Phillips, B.T., D.F. Gruber, G. Vasan, V.A. Pieribone, J.S

Total Page:16

File Type:pdf, Size:1020Kb

Phillips, B.T., D.F. Gruber, G. Vasan, V.A. Pieribone, J.S OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Phillips, B.T., D.F. Gruber, G. Vasan, V.A. Pieribone, J.S. Sparks, and C.N. Roman. 2016. First evidence of bioluminescence on a “black smoker” hydrothermal chimney. Oceanography 29(2):10–11, http://dx.doi.org/10.5670/oceanog.2016.27. DOI http://dx.doi.org/10.5670/oceanog.2016.27 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 2, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY RIP CURRENT — NEWS IN OCEANOGRAPHY First Evidence of Bioluminescence on a “Black Smoker” Hydrothermal Chimney By Brennan T. Phillips, David F. Gruber, Ganesh Vasan, Vincent A. Pieribone, John S. Sparks, and Christopher N. Roman ioluminescence in the deep sea in 2006 (Haymon et al., 2008). Outfitted moving quickly in one recording, indi- is omnipresent, yet imagery with the low-light camera and two high- cating a mobile organism. Review of of the phenomenon is scarce. power strobes oriented vertically toward footage obtained five minutes prior to the BWhile this dearth in observations can be the seafloor, the ROV was positioned low-light recordings revealed a relatively largely explained by sampling effort, the almost directly over the vent orifice of one low abundance of macrobiology on and camera technology available for in situ, of the larger active chimneys at 1,643 m around the chimney, with a few scattered low-light imagery is also a limiting fac- water depth (~1 m altitude, chimney Bythograeid crabs, squat lobsters, and tor. Recent work by Phillips et al. (2016) height 11 m). All lights on the ROV sys- numerous Alvinocarid shrimp. Based on describes the application of a Hamamatsu tem were turned off (including external these observations and the behavior of ORCA Flash2.0 V2 sCMOS camera to LED indicators), and closed-loop iner- the luminescence, it is likely biologically detect light-stimulated luminescence tial navigation control was used to main- sourced and could be a free-swimming in the water column. This system was tain vehicle position within <10 cm on all shrimp. Whether such an organism is a recently employed to observe biolumi- axes. The vehicle hovered over the chim- vent-associate or a member of the sur- nescence on a deep-sea “black smoker” ney for approximately 20 minutes while rounding midwater community cannot be hydrothermal vent. light-stimulation techniques, as per- determined by these observations alone. As part of a multidisciplinary expe- formed in Phillips et al. (2016), were used Blackbody radiation and visible light dition on E/V Nautilus aimed at explor- to elicit bioluminescent responses. No have been measured using various ing the Galápagos Spreading Center, dive light-stimulated bioluminescence was methods at several hydrothermal vents #H1439 on July 1, 2015, used the Hercules observed, but two recordings made as (Van Dover et al., 1996; White et al., remotely operated vehicle (ROV) system controls without any strobes detected a 2002). While the low-light camera used to take a close look at the Iguanas hydro- weak, mobile luminescent source within in this study can detect wavelengths up thermal vent field (Raineault et al., 2016). 1 m of the vent orifice (Figure 1, supple- into the near-infrared spectrum, no pat- This vent system was initially discovered mental video). The source appears to be terns were visible in our recordings. This may be attributed to the relatively low temperatures measured at the vent ori- fice (maximum reading 154.7°C) and the diminished quantum efficiency of the camera in the low infrared wavelength spectrum (800–1,000 nm). Given the absence of any solar radiation from the surface and negative observations of bio- luminescence on vents by human observ- ers, it has been hypothesized that black- body radiation from deep-sea vents may be a signal for vent shrimp to locate and/ or avoid heat sources through the use of primitive photoreceptor organs (Pelli and Chamberlain 1989; Van Dover et al., 1989; FIGURE 1. (left) Strobe-lit, down-looking view of the active black smoker chimney. (right) Same field of view as the strobe-lit image, with a single bioluminescent source visible in the lower-right corner. O’Neill et al., 1995; Nuckley et al., 1996). The location of the bioluminescent source is circled in red in both images. Given our observations of naturally 10 Oceanography | Vol.29, No.2 OceanographyUpcoming occurring bioluminescence directly adja- Phillips, B.T., D.F. Gruber, G. Vasan, C.N. Roman, V.A. Pieribone, and J.S. Sparks. 