Rao's Score Test in Econometrics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Linear Regression
Multiple Linear Regression The MULTIPLE LINEAR REGRESSION command performs simple multiple regression using least squares. Linear regression attempts to model the linear relationship between variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable (RESPONSE), and the others are considered to be dependent variables (PREDICTORS). How To Run: STATISTICS->REGRESSION->MULTIPLE LINEAR REGRESSION... Select DEPENDENT (RESPONSE) variable and INDEPENDENT variables (PREDICTORS). To force the regression line to pass through the origin use the CONSTANT (INTERCEPT) IS ZERO option from the ADVANCED OPTIONS. Optionally, you can add following charts to the report: o Residuals versus predicted values plot (use the PLOT RESIDUALS VS. FITTED option); o Residuals versus order of observation plot (use the PLOT RESIDUALS VS. ORDER option); o Independent variables versus the residuals (use the PLOT RESIDUALS VS. PREDICTORS option). For the univariate model, the chart for the predicted values versus the observed values (LINE FIT PLOT) can be added to the report. Use THE EMULATE EXCEL ATP FOR STANDARD RESIDUALS option to get the same standard residuals as produced by Excel Analysis Toolpak. Results Regression statistics, analysis of variance table, coefficients table and residuals report are produced. Regression Statistics 2 R (COEFFICIENT OF DETERMINATION, R-SQUARED) is the square of the sample correlation coefficient between 2 the PREDICTORS (independent variables) and RESPONSE (dependent variable). In general, R is a percentage of response variable variation that is explained by its relationship with one or more predictor variables. In simple words, the R2 indicates the accuracy of the prediction. The larger the R2 is, the more the total 2 variation of RESPONSE is explained by predictors or factors in the model. -
Three Statistical Testing Procedures in Logistic Regression: Their Performance in Differential Item Functioning (DIF) Investigation
Research Report Three Statistical Testing Procedures in Logistic Regression: Their Performance in Differential Item Functioning (DIF) Investigation Insu Paek December 2009 ETS RR-09-35 Listening. Learning. Leading.® Three Statistical Testing Procedures in Logistic Regression: Their Performance in Differential Item Functioning (DIF) Investigation Insu Paek ETS, Princeton, New Jersey December 2009 As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance quality and equity in education and assessment for the benefit of ETS’s constituents and the field. To obtain a PDF or a print copy of a report, please visit: http://www.ets.org/research/contact.html Copyright © 2009 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRE, and LISTENING. LEARNING. LEADING. are registered trademarks of Educational Testing Service (ETS). SAT is a registered trademark of the College Board. Abstract Three statistical testing procedures well-known in the maximum likelihood approach are the Wald, likelihood ratio (LR), and score tests. Although well-known, the application of these three testing procedures in the logistic regression method to investigate differential item function (DIF) has not been rigorously made yet. Employing a variety of simulation conditions, this research (a) assessed the three tests’ performance for DIF detection and (b) compared DIF detection in different DIF testing modes (targeted vs. general DIF testing). Simulation results showed small differences between the three tests and different testing modes. However, targeted DIF testing consistently performed better than general DIF testing; the three tests differed more in performance in general DIF testing and nonuniform DIF conditions than in targeted DIF testing and uniform DIF conditions; and the LR and score tests consistently performed better than the Wald test. -
HMH ASSESSMENTS Glossary of Testing, Measurement, and Statistical Terms
hmhco.com HMH ASSESSMENTS Glossary of Testing, Measurement, and Statistical Terms Resource: Joint Committee on the Standards for Educational and Psychological Testing of the AERA, APA, and NCME. (2014). Standards for educational and psychological testing. Washington, DC: American Educational Research Association. Glossary of Testing, Measurement, and Statistical Terms Adequate yearly progress (AYP) – A requirement of the No Child Left Behind Act (NCLB, 2001). This requirement states that all students in each state must meet or exceed the state-defined proficiency level by 2014 on state Ability – A characteristic indicating the level of an individual on a particular trait or competence in a particular area. assessments. Each year, the minimum level of improvement that states, school districts, and schools must achieve Often this term is used interchangeably with aptitude, although aptitude actually refers to one’s potential to learn or is defined. to develop a proficiency in a particular area. For comparison see Aptitude. Age-Based Norms – Developed for the purpose of comparing a student’s score with the scores obtained by other Ability/Achievement Discrepancy – Ability/Achievement discrepancy models are procedures for comparing an students at the same age on the same test. How much a student knows is determined by the student’s standing individual’s current academic performance to others of the same age or grade with the same ability score. The ability or rank within the age reference group. For example, a norms table for 12 year-olds would provide information score could be based on predicted achievement, the general intellectual ability score, IQ score, or other ability score. -
