Canada,˜ Madrid, Spain 4 IMCCE, Observatoire de Paris, CNRS. 77, Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Universit Paris 7 Denis Diderot. 4 rue Elsa Morante, 75013 Paris, France e-mail: [email protected] Received 2010 May 18 / Accepted 2011 January 6 ABSTRACT Context. The trans-neptunian region of the Solar System is populated by a large variety of icy bodies showing great diversity in orbital behavior, size, surface color and composition. One can also note the presence of dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest Trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims. We seek to constrain the state of the water ice of Haumea and its satellites, and investigate possible energy sources to maintain the water ice in its crystalline form. Methods. Spectro-imaging observations in the near infrared have been performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope.
    [Show full text]
  • Comparative Kbology: Using Surface Spectra of Triton
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]
  • Taxonomy of Trans-Neptunian Objects and Centaurs As Seen from Spectroscopy? F
    A&A 604, A86 (2017) Astronomy DOI: 10.1051/0004-6361/201730933 & c ESO 2017 Astrophysics Taxonomy of trans-Neptunian objects and Centaurs as seen from spectroscopy? F. Merlin1, T. Hromakina2, D. Perna1, M. J. Hong1, and A. Alvarez-Candal3 1 LESIA – Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 Institute of Astronomy, Kharkiv V. N. Karin National University, Sumska Str. 35, 61022 Kharkiv, Ukraine 3 Observatorio Nacional, R. Gal. Jose Cristino 77, 20921-400 Rio de Janeiro, Brazil Received 4 April 2017 / Accepted 19 May 2017 ABSTRACT Context. Taxonomy of trans-Neptunian objects (TNOs) and Centaurs has been made in previous works using broadband filters in the visible and near infrared ranges. This initial investigation led to the establishment of four groups with the aim to provide the mean colors of the different classes with possible links with any physical or chemical properties. However, this taxonomy was only made with the Johnson-Cousins filter system and the ESO J, H, Ks filters combination, and any association with other filter system is not yet available. Aims. We aim to edit complete visible to near infrared taxonomy and extend this work to any possible filters system. To do this, we generate mean spectra for each individual group, from a data set of 43 spectra. This work also presents new spectra of the TNO (38628) Huya, on which aqueous alteration has been suspected, and the Centaur 2007 VH305.
    [Show full text]
  • Atmospheres and Surfaces of Small Bodies and Dwarf Planets in the Kuiper Belt
    EPJ Web of Conferences 9, 267–276 (2010) DOI: 10.1051/epjconf/201009021 c Owned by the authors, published by EDP Sciences, 2010 Atmospheres and surfaces of small bodies and dwarf planets in the Kuiper Belt E.L. Schallera Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Abstract. Kuiper Belt Objects (KBOs) are icy relics orbiting the sun beyond Neptune left over from the planetary accretion disk. These bodies act as unique tracers of the chemical, thermal, and dynamical history of our solar system. Over 1000 Kuiper Belt Objects (KBOs) and centaurs (objects with perihelia between the giant planets) have been discovered over the past two decades. While the vast majority of these objects are small (< 500 km in diameter), there are now many objects known that are massive enough to attain hydrostatic equilibrium (and are therefore considered dwarf planets) including Pluto, Eris, MakeMake, and Haumea. The discoveries of these large objects, along with the advent of large (> 6-meter) telescopes, have allowed for the first detailed studies of their surfaces and atmospheres. Visible and near-infrared spectroscopy of KBOs and centaurs has revealed a great diversity of surface compositions. Only the largest and coldest objects are capable of retaining volatile ices and atmospheres. Knowledge of the dynamics, physical properties, and collisional history of objects in the Kuiper belt is important for understanding solar system formation and evolution. 1 Introduction The existence of a belt of debris beyond Neptune left over from planetary accretion was proposed by Kuiper in 1951 [1]. Though Pluto was discovered in 1930, it took over sixty years for other Kuiper belt objects (KBOs) to be detected [2] and for Pluto to be recognized as the first known member of a larger population now known to consist of over 1000 objects (Fig.