2016. Observations Special Issues cent to an active vent, it may be that such of in situ deep-sea marine bioluminescence photosensitive capabilities serve more with a high-speed, high-resolution sCMOS cam- era. Deep Sea Research Part I 111:102–109, than to simply locate and avoid extreme http://dx.doi.org/10.1016/j.dsr.2016.02.012. September 2016 heat sources. For example, Johnsen Raineault, N.A., R.D. Ballard, L. Mayer, C.R. Fisher, GoMRI Gulf Oil Spill & S. Carey, L. Marsh, R. Kane, S. Tüzün, T.M. Shank, Ecosystem Science et al. (1995) suggest that the measured and C. Smart. 2016. Exploration of hydrother- peak sensitivity of Rimicaris sp. shrimp mal vents along the Galápagos Spreading Center. Pp. 35–37 in New Frontiers in Ocean December 2016 at ~500 nm is more attuned to visible- Exploration: The E/V Nautilus and NOAA Ship Ocean-Ice Interaction spectrum light than blackbody radiation, Okeanos Explorer 2015 Field Season. K.L.C. Bell, M.L. Brennan, J. Flanders, N.A. Raineault, and which may be an artifact of their pro- K. Wagner, eds. Oceanography 29(1), supple- March 2017 posed evolution from surface-dwelling ment, http://dx.doi.org/10.5670/oceanog.2016. International Cooperation in supplement.01. Harmful Algal Bloom Science bresiliid shrimp (Chamberlain, 2000). Van Dover, C.L., E.Z. Szuts, S.C. Chamberlain, It is our hope that these crude obser- and J.R. Cann. 1989. A novel eye in ‘eyeless’ shrimp from hydrothermal vents of the Mid- June 2017 vations will stimulate further interest Atlantic Ridge. Nature 337(6206):458–460, TBN regarding the role of bioluminescence http://dx.doi.org/10.1038/337458a0. Van Dover, C.L., G.T. Reynolds, A.D. Chave, September 2017 within and around hydrothermal vent and J.A. Tyson. 1996. Light at deep- Sedimentary Processes Building a systems, with a possible focus on vent sea hydrothermal vents. Geophysical Research Letters 23(16):2,049–2,052, Tropical Delta Yesterday, Today, and shrimp as potential light-producing ani- http://dx.doi.org/10.1029/96GL02151. Tomorrow: The Mekong System mals. The continual improvement of White, S.N., A.D. Chave, G.T. Reynolds, and C.L. Van Dover. 2002. Ambient light emission December 2017 low-light scientific cameras used for in from hydrothermal vents on the Mid-Atlantic Celebrating 30 Years of Ocean Science situ imagery, paired with reliable and Ridge. Geophysical Research Letters 29(15), http://dx.doi.org/10.1029/2002GL014977. and Technology at the Monterey Bay precise vehicle navigation, makes such Aquarium Research Institute endeavors possible. ACKNOWLEDGMENTS This research used data provided by the Nautilus SUPPLEMENTAL MATERIAL Exploration Program, Expedition #NA064. The authors wish to thank the E/V Nautilus crew and A link to the video of the hydrothermal chimney col- the ROV team for their expertise and technical sup- lected by camera on ROV Hercules can be obtained port, the Inner Space Center at the University at http://dx.doi.org/10.5670/oceanog.2016.27. of Rhode Island, and Chuck Fisher for facilitat- ing this research. This work was conducted under REFERENCES research permit #PC-45-15, and the authors thank Chamberlain, S.C. 2000. Vision in hydrothermal the Galápagos National Park directorate and the vent shrimp. Philosophical Transactions of the Charles Darwin Research Station for their collabora- Royal Society of London B 355(1401):1,151–1,154, tion. Sheri White, Cindy Van Dover, and one anony- http://dx.doi.org/10.1098/rstb.2000.0657. mous reviewer contributed constructive comments Haymon, R.M., S.M. White, E.T. Baker, P.G. Anderson, that greatly enhanced this article. This work was K.C. Macdonald, and J.A. Resing. 2008. High- funded in part by the Ray and Barbara Dalio Family resolution surveys along the hot spot-affected Foundation and NSF grant DEB-1257555 to JSS. Gálapagos Spreading Center: 3. Black smoker dis- coveries and the implications for geological con- trols on hydrothermal activity. Geochemistry, AUTHORS Brennan T. Phillips ([email protected]) Geophysics, Geosystems 9, Q12006, is PhD Candidate, University of Rhode Island, http://dx.doi.org/10.1029/2008GC002114. Graduate School of Oceanography, Narragansett, In addition to the special issues articles, Johnson, M.L., P.M.J. Shelton, P.J. Herring, RI, USA. David F. Gruber is Associate Professor, City and S. Gardner. 1995. Spectral responses Oceanography solicits and publishes: University of New York, Baruch College, New York, from the dorsal organ of a juvenile Rimicaris • Peer-reviewed articles that chronicle NY, USA. Ganesh Vasan is Postdoctoral Associate, exoculata from the TAG hydrothermal vent site. The John B. Pierce Laboratory, New Haven, CT, USA. all aspects of ocean science and its BRIDGE Newsletter 8:38–42.