Testing for INAR Effects
Communications in Statistics - Simulation and Computation ISSN: 0361-0918 (Print) 1532-4141 (Online) Journal homepage: https://www.tandfonline.com/loi/lssp20 Testing for INAR effects Rolf Larsson To cite this article: Rolf Larsson (2020) Testing for INAR effects, Communications in Statistics - Simulation and Computation, 49:10, 2745-2764, DOI: 10.1080/03610918.2018.1530784 To link to this article: https://doi.org/10.1080/03610918.2018.1530784 © 2019 The Author(s). Published with license by Taylor & Francis Group, LLC Published online: 21 Jan 2019. Submit your article to this journal Article views: 294 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=lssp20 COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 2020, VOL. 49, NO. 10, 2745–2764 https://doi.org/10.1080/03610918.2018.1530784 Testing for INAR effects Rolf Larsson Department of Mathematics, Uppsala University, Uppsala, Sweden ABSTRACT ARTICLE HISTORY In this article, we focus on the integer valued autoregressive model, Received 10 April 2018 INAR (1), with Poisson innovations. We test the null of serial independ- Accepted 25 September 2018 ence, where the INAR parameter is zero, versus the alternative of a KEYWORDS positive INAR parameter. To this end, we propose different explicit INAR model; Likelihood approximations of the likelihood ratio (LR) statistic. We derive the limit- ratio test ing distributions of our statistics under the null. In a simulation study, we compare size and power of our tests with the score test, proposed by Sun and McCabe [2013. Score statistics for testing serial depend- ence in count data. -
Measures of Center
Statistics is the science of conducting studies to collect, organize, summarize, analyze, and draw conclusions from data. Descriptive statistics consists of the collection, organization, summarization, and presentation of data. Inferential statistics consist of generalizing form samples to populations, performing hypothesis tests, determining relationships among variables, and making predictions. Measures of Center: A measure of center is a value at the center or middle of a data set. The arithmetic mean of a set of values is the number obtained by adding the values and dividing the total by the number of values. (Commonly referred to as the mean) x x x = ∑ (sample mean) µ = ∑ (population mean) n N The median of a data set is the middle value when the original data values are arranged in order of increasing magnitude. Find the center of the list. If there are an odd number of data values, the median will fall at the center of the list. If there is an even number of data values, find the mean of the middle two values in the list. This will be the median of this data set. The symbol for the median is ~x . The mode of a data set is the value that occurs with the most frequency. When two values occur with the same greatest frequency, each one is a mode and the data set is bimodal. Use M to represent mode. Measures of Variation: Variation refers to the amount that values vary among themselves or the spread of the data. The range of a data set is the difference between the highest value and the lowest value. -
Comparison of Wald, Score, and Likelihood Ratio Tests for Response Adaptive Designs
Journal of Statistical Theory and Applications Volume 10, Number 4, 2011, pp. 553-569 ISSN 1538-7887 Comparison of Wald, Score, and Likelihood Ratio Tests for Response Adaptive Designs Yanqing Yi1∗and Xikui Wang2 1 Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada A1B 3V6 2 Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 Abstract Data collected from response adaptive designs are dependent. Traditional statistical methods need to be justified for the use in response adaptive designs. This paper gener- alizes the Rao's score test to response adaptive designs and introduces a generalized score statistic. Simulation is conducted to compare the statistical powers of the Wald, the score, the generalized score and the likelihood ratio statistics. The overall statistical power of the Wald statistic is better than the score, the generalized score and the likelihood ratio statistics for small to medium sample sizes. The score statistic does not show good sample properties for adaptive designs and the generalized score statistic is better than the score statistic under the adaptive designs considered. When the sample size becomes large, the statistical power is similar for the Wald, the sore, the generalized score and the likelihood ratio test statistics. MSC: 62L05, 62F03 Keywords and Phrases: Response adaptive design, likelihood ratio test, maximum likelihood estimation, Rao's score test, statistical power, the Wald test ∗Corresponding author. Fax: 1-709-777-7382. E-mail addresses: [email protected] (Yanqing Yi), xikui [email protected] (Xikui Wang) Y. Yi and X. -
Robust Score and Portmanteau Tests of Volatility Spillover Mike Aguilar, Jonathan B
