2155 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 70, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Timothy G. Walmsley, Petar S. Varbanov, Rongxin Su, Jiří J. Klemeš Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-67-9; ISSN 2283-9216 DOI: 10.3303/CET1870360 Debottlenecking Biomass Supply Chain Resources Deficiency via Element Targeting Approach a, b c b Chun Hsion Lim *, Bing Shen How , Wendy P. Q. Ng , Wei Dong Leong , Sue Lin Ngan b, Hon Loong Lamb a Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia b University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia c Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
[email protected] Biomass has been one of the focus in research and development of renewable resources for energy, chemicals and downstream products. Despite many success of biomass conversion technologies such as pyrolysis, gasification, fermentation, and combustion, implementation of such technologies in industrial scale is often very challenging. The major limitations within the system include unique properties of each biomass species, unique regional nature of biomass system, complex supply chain and logistic distribution. Nonetheless, the demand for renewable energy and its products are favourable, increasing the need for more sustainable and green pr ocesses. However, most of the current biomass technology being implemented is only designed in relatively small scale due to limitation of local biomass resources. Availability of biomass resources has been one of the main constraint for mass production of biomass product.