Recommended publications
  • Hydrothermal Vents. Teacher's Notes
    Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • Deep Machine Learning Techniques for the Detection and Classification
    www.nature.com/scientificreports Corrected: Publisher Correction OPEN Deep Machine Learning Techniques for the Detection and Classifcation of Sperm Whale Bioacoustics Received: 15 April 2019 Peter C. Bermant1, Michael M. Bronstein1,2,7, Robert J. Wood 3,4, Shane Gero 5 & Accepted: 15 August 2019 David F. Gruber 1,6 Published online: 29 August 2019 We implemented Machine Learning (ML) techniques to advance the study of sperm whale (Physeter macrocephalus) bioacoustics. This entailed employing Convolutional Neural Networks (CNNs) to construct an echolocation click detector designed to classify spectrograms generated from sperm whale acoustic data according to the presence or absence of a click. The click detector achieved 99.5% accuracy in classifying 650 spectrograms. The successful application of CNNs to clicks reveals the potential of future studies to train CNN-based architectures to extract fner-scale details from cetacean spectrograms. Long short-term memory and gated recurrent unit recurrent neural networks were trained to perform classifcation tasks, including (1) “coda type classifcation” where we obtained 97.5% accuracy in categorizing 23 coda types from a Dominica dataset containing 8,719 codas and 93.6% accuracy in categorizing 43 coda types from an Eastern Tropical Pacifc (ETP) dataset with 16,995 codas; (2) “vocal clan classifcation” where we obtained 95.3% accuracy for two clan classes from Dominica and 93.1% for four ETP clan types; and (3) “individual whale identifcation” where we obtained 99.4% accuracy using two Dominica sperm whales. These results demonstrate the feasibility of applying ML to sperm whale bioacoustics and establish the validity of constructing neural networks to learn meaningful representations of whale vocalizations.