Journal of Econometrics 184 (2015) 37–61 Contents lists available at ScienceDirect Journal of Econometrics journal homepage: www.elsevier.com/locate/jeconom Robust score and portmanteau tests of volatility spillover Mike Aguilar, Jonathan B. Hill ∗ Department of Economics, University of North Carolina at Chapel Hill, United States article info a b s t r a c t Article history: This paper presents a variety of tests of volatility spillover that are robust to heavy tails generated by Received 27 March 2012 large errors or GARCH-type feedback. The tests are couched in a general conditional heteroskedasticity Received in revised form framework with idiosyncratic shocks that are only required to have a finite variance if they are 1 September 2014 independent. We negligibly trim test equations, or components of the equations, and construct heavy Accepted 1 September 2014 tail robust score and portmanteau statistics. Trimming is either simple based on an indicator function, or Available online 16 September 2014 smoothed. In particular, we develop the tail-trimmed sample correlation coefficient for robust inference, and prove that its Gaussian limit under the null hypothesis of no spillover has the same standardization JEL classification: C13 irrespective of tail thickness. Further, if spillover occurs within a specified horizon, our test statistics C20 obtain power of one asymptotically. We discuss the choice of trimming portion, including a smoothed C22 p-value over a window of extreme observations. A Monte Carlo study shows our tests provide significant improvements over extant GARCH-based tests of spillover, and we apply the tests to financial returns data. Keywords: Finally, based on ideas in Patton (2011) we construct a heavy tail robust forecast improvement statistic, Volatility spillover which allows us to demonstrate that our spillover test can be used as a model specification pre-test to Heavy tails Tail trimming improve volatility forecasting. -
The Normal Distribution Introduction
The Normal Distribution Introduction 6-1 Properties of the Normal Distribution and the Standard Normal Distribution. 6-2 Applications of the Normal Distribution. 6-3 The Central Limit Theorem The Normal Distribution (b) Negatively skewed (c) Positively skewed (a) Normal A normal distribution : is a continuous ,symmetric , bell shaped distribution of a variable. The mathematical equation for the normal distribution: 2 (x)2 2 f (x) e 2 where e ≈ 2 718 π ≈ 3 14 µ ≈ population mean σ ≈ population standard deviation A normal distribution curve depend on two parameters . µ Position parameter σ shape parameter Shapes of Normal Distribution 1 (1) Different means but same standard deviations. Normal curves with μ1 = μ2 and 2 σ1<σ2 (2) Same means but different standard deviations . (3) Different 3 means and different standard deviations . Properties of the Normal Distribution The normal distribution curve is bell-shaped. The mean, median, and mode are equal and located at the center of the distribution. The normal distribution curve is unimodal (single mode). The curve is symmetrical about the mean. The curve is continuous. The curve never touches the x-axis. The total area under the normal distribution curve is equal to 1 (or 100%). The area under the normal curve that lies within Empirical Rule one standard deviation of the mean is approximately 0.68 (68%). two standard deviations of the mean is approximately 0.95 (95%). three standard deviations of the mean is approximately 0.997 (99.7%). ** Suppose that the scores on a history exam have a mean of 70. If these scores are normally distributed and approximately 95% of the scores fall in (64,76), then the standard deviation is …. -
Econometrics-I-11.Pdf
Econometrics I Professor William Greene Stern School of Business Department of Economics 11-1/78 Part 11: Hypothesis Testing - 2 Econometrics I Part 11 – Hypothesis Testing 11-2/78 Part 11: Hypothesis Testing - 2 Classical Hypothesis Testing We are interested in using the linear regression to support or cast doubt on the validity of a theory about the real world counterpart to our statistical model. The model is used to test hypotheses about the underlying data generating process. 11-3/78 Part 11: Hypothesis Testing - 2 Types of Tests Nested Models: Restriction on the parameters of a particular model y = 1 + 2x + 3T + , 3 = 0 (The “treatment” works; 3 0 .) Nonnested models: E.g., different RHS variables yt = 1 + 2xt + 3xt-1 + t yt = 1 + 2xt + 3yt-1 + wt (Lagged effects occur immediately or spread over time.) Specification tests: ~ N[0,2] vs. some other distribution (The “null” spec. is true or some other spec. is true.) 11-4/78 Part 11: Hypothesis Testing - 2 Hypothesis Testing Nested vs. nonnested specifications y=b1x+e vs. y=b1x+b2z+e: Nested y=bx+e vs. y=cz+u: Not nested y=bx+e vs. logy=clogx: Not nested y=bx+e; e ~ Normal vs. e ~ t[.]: Not nested Fixed vs. random effects: Not nested Logit vs. probit: Not nested x is (not) endogenous: Maybe nested. We’ll see … Parametric restrictions Linear: R-q = 0, R is JxK, J < K, full row rank General: r(,q) = 0, r = a vector of J functions, R(,q) = r(,q)/’. Use r(,q)=0 for linear and nonlinear cases 11-5/78 Part 11: Hypothesis Testing - 2 Broad Approaches Bayesian: Does not reach a firm conclusion. -
Understanding Test Scores a Primer for Parents