    [Show full text]
  • Way-Out World
    Non-fiction: Way-Out World Way-Out World By Hugh Westrup What strange satellite circles the visible edge of the solar system? The detonation of a single nuclear bomb can do catastrophic damage. So imagine the power of more than one bomb—not just two or 10 or even 10 million, but 10 billion. Astronomers have evidence that a collision with enough force to equal the explosion of 10 billion nuclear bombs once happened in the solar system. Out of that crack-up was born one of the oddest things in space. Its name is Haumea. “There is so much to learn about this newfound object, and we keep finding surprises,” says Mike Brown, an astronomer at the California Institute of Technology. “It’s just crazy.” ODD Balls The solar system is always changing. What astronomers know about it is changing even faster. Advances in telescope technology keep deepening their view of space, continually revealing new objects and new features on old objects. One example of that change in perspective is Pluto. For more than 70 years, astronomers considered it the ninth planet. Then, in 2007, the International Astronomical Union reclassified it as a dwarf planet. Like a planet, a dwarf planet orbits the sun. It also has enough mass, and therefore enough gravity, to give it a rounded shape. But it lacks pull; its gravity isn’t strong enough to clear its neighborhood of most smaller objects the way that planets do. A year later Pluto was reclassified again. Now it’s a plutoid. A plutoid is simply a dwarf planet that exists beyond Neptune, the eighth planet.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]
  • News & Views Research
    RESEARCH NEWS & VIEWS measure the dwarf planet’s size, shape and density more accurately than ever before. Compared with other bodies in the Solar System, Haumea rotates quickly (making one rotation in about four hours), and is strangely shaped, like an elongated egg. Ortiz et al. calculate that the object’s longest axis is at least 2,300 km, which is larger than earlier estimates6–8. In turn, given known values for Haumea’s mass and brightness, the dwarf planet’s density and reflectivity are both lower CSI DE ANDALUCIA DE ASTROFISICA INSTITUTO than the unusually high values previously considered. The authors’ results suggest that Haumea might not be in hydrostatic equilibrium, and this touches on the still-sensitive topic of how planets and dwarf planets should be defined. Remarkably, the authors show that blinks in the starlight, detected at multiple observa- tion sites both before and after a distant star was blocked by Haumea, are consistent with a 70-km-wide ring of material encircling the body, approximately 1,000 km away from Haumea’s surface (Fig. 1). Saturn’s are the most studied of all rings, Figure 1 | Artist’s impression of Haumea and its ring. Ortiz et al.4 have measured the size, shape and and yet they remain enigmatic. Data from the density of the dwarf planet Haumea with unprecedented accuracy and found that it has a planetary ring. Cassini spacecraft revealed that gravitational This is the first time that a ring has been discovered around a distant body in the Solar System. interactions between the planet’s rings and moons shepherd the ring material, and that Ring systems represent microcosms of the transition from the outer Solar System, one of the rings is produced entirely from larger-scale rotating structures, such as including close encounters with the giant matter that spews from the moon Encela- galaxies and proto-planetary disks — the disks planets14.
    [Show full text]
  • Pluto and Its Cohorts, Which Is Not Ger Passing by and Falling in Love So Much When Compared to the with Her
    INTERNATIONAL SPACE SCIENCE INSTITUTE SPATIUM Published by the Association Pro ISSI No. 33, March 2014 141348_Spatium_33_(001_016).indd 1 19.03.14 13:47 Editorial A sunny spring day. A green On 20 March 2013, Dr. Hermann meadow on the gentle slopes of Boehnhardt reported on the pre- Impressum Mount Etna and a handsome sent state of our knowledge of woman gathering flowers. A stran- Pluto and its cohorts, which is not ger passing by and falling in love so much when compared to the with her. planets in our cosmic neighbour- hood, yet impressively much in SPATIUM Next time, when she is picking view of their modest size and their Published by the flowers again, the foreigner returns gargantuan distance. In fact, ob- Association Pro ISSI on four black horses. Now, he, serving dwarf planet Pluto poses Pluto, the Roman god of the un- similar challenges to watching an derworld, carries off Proserpina to astronaut’s face on the Moon. marry her and live together in the shadowland. The heartbroken We thank Dr. Boehnhardt for his Association Pro ISSI mother Ceres insists on her return; kind permission to publishing Hallerstrasse 6, CH-3012 Bern she compromises with Pluto allow- herewith a summary of his fasci- Phone +41 (0)31 631 48 96 ing Proserpina to living under the nating talk for our Pro ISSI see light of the Sun during six months association. www.issibern.ch/pro-issi.html of a year, called summer from now for the whole Spatium series on, when the flowers bloom on the Hansjörg Schlaepfer slopes of Mount Etna, while hav- Brissago, March 2014 President ing to stay in the twilight of the Prof.
    [Show full text]