    [Show full text]
  • Ocean Ridge Hydrothermal Vent Fluids Alison Marie Bray University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2001 The geochemistry of boron and lithium in mid - ocean ridge hydrothermal vent fluids Alison Marie Bray University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Bray, Alison Marie, "The eg ochemistry of boron and lithium in mid -ocean ridge hydrothermal vent fluids" (2001). Doctoral Dissertations. 46. https://scholars.unh.edu/dissertation/46 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. __ ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE GEOCHEMISTRY OF BORON AND LITHIUM IN MID-OCEAN RIDGE HYDROTHERMAL VENT FLUIDS by Alison Marie Bray Bachelor of Arts, University of San Diego, 1995 Master of Science, University of New Hampshire, 1998 Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Earth Sciences December 2001 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3030597 ___ ® UMI UMI Microform 3030597 Copyright 2002 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • An Estimate of Hydrothermal Fluid Residence Times and Vent Chimney
    Earth and Planetary Science Letters, 76 (1985/86) 35-44 35 Elsevier Science Publishers B.V., Amsterdam Printed in The Netherlands [6] An estimate of hydrothermal fluid residence times and vent chimney growth rates based on 210 Pb/Pb ratios and mineralogic studies of sulfides dredged from the Juan de Fuca Ridge David Kadko ~, Randolph Koski 2 Mitsunobu Tatsumoto 3 and Robin Bouse 2 i College of Oceanograpt~v, Oregon State Unieersio,, Cort,allis, OR 97331 (U.S.A.) : U.S. Geological Survey, 345 3~iiddlefield Road, Menlo Park, CA 94025 (U.S.A.) -~ U.S. Geological Survey, Denver. CO 80225 (U.S.A.) Received January 22, 1985; revised version received August 26, 1985 The 2u~Pb/Pb ratios across two sulfide samples dredged from the Juan de Fuca Ridge are used to estimate the growth rate of the sulfide material and the residence time of the hydrothermal fluid within the oceanic crust from the onset of basalt alteration. 21°Pb is added to the hydrothermal fluid by two processes: (1) high-temperature alteration of basalt and (2) if the residence time of the fluid is on the order of the 22.3-year half-life of 210 Pb, by in-situ growth from 222 Rn (Krishnaswami and Turekian, 1982). Stable lead is derived only from the alteration of basalt. The 21°Pb/Pb ratio across one sample was - 0.5 dpm/10 6 g Pb, and across the other it was - 0.4 dpm/10 6 g Pb. These values are quite close to the 23SU/Pb ratios of basalts from the area, suggesting that the residence time of the hydrothermal fluid from the onset of basalt alteration is appreciably less than the mean life of 21°pb.
    [Show full text]
  • Seafloor Hydrothermal Activity Along Mid-Ocean Ridge With
    www.nature.com/scientificreports OPEN Seafoor hydrothermal activity along mid-ocean ridge with strong melt supply: study from segment Received: 21 February 2019 Accepted: 26 June 2019 27, southwest Indian ridge Published: xx xx xxxx Xihe Yue1,2, Huaiming Li2, Jianye Ren1, Chunhui Tao2,3, Jianping Zhou2, Yuan Wang2 & Xiaoxia Lü1 Continuous tow investigations have shown that the present vent feld inventory along fast to intermediate spreading ridges may be underestimated by at least 3–6 times, while the limited towed line investigations of venting sites along slow to ultra-slow spreading ridges make it impossible to determine their distribution. The Chinese Dayang cruise has conducted detailed towed line surveys of hydrothermal activity on segment 27 of the ultra-slow spreading southwest Indian ridge in 2015. The results have identifed as many as 9 hydrothermal felds along 85-km-long segment, including one confrmed hydrothermal feld, three inferred hydrothermal felds and fve suspected felds. Hydrothermal activities are not only limited along-axis but also found approximately 10 km away from the axis. These vent felds are likely powered by a seismically identifed axial magma chamber, including melt migration along normal faults to fank areas. The calculated hydrothermal activity frequency on segment 27 is approximately 3.6–8 times higher than that calculated from the Interridge database, suggesting that careful system exploration can reveal more hydrothermal activities even on ultra-slow spreading ridges efected by hotspot. Hydrothermal activity is widespread on the seafoor, such as at ocean spreading ridges (OSRs) and arc volcanoes1. Te study of hydrothermal feld plays a key role in ocean-crust interactions, the formation of seafoor massive sulfde deposits and oceanic chemical and biogeochemical cycles2–5.