Understanding Test Scores A primer for parents... Norm-Referenced Tests Norm-referenced tests compare an individual child's performance to that of his or her classmates or some other, larger group. Such a test will tell you how your child compares to similar children on a given set of skills and knowledge, but it does not provide information about what the child does and does not know. Scores on norm-referenced tests indicate the student's ranking relative to that group. Typical scores used with norm-referenced tests include: Percentiles. Percentiles are probably the most commonly used test score in education. A percentile is a score that indicates the rank of the student compared to others (same age or same grade), using a hypothetical group of 100 students. A percentile of 25, for example, indicates that the student's test performance equals or exceeds 25 out of 100 students on the same measure; a percentile of 87 indicates that the student equals or surpasses 87 out of 100 (or 87% of) students. Note that this is not the same as a "percent"-a percentile of 87 does not mean that the student answered 87% of the questions correctly! Percentiles are derived from raw scores using the norms obtained from testing a large population when the test was first developed. Standard scores. A standard score is derived from raw scores using the norming information gathered when the test was developed. Instead of reflecting a student's rank compared to others, standard scores indicate how far above or below the average (the "mean") an individual score falls, using a common scale, such as one with an "average" of 100. -
Ch6: the Normal Distribution
Ch6: The Normal Distribution Introduction Review: A continuous random variable can assume any value between two endpoints. Many continuous random variables have an approximately normal distribution, which means we can use the distribution of a normal random variable to make statistical inference about the variable. CH6: The Normal Distribution Santorico - Page 175 Example: Heights of randomly selected women CH6: The Normal Distribution Santorico - Page 176 Section 6-1: Properties of a Normal Distribution A normal distribution is a continuous, symmetric, bell-shaped distribution of a variable. The theoretical shape of a normal distribution is given by the mathematical formula (x)2 e 2 2 y , 2 where and are the mean and standard deviations of the probability distribution, respectively. Review: The and are parameters and hence describe the population . CH6: The Normal Distribution Santorico - Page 177 The shape of a normal distribution is fully characterized by its mean and standard deviation . specifies the location of the distribution. specifies the spread/shape of the distribution. CH6: The Normal Distribution Santorico - Page 178 CH6: The Normal Distribution Santorico - Page 179 Properties of the Theoretical Normal Distribution A normal distribution curve is bell-shaped. The mean, median, and mode are equal and are located at the center of the distribution. A normal distribution curve is unimodal. The curve is symmetric about the mean. The curve is continuous (no gaps or holes). The curve never touches the x-axis (just approaches it). The total area under a normal distribution curve is equal to 1.0 or 100%. Review: The Empirical Rule applies (68%-95%-99.7%) CH6: The Normal Distribution Santorico - Page 180 CH6: The Normal Distribution Santorico - Page 181 The Standard Normal Distribution Since each normally distributed variable has its own mean and standard deviation, the shape and location of these curves will vary. -
Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT
Power analysis for the Wald, LR, score, and gradient tests in a marginal maximum likelihood framework: Applications in IRT Felix Zimmer1, Clemens Draxler2, and Rudolf Debelak1 1University of Zurich 2The Health and Life Sciences University March 9, 2021 Abstract The Wald, likelihood ratio, score and the recently proposed gradient statistics can be used to assess a broad range of hypotheses in item re- sponse theory models, for instance, to check the overall model fit or to detect differential item functioning. We introduce new methods for power analysis and sample size planning that can be applied when marginal maximum likelihood estimation is used. This avails the application to a variety of IRT models, which are increasingly used in practice, e.g., in large-scale educational assessments. An analytical method utilizes the asymptotic distributions of the statistics under alternative hypotheses. For a larger number of items, we also provide a sampling-based method, which is necessary due to an exponentially increasing computational load of the analytical approach. We performed extensive simulation studies in two practically relevant settings, i.e., testing a Rasch model against a 2PL model and testing for differential item functioning. The observed distribu- tions of the test statistics and the power of the tests agreed well with the predictions by the proposed methods. We provide an openly accessible R package that implements the methods for user-supplied hypotheses. Keywords: marginal maximum likelihood, item response theory, power analysis, Wald test, score test, likelihood ratio, gradient test We wish to thank Carolin Strobl for helpful comments in the course of this research.