    [Show full text]
  • Biodiversity and Biogeography of Hydrothermal Vent Species Thirty Years of Discovery and Investigations
    This article has been published inOceanography , Volume 20, Number 1, a quarterly journal of The Oceanography Soci- S P E C I A L I ss U E F E AT U R E ety. Copyright 2007 by The Oceanography Society. All rights reserved. Permission is granted to copy this article for use in teaching and research. Republication, systemmatic reproduction, or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or Th e Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. Biodiversity and Biogeography of Hydrothermal Vent Species Thirty Years of Discovery and Investigations B Y EvA R AMIREZ- L LO D RA, On the Seaoor, Dierent Species T IMOTH Y M . S H A N K , A nd Thrive in Dierent Regions C HRI S TO P H E R R . G E R M A N Soon after animal communities were discovered around seafl oor hydrothermal vents in 1977, sci- entists found that vents in various regions are populated by distinct animal species. Scien- Shallow Atlantic vents (800-1700-meter depths) tists have been sorting clues to explain how support dense clusters of mussels The discovery of hydrothermal vents and the unique, often endem- seafl oor populations are related and how on black smoker chimneys. they evolved and diverged over Earth’s • ic fauna that inhabit them represents one of the most extraordinary history. Scientists today recognize dis- scientific discoveries of the latter twentieth century.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3900, 14 pp. May 9, 2018 In situ Observations of the Meso-Bathypelagic Scyphozoan, Deepstaria enigmatica (Semaeostomeae: Ulmaridae) DAVID F. GRUBER,1, 2, 3 BRENNAN T. PHILLIPS,4 LEIGH MARSH,5 AND JOHN S. SPARKS2, 6 ABSTRACT Deepstaria enigmatica (Semaeostomeae: Ulmaridae) is one of the largest and most mysteri- ous invertebrate predators of the deep sea. Humans have encountered this jellyfish on only a few occasions and many questions related to its biology, distribution, diet, environmental toler- ances, and behavior remain unanswered. In the 45 years since its formal description, there have been few recorded observations of D. enigmatica, due to the challenging nature of encountering these delicate soft-bodied organisms. Members ofDeepstaria , which comprises two described species, D. enigmatica and D. reticulum, reside in the meso-bathypelagic region of the world’s oceans, at depths ranging from ~600 to 1750 m. Here we report observations of a large D. enigmatica (68.3 cm length × 55.7 cm diameter) using a custom color high-definition low-light imaging system mounted on a scientific remotely operated vehicle (ROV). Observations were made of a specimen capturing or “bagging” prey, and we report on the kinetics of the closing motion of its membranelike umbrella. In the same area, we also noted a Deepstaria “jelly-fall” carcass with a high density of crustaceans feeding on its tissue and surrounding the carcass. These observations provide direct evidence of singular Deepstaria carcasses acting as jelly falls, which only recently have been reported to be a significant food source in the deep sea.
    [Show full text]
  • Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems
    sustainability Article Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems Zhujun Zhang 1, Wei Fan 1, Weicheng Bao 1, Chen-Tung A Chen 2, Shuo Liu 1,3 and Yong Cai 3,* 1 Ocean College, Zhejiang University, Zhoushan 316000, China; [email protected] (Z.Z.); [email protected] (W.F.); [email protected] (W.B.); [email protected] (S.L.) 2 Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; [email protected] 3 Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China * Correspondence: [email protected] Received: 21 August 2020; Accepted: 29 October 2020; Published: 2 November 2020 Abstract: A hydrothermal vent system is one of the most unique marine environments on Earth. The cycling hydrothermal fluid hosts favorable conditions for unique life forms and novel mineralization mechanisms, which have attracted the interests of researchers in fields of biological, chemical and geological studies. Shallow-water hydrothermal vents located in coastal areas are suitable for hydrothermal studies due to their close relationship with human activities. This paper presents a summary of the developments in exploration and detection methods for shallow-water hydrothermal systems. Mapping and measuring approaches of vents, together with newly developed equipment, including sensors, measuring systems and water samplers, are included. These techniques provide scientists with improved accuracy, efficiency or even extended data types while studying shallow-water hydrothermal systems. Further development of these techniques may provide new potential for hydrothermal studies and relevant studies in fields of geology, origins of life and astrobiology.
    [Show full text]
  • Life Is Weird!
    Windows to the Deep Exploration Life is Weird! FOCUS SEATING ARRANGEMENT Biological organisms in cold seep communities Groups of four students GRADE LEVEL MAXIMUM NUMBER OF STUDENTS 7-8 (Life Science) 30 FOCUS QUESTION KEY WORDS What organisms are typically found in cold seep Cold seeps Sipunculida communities, and how do these organisms interact? Methane hydrate ice Mussel Chemosynthesis Clam LEARNING OBJECTIVES Brine pool Octopus Students will be able to describe major features of Polychaete worms Crustacean cold seep communities, and list at least five organ- Chemosynthetic Alvinocaris isms typical of these communities. Methanotrophic Nematoda Thiotrophic Sea urchin Students will be able to infer probable trophic Xenophyophores Sea cucumber relationships among organisms typical of cold-seep Anthozoa Brittle star communities and the surrounding deep-sea envi- Turbellaria Sea star ronment. Polychaete worm Students will be able to describe in the process of BACKGROUND INFORMATION chemosynthesis in general terms, and will be able One of the major scientific discoveries of the last to contrast chemosynthesis and photosynthesis. 100 years is the presence of extensive deep sea communities that do not depend upon sunlight as MATERIALS their primary source of energy. Instead, these com- 5 x 7 index cards munities derive their energy from chemicals through Drawing materials a process called chemosynthesis (in contrast to Corkboard, flip chart, or large poster board photosynthesis in which sunlight is the basic energy source). Some chemosynthetic
    [Show full text]
  • Researchers Unveil Rich World of Fish Biofluorescence
    Media Inquiries: Kendra Snyder, Department of Communications 212-496-3419; [email protected] www.amnh.org _____________________________________________________________________________________ Wednesday, January 8, 2014 RESEARCHERS UNVEIL RICH WORLD OF FISH BIOFLUORESCENCE TECHNOLOGY-DRIVEN STUDY FINDS ABOUT 180 GLOWING SPECIES, HIGHLIGHTS NEW POTENTIAL SOURCE FOR BIOMEDICAL FLUORESCENT PROTEINS A team of researchers led by scientists from the American Museum of Natural History has released the first report of widespread biofluorescence in the tree of life of fishes, identifying more than 180 species that glow in a wide range of colors and patterns. Published today in PLOS ONE, the research shows that biofluorescence—a phenomenon by which organisms absorb light, transform it, and eject it as a different color—is common and variable among marine fish species, indicating its potential use in communication and mating. The report opens the door for the discovery of new fluorescent proteins that could be used in biomedical research. “We’ve long known about biofluorescence underwater in organisms like corals, jellyfish, and even in land animals like butterflies and parrots, but fish biofluorescence has been reported in only a few research publications,” said co-lead author John Sparks, a curator in the Museum’s Department of Ichthyology. “This paper is the first to look at the wide distribution of biofluorescence across fishes, and it opens up a number of new research areas.” Unlike the full-color environment that humans and other terrestrial animals inhabit, fishes live in a world that is predominantly blue because, with depth, water quickly absorbs the majority of the visible light spectrum. In recent years, the research team has discovered that many fishes absorb the remaining blue light and re-emit it in neon greens, reds, and oranges.
    [Show full text]
  • Bioluminescent Flashes Drive Nighttime Schooling Behavior and Synchronized Swimming Dynamics in Flashlight Fish
    University of Rhode Island DigitalCommons@URI Ocean Engineering Faculty Publications Ocean Engineering 8-14-2019 Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish David F. Gruber Brennan Phillips Rory O'Brien Vivek Boominathan Ashok Veeraraghavan See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/oce_facpubs Authors David F. Gruber, Brennan Phillips, Rory O'Brien, Vivek Boominathan, Ashok Veeraraghavan, Ganesh Vasan, Peter O'Brien, Vincent A. Pieribone, and John S. Sparks RESEARCH ARTICLE Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish 1,2,3 4 5 6 David F. GruberID *, Brennan T. PhillipsID , Rory O'Brien , Vivek BoominathanID , Ashok Veeraraghavan6, Ganesh Vasan5, Peter O'Brien5, Vincent A. Pieribone5, John S. Sparks3,7 1 Department of Natural Sciences, City University of New York, Baruch College, New York, New York, United States of America, 2 PhD Program in Biology, The Graduate Center, City University of New York, New York, a1111111111 New York, United States of America, 3 Sackler Institute for Comparative Genomics, American Museum of a1111111111 Natural History, New York, New York, United States of America, 4 Department of Ocean Engineering, a1111111111 University of Rhode Island, Narragansett, Rhode Island, United States of America, 5 Department of Cellular a1111111111 and Molecular Physiology, The John B. Pierce Laboratory, Yale University School of Medicine, New Haven, a1111111111 Connecticut, United States of America, 6 Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States of America, 7 Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America * [email protected] OPEN ACCESS Citation: Gruber DF, Phillips BT, O'Brien R, Abstract Boominathan V, Veeraraghavan A, Vasan G, et al.
    [Show